DC Field Value Language
dc.contributor.author민조홍-
dc.contributor.author윤강준-
dc.date.accessioned2016-08-27T04:08:07Z-
dc.date.available2016-08-27T04:08:07Z-
dc.date.issued2016-
dc.identifier.issn0885-7474-
dc.identifier.issn1573-7691-
dc.identifier.otherOAK-15613-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/217590-
dc.description.abstractWe consider the standard central finite difference method for solving the Poisson equation with the Dirichlet boundary condition. This scheme is well known to produce second order accurate solutions. From numerous tests, its numerical gradient was reported to be also second order accurate, but the observation has not been proved yet except for few specific domains. In this work, we first introduce a refined error estimate near the boundary and a discrete version of the divergence theorem. Applying the divergence theorem with the estimate, we prove the second order accuracy of the numerical gradient in arbitrary smooth domains.-
dc.languageEnglish-
dc.publisherSPRINGER/PLENUM PUBLISHERS-
dc.subjectConvergence analysis-
dc.subjectFinite difference method-
dc.subjectPoisson equation-
dc.subjectCentral finite difference-
dc.titleConvergence Analysis of the Standard Central Finite Difference Method for Poisson Equation-
dc.typeArticle-
dc.relation.issue2-
dc.relation.volume67-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage602-
dc.relation.lastpage617-
dc.relation.journaltitleJOURNAL OF SCIENTIFIC COMPUTING-
dc.identifier.doi10.1007/s10915-015-0096-2-
dc.identifier.wosidWOS:000374414500009-
dc.identifier.scopusid2-s2.0-84940985962-
dc.contributor.scopusid민조홍(57217858452)-
dc.contributor.scopusid윤강준(7103257925)-
dc.date.modifydate20210915112117-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML