View : 375 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author이용하-
dc.date.accessioned2016-08-27T02:08:51Z-
dc.date.available2016-08-27T02:08:51Z-
dc.date.issued2003-
dc.identifier.issn0308-2105-
dc.identifier.otherOAK-1663-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/215608-
dc.description.abstractIn this paper, we prove that the dimension of the space of bounded energy-finite solutions for the Schrodinger operator is invariant under rough isometries between complete Riemannian manifolds satisfying the local volume condition, the local Poincare inequality and the local Sobolev inequality. We also prove that the dimension of the space of bounded harmonic functions with finite Dirichlet integral is invariant under rough isometries between complete Riemannian manifolds satisfying the same local conditions. These results generalize those of Kanai, Grigor'yan, the second author, and Li and Tam.-
dc.languageEnglish-
dc.publisherROYAL SOC EDINBURGH-
dc.titleRough isometry and energy-finite solutions for the Schrodinger operator on Riemannian manifolds-
dc.typeArticle-
dc.relation.volume133-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage855-
dc.relation.lastpage873-
dc.relation.journaltitlePROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS-
dc.identifier.doi10.1017/S0308210500002717-
dc.identifier.wosidWOS:000185716100008-
dc.author.googleKim, SW-
dc.author.googleLee, YH-
dc.contributor.scopusid이용하(36067645600)-
dc.date.modifydate20170601153308-
Appears in Collections:
사범대학 > 수학교육과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE