View : 688 Download: 0

Highly Branched RuO2 Nanoneedles on Electrospun TiO2 Nanofibers as an Efficient Electrocatalytic Platform

Title
Highly Branched RuO2 Nanoneedles on Electrospun TiO2 Nanofibers as an Efficient Electrocatalytic Platform
Authors
Kim, Su-JinCho, Yu KyungSeok, JeesooLee, Nam-SukSon, ByungrakLee, Jae WonBaik, Jeong MinLee, ChongmokLee, YoungmiKim, Myung Hwa
Ewha Authors
이종목이영미김명화
SCOPUS Author ID
이종목scopus; 이영미scopus; 김명화scopus
Issue Date
2015
Journal Title
ACS APPLIED MATERIALS & INTERFACES
ISSN
1944-8244JCR Link
Citation
ACS APPLIED MATERIALS & INTERFACES vol. 7, no. 28, pp. 15321 - 15330
Keywords
ruthenium oxidetitanium oxidenanoneedlenanofiberelectrocatalystH2O2 electrochemical reaction
Publisher
AMER CHEMICAL SOC
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Highly single-crystalline ruthenium dioxide (RuO2) nanoneedles were successfully grown on polycrystalline electrospun titanium dioxide (TiO2) nanofibers for the first time by a combination of thermal annealing and electrospinning from RuO2 and TiO2 precursors. Single-crystalline RuO2 nanoneedles with relatively small dimensions and a high density on electrospun TiO2 nanofibers are the key feature. The general electrochemical activities of RuO2 nanoneedles-TiO2 nanofibers and Ru(OH)(3)-TiO2 nanofibers toward the reduction of [Fe(CN)(6)](3-) were carefully examined by cyclic voltammetry carried out at various scan rates; the results indicated favorable charge-transfer kinetics of [Fe(CN)(6)](3-) reduction via a diffusion-controlled process. Additionally, a test of the analytical performance of the RuO2 nanoneedles-TiO2 nanofibers for the detection of a biologically important molecule, hydrogen peroxide (H2O2), indicated a high sensitivity (390.1 +/- 14.9 mu A mM(-1) cm(-2) for H2O2 oxidation and 53.8 +/- 1.07 mu A mM(-1) cm(-2) for the reduction), a low detection limit (1 mu M), and a wide linear range (1-1000 mu M), indicating H2O2 detection performance better than or comparable to that of other sensing systems.
DOI
10.1021/acsami.5b03178
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE