View : 763 Download: 0
Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells
- Title
- Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells
- Authors
- Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-suk
- Ewha Authors
- 조경숙; 김태관
- SCOPUS Author ID
- 조경숙; 김태관
- Issue Date
- 2015
- Journal Title
- JOURNAL OF BIOTECHNOLOGY
- ISSN
- 0168-1656
1873-4863
- Citation
- JOURNAL OF BIOTECHNOLOGY vol. 211, pp. 130 - 137
- Keywords
- Microbial fuel cells (MFCs); Proton exchange membrane (PEM); COD removal; Bacterial community; Network analysis
- Publisher
- ELSEVIER SCIENCE BV
- Indexed
- SCI; SCIE; SCOPUS
- Document Type
- Article
- Abstract
- This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1 L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p <0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p <0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p < 0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised > 62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation >0.9 and p <0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth. (C) 2015 Elsevier B.V. All rights reserved.
- DOI
- 10.1016/j.jbiotec.2015.07.018
- Appears in Collections:
- 공과대학 > 환경공학과 > Journal papers
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML