View : 1080 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor엄익환-
dc.contributor.authorAkhtar, Kalsoom-
dc.creatorAkhtar, Kalsoom-
dc.date.accessioned2016-08-26T04:08:17Z-
dc.date.available2016-08-26T04:08:17Z-
dc.date.issued2014-
dc.identifier.otherOAK-000000087611-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/211569-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000087611-
dc.description.abstract1. Reactions of aryl diphenylphosphinates and aryl diphenylphos-phinothioates: Effect of change of electrophilic center from P=O to P=S. Aryl diphenylphosphinothioates (1a) 와 7개의 다양한 고리형 이차 아민들의 반응 그리고 9개의 다양한 Y-substituted phenyl diphenyl-phosphinothioates (1a-i) 와 piperidine의 반응을 80 mol % H2O/20 mol % DMSO에서 수행하였다. 이탈기 또는 공격하는 아민의 염기성에도 불구하고 phosphinothioates 1a-i 은 oxygen유도체인 2a-i 보다 반응성이 더 작다. Yukawa-Tsuno 그래프는 1b-i 와 2b-i 의 반응에 대해 작은 r 값을 가지면서 좋은 직선 관계를 보이며 이는 이탈기의 이탈이 반응 속도결정단계에서 일어나지만 결합의 깨짐의 정도는 반응에 적게 기여한다는 것을 의미한다. Brønsted-type 그래프는 1a 와 2a 의 반응에 대해 직선으로 각각 βnuc = 0.52 와 0.38이었으며 이는 concerted 메커니즘을 의미한다. 1a 의 가아민 분해반응은 약0.4 kcal/mol 좀더 유리한 ΔH‡ 를 보이지만 TΔS‡에서는 2a 의 반응보다 약 1.5 kcal/mol 불리하며 이는 본 연구에서 TΔS‡ 가 thio effect의 원인임을 뒷받침한다. 1a 은 큰 βnuc 값과 음의 TΔS‡ 은 1a의 반응이 2a 의 반응보다 더 단단한 TS 구조를 통해 진행된다고 제안할 수 있다. 2. Reactions of 2,4-dinitrophenyl 2-furoate and 3,4-dinitrophenyl 2-furoate: Effect of ortho-group on rate and mechanism. 본 연구에서는 3,4-dinitrophenyl 2-furoate (3b)의 반응을 수행하여 2,4-dinitrophenyl 2-furoate (3a) 비교를 통해 반응 메커니즘을 밝히고자 하였다. 3b 와 3a 의 가아민 분해반응은 T± 를 통해 속도결정단계의 변화와 함께 진행된다. 3b 는 3a 에 비하여 모든 아민과의 반응에서 반응성이 더 낮다. 하지만 반응성의 변화는 아민의 염기성의 증가보다 작다. kN 값의 분석으로 계산한 미시적 속도계수는 3b 의 반응에서는 3a에 비해 작은 k2/k–1 를 보이는 반면 큰 k1 값을 보인다. 3a 의 반응에서 얻은 작은 k1 은 입체장애효과에 기인한다고 제안할 수 있다. 3. Aminolysis of Y-substituted phenyl 2-furoates and cinnamates: Effect of nonleaving group subsituent on reaction rate and mechanism Y-substituted phenyl 2-furoates (3b-i) 와 piperidine 과 morpholine의 반응을 80 mol % H2O/20 mol % DMSO 에서 수행하여 반응속도에서의 비이탈기의 효과와 메커니즘에 대해 연구하였다. 본 연구는 Y-substituted phenyl 2-furoates (3b-i) 와Y-substituted phenyl cinnamates (4b-h)과 비교하여 반응메커니즘에 대해 의미있는 정보를 제공할 것이라 기대된다. 3b-i 와 강염기 piperidine 의 반응에 대해 Brønste-type그래프는 아래로 향하는 곡선을 보이며 이는 약염기 morpholine의 반응에 대해서는 직선을 보이는 것과 대조적이다. 곡선의 Brønste-type그래프는 stepwise 메커니즘에서의 반응 속도결정단계가 변한다는 것을 의미한다. 염기성 이탈기를 가지는furoate esters (e.g., 3c-h)는 2-furoic acid 가 cinnamic acid 에 비하여 더 강한 산임에도 cinnamates (e.g., 4c-g)에 비하여 반응성이 작다. 3c-h 과 piperidine 의 반응에 대한 k1 은 4b-h 의 kN 값보다 더 작다. 3c-i 의 반응에서의 k2/k–1 ratio < 1 인 결과는 3b-i 이 4b-h 보다 더 적은 반응성을 보이는 것에 기인한다. 4. Aminolysis of 2,4-dinitrophenyl 2-furoate and benzoate: Effect of nonleaving group on reactivity and mechanism 반응속도와 메커니즘에서의 비이탈이 치환체의 효과에 대해 연구하기 위해 2,4-dinitrophenyl 2-furoate (3a)와 고리형 이차 아민과의 반응을 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) 에서 수행하였다. furoate 3a 은 benzoate 5a 보다 더 반응성이 좋다. furoyl 와 benzoyl systems에 대한 ring electrons또는NBO positive charge의 비편재성은 반응성 순서로는 설명할 수 없다. benzoic acid 에 비해2-furoic acid 의 더 강한 산성이며 이는 3a의 더 큰 반응성을 부분적으로 설명할 수 있다. 3a 의 가아민 분해반응은 비 선형인 Brønsted 그래프에 기초하여 반응 속도결정단계에서의 변화에 의해 T± 를 통해 진행된다고 제안할 수 있다. 기질3a 과 5a 에 대한 pKao 와 k2/k–1 ratios 는 유사하며 이는 비이탈기(i.e., benzoyl and 2-furoyl)의 특성이 pKao 와 k2/k–1 ratios에 영향을 미치지 않는다는 것을 의미한다. 3a 의 반응에 대한 k1 값이 5a에 비하여 크다는 사실은 전자가 후자보다 더 반응성이 좋다는 결론을 뒷받침 한다. 5. Piperidinolysis of 4-nitrophenyl X-substituted benzenesulfonates and related compounds: Effect of changing leaving group and electrophilic center. 이탈기와 친핵체 중심의 변화 효과에 대한 연구를 위해 4-nitrophenyl X-substituted benzenesulfonates (6a-g)와 piperidine의 반응을 80 mol % H2O/20 mol % DMSO 에서 수행하였다. 6a-g 의 반응에 대한 Yukawa-Tsuno 그래프는 ρX = 0.90 와 r = 0.50로 매우 좋은 직선의 상관관계를 보인다. 이는 전자주개 작용기를 가진 기질이 공명결합을 통해 GS를 안정화시키며 반응이 진행됨을 의미한다. 2,4-dinitrophenoxide 에서 4-nitrophenoxide (i.e., 7a-g → 6a-g) 로의 이탈기의 변화가 sulfonate ester의 반응의 ρX 와 r 값에 미치는 영향은 benzoate ester의 반응과는 대조적이다. 이와 같은 상반된 결과는 친핵체 중심(i.e., O=S=O vs. C=O) 의 크기와 혼성종류의 차이가 반응을 지배하기 때문이라고 결론 내릴 수 있다. 6. Aminolysis of O-4-nitrophenyl O-phenyl thionocarbonate and O-4-nitrophenyl thionobenzoate: Effect of medium and nonleaving group on rate and mechanism O-4-nitrophenyl O-phenyl thionocarbonate (8) 와 고리형 이차 아민과의 반응을 MeCN 과 80 mol % H2O/20 mol % DMSO 에서 수행하여 유사일차속도상수(kobs)를 분광학적으로 측정하였다. 모든 반응에서 kobs vs. 아민농도 그래프는 위로 향하는 곡선을 보이며 이는 반응이 아민의 염기성과 용매와 상관 없이 tetrahedral 중간체(zwitterionic T± 와 탈수소화된 형태의T–)를 통배 반응이 진행됨을 의미한다. O-4-nitrophenyl O-phenyl thionocarbonate 의 반응은 탈수소화 반응을 통해 T± 에서 k3 단계를 포함하는 T− 으로 진행되며 k1 과 k3/k-1 값에 의해 반응속도가 결정된다. piperazine과 morpholine에 대한 반응에서의 k3/k2 비는 다른 아민들의 반응에 비하여 큰 값을 보인다. piperazine 과의 반응에서의 큰 k3/k2 ratio의 값은 piperazine이 T±으로부터 탈수소화가 가능한 두 개의 염기 자리를 가지고 있기 때문이다. k1H2O/k1MeCN vs. ∆pKa 의 그래프의 기울기가 다른 것보다 매우 작고 그 때문에 때문에 용매 효과는 k1 값 또는 k2/k-1 ratio보다 염기성(pKa) 에서 좀 더 의미가 있다고 보여진다. 물에서보다 MeCN에서의 더 빠른 반응성은 아민이 MeCN에서 물에서 보다 약 7-9 pKa 더 염기성이 크기 때문으로 결론 내릴 수 있다. 7. Aminolysis of Y-substituted phenyl benzenesulfonates: Effect of nucleophile on rate and mechanism Y-substituted phenyl benzenesulfonates (10a-f) 와 NH2NH2 의 반응을 80 mol % H2O/20 mol % DMSO 에서 수행하여 kN 값을 분광학적으로 측정하였다. 이탈하는 aryloxide에 ortho-nitro 작용기를 가지는 7d와 10b 의 반응을 포함하는 10a-f 의 반응에 대한 Brønsted-type 그래프는 βlg = –0.58인 직선이며 이는 입체장애가 반응에 영향을 미치지 않았음을 의미한다. 또한 βlg = –0.58 인 직선의 Brønsted-type그래프는 반응이 concerted 메커니즘으로 진행됨을 의미한다. The σo 상수와 상관 지은 Hammett 그래프는 매우 분산된 점을 보이는 반면 σ– 상수와 상관 지은 Hammett 그래프는 좋은 직선의 상관관계를 보인다. 이는 stepwise 또는 concerted 메커니즘을 통해 진행될 때 반응속도결정단계에 이탈기의 이탈이 일어난다는 것을 의미한다. 하지만 반응속도결정단계에서 이탈기의 이탈이 일어나는 stepwise 방법은 공격하는 NH2NH2 이 이탈하는 aryloxide에 비해 이탈성이 나쁘기 때문에 제외 되야 한다. 이로부터 10a-f 의 반응은 concerted 메커니즘으로 진행된다고 결론 내릴 수 있다. 8. An unusual ground-state stabilization effect and origins of the α-effect in aminolyses of Y-substituted phenyl phenyl carbonates Y-substituted phenyl phenyl carbonates (C6H4OCO2C6H4-Y, 11a-h)와glycylglycine (glygly) 과 hydrazine (NH2NH2)의 반응을 80 mol % H2O/20 mol % DMSO 에서 수행하였다. C6H4OCO2C6H4-Y 와 glygly 와 NH2NH2 를 포함하는 일차 아민과의 반응은 조금 다른 TS 구조를 형성하지만 같은 메커니즘을 통해 진행된다고 추측하였다. r 값의 정도에 기초하여 이탈기의 이탈과 속도결정 TS에서 음의 전하가 이탈기에 분포되는 것이 NH2NH2 의 반응에서 보다 glygly의 반응에서 좀더 의미가 있는 것으로 보인다. α-effect 의 크기는 치환체의 전기적인 요인에 의존하며 이는 전자주개는 α-effect를 증가시키는 반면 전자끌개는 감소시킨다. 본 반응에서 얻는 α-effect의 증가 또는 감소 경향은 분자내수소결합 구조 B 가 α-effect에 영향을 미친다고 결론 내릴 수 있다. 9. Aminolyses of Y-substituted phenyl methanesulfonates: Evidence of SN2(S) and E1cb reversible mechanism Y-substituted phenyl methanesulfonates (12a-h) 와 DBU 의 반응에 대해 조사하였다. DBU와의 반응에 대한 그래프는 원점을 지나는 직선의 그래프를 보였으며 다른 아민에 의한 염기촉매 반응은 이 경우 관찰되지 않았다. 이로부터 methanesulfonate 와 DBU 의 반응은 E1cb 가역반응을 통해 진행된다고 제안할 수 있다. Reactions of 2,4-dinitrophenyl methanesulfonate 와 3,4-dinitrophenyl methanesulfonate 와 고리형 이차 아민과의 반응을 80 mol % H2O/20 mol % DMSO 와 H2O에서 수행하였다. piperidine 과 3-methylpiperidine 에 대한 반응 그래프는 아래로 향하는 곡선인 반면 같은 기질과 조건에서 다른 아민들의 반응은 직선의 그래프이다. 이 결과는 piperidine과3-methylpiperidine이 산성인 양성자를 떼어낼 만큼 충분한 염기성을 가지므로E1cb 가역반응 메커니즘을 통해 진행되는 반면 다른 아민들은 기질으로부터 양성자를 떼어낼 만큼 염기성이 강하지 않으므로 반응은 SN2(S) 메커니즘을 통해 진행됨을 의미한다.;The work embodied in this Ph.D dissertation is concerned with the aminolysis of C=O, C=S, P=S, and O=S=O compounds. In this thesis, there are nine sections of the kinetic studies about the aminolysis of various compounds. The first section is related to aminolysis of the esters (aryl diphenylphosphinates and aryl diphenyl phosphinothioates), to scrutinize the influence of change of reaction site from P=O to P=S on rate and mechanism. The second section is about the influence of ortho-group on rate and mechanism in reactions of 2,4 and 3,4-dinitrophenyl 2-furoates using various alicyclic secondary amines. Third and fourth sections comprises of Y-substituted phenyl 2-furoates and their cinnamate analogues, Y-substituted phenyl cinnamates to study the impact of nonleaving substituent on rate and mechanism, while the fifth section describes influence of changing departing group and electrophilic center of 4-nitrophenyl X-substituted benzenesulfonates and 2,4-dinitrophenyl X-substituted benzenesulfonates. Sixth section is related to the effect of solvent and nondeparting group substituent on reactivity and mechanism of O-4-nitrophenyl phenyl thionocarbonate and O-4-nitrophenyl thionobenzoate. In seventh section, we have studied the influence of nucleophile on reaction reactivity and mechanism by performing experiments of Y-substituted benzenesulfonates with hydrazine (NH2NH2). In eighth section, reactions of Y-substituted phenyl phenyl carbonates were performed with glycylglycine and hydrazine to investigate the α-effect. In the ninth section, second order rate coefficients have been calculated for elimination reactions of Y-substituted phenyl methanesulfonates by DBU. The purpose of this study was to inverstigate the influence of departing group on reactivity and mechanism. Reactions of above mentioned substrates with DBU proceed through E1cb reversible mechanism based on large βlg obtained from corresponding reactions. In the first section, the influence of change of electrophilic center from P=O to P=S on rate and mechanism were explored for aminolysis of Y-substituted aryl diphenylphosphinothioates (1a-i) and aryl diphenylphosphinates (2a-i). The reactivity of phosphinothioates (1a-i) was less as compared to aryl diphenylphosphinates (2a-i), the oxygen analogues of (1a-i) in spite of the basicity of the departing aryloxides or the attacking nucleophiles (amines). The reactions of (1b-i) with piperidine display linear Yukawa-Tsuno plot with a small r value (r = 0.28), demonstrating that the departing group leaves at the rate-determining step (RDS) with bond fission at a low degree. Reactions of 2,4-dinitrophenyl diphenylphosphinothioate (1a) using alicyclic secondary amines shows Brønsted-type plot of good linearity with βnuc = 0.52, indicating that the reactions ensue via a concerted mechanism. The βnuc value obtained for the reactions of (1a) is slightly larger than that stated for the similar reactions of 2,4-dinitrophenyl diphenylphosphinate (2a, i.e., βnuc = 0.38), signifying that reactions of (1a) progress via a tighter transition state (TS) as compared to (2a). The reaction of (1a) with piperidine shows (ca. 0.4 kcal/mol) higher enthalpy of activation (ΔH‡) as compared to (2a). On the other hand, the entropy of activation at 25.0 oC (TΔS‡) is (ca. 1.5 kcal/mol) less for the reaction of (1a) as compared to (2a). This result is in favour of the suggestion that the reaction of (1a) ensus via tighter TS than that of (2a) and make clear that (2a-i) are more reactive than (1a-i). In the second section, influence of ortho-group on rate and mechanism was examined for aminolysis of 3,4-dinitrophenyl 2-furoate (3b) compared to 2,4-dinitrophenyl 2-furoate (3a). The Brønsted-type plot displays a similar downward curvature for the aminolysis of (3b), as reported for 2,4-dinitrophenyl 2-furoate (3a). Substrate (3a) is more reactive as compared to (3b) towards different amines but the change in reactivity decreases with raise in amine basicity. Dissection of the second-order rate constants into the microscopic rate coefficients has shown that the reaction of (3b) gives a small k2/k–1 ratio but somewhat larger k1 value as compared to (3a). Steric hinderance was proposed to be accountable for the small k1 value determined for the reactions of (3a), because the ortho-group of (3a) would hinder the attack of amines (i.e., the k1 process). In the third section, the influence of non-departing group on rate and mechanism of Y-substituted phenyl 2-furoates (3b-i) and their cinnamate analogues, Y-substituted phenyl cinnamates (4b-h) have been investigated. The Brønsted-type graph shows a downward curvature for reactions with highly basic piperidine but exhibits linear plot for the reactions using low basic morpholine. The slope of Brønsted-graph change from –1.25 to –0.28 with the decrease in pKa of conjugate acid of departing aryloxides. The pKa obtained at the center of Brønsted curvature, stated as pKao, was 6.4. The reactions of (4b-h) ensue via stepwise mechaism based on curved Brønsted-plot having pKao values of 6.4 with piperidine. Therefore, the curve obtained is not because of change in RDS but it results because of normal Hammond effect in concerted mechanism. The Brønsted-type plot for analogous reactions using morpholine also gives similar curved Brønsted-graph having pKao value of 6.1. The furoates having a basic departing group (i.e., 3c-h) are slow in reactivity as compared to cinnamates (i.e., 4c-g). The k2/k–1 values for furoates system (3b-i) are smaller than 1, which shows their low reactivity. In the fourth section, the change of non-departing moeity on rate and mechanism of 2,4-dinitrophenyl 2-furoate (3a) and 2,4-dinitrophenyl benzoate (5a) have been investigated. The 2,4-dinitrophenyl 2-furoate (3a) is more reactive as compared to 2,4-dinitrophenyl benzoate (5a) toward different amines. The high acidity of 2-furoic acid (pKa = 3.16) compare with benzoic acid (pKa = 4.20) was proposed to be accountable for the reaction order. The Brønsted-graphs for the reactions of (3a) and (5a) are downward curvature, demonstrating that the aminolyses of (3a) and (5a) ensue via zwitterionic tetrahedral intermediate (T±) which indicate change in rate-determining step occurs by varing amine basicity. Dissection of kN values into their microscopic rate constants (i. e., k1 and k2/k–1 ratio) has exposed that the k2/k–1 ratios are not effected by altering the nondeparting group from benzoyl to 2-furoyl (5a → 3a). The k1 values have been found to be bigger for the reactions of 3a as compared to 5a, that is completely accountable for the information that the earlier has high reactivity than the last. In the fifth section, the influence of various departing group and electrophilic center of 4-nitrophenyl X-substituted benzenesulfonates (6a-g) and 2,4-dinitrophenyl X-substituted benzenesulfonates (7a-g) have been investigated. The Hammett and Brown-Okamoto plots for (6a-g) using piperidine display numerous scattered points. In contrast, (6a-g) give good linear Yukawa-Tsuno plot with ρX = 0.90 and r = 0.50. The ρX and r values for the (6a-g) are slightly bigger than those for 2,4-dinitrophenyl X-substituted benzenesulfonates (7a-g), i.e., ρX = 0.79 and r = 0.45. This contrasts to the report that ρX decreases as the r value increases and the ρX and r values are highly reliant on the departing moeity basicity for the corresponding reactions of benzoate esters, e.g., ρX get lesser from 1.49 to 0.75 and r raises from 0.35 to 0.75 as the substrate changes from 2,4-dinitrophenyl X-substituted benzoates to 4-nitrophenyl X-substituted benzoates. The dissimilarity in the size and hybridization type of the electrophilic centers (i.e., O=S=O vs. C=O) has been suggested to be responsible for the contrasting results. In sixth section, pseudo-first-order rate coefficients (kobs) were calculated using spectrophotometer involving reactions of O-4-nitrophenyl phenyl thionocarbonate (8) using different alicyclic secondary amines in MeCN and 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1°C. The plot of kobs vs. amine concentration shows an upward curvature in all cases, indicating that the reactions ensue via two tetrahedral intermediates (a zwitterionic T± and its deprotonated anionic T–) regardless of the amine basicity and reaction medium. However, all the amines investigated have been found to be less reactive in H2O than in MeCN except morpholine, as the amines are more basic in MeCN by 7 – 9 pKa units. Further by comparing the reactivity of (8) and (9), the carbonate (8) was found to be high in reactivity than benzoate (9) for different amines. The changing Ph to PhO has resulted in low k1 value and high reactivity without changing the reaction mechanism. The electronic effect of the substituent in the non-leaving group shows to be accountable for the high rate of reaction of the carbonate than that of benzoate for all amines studied. In seventh section, kN values have been measured using spectrophotometer for reactions of Y-substituted phenyl benzenesulfonates (10a-f) with NH2NH2 in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1°C. The Brønsted plot is linear with βlg = –0.58 including the points for 2,4-dinitrophenyl benzenesulfonate (10a) and 4-chloro-2-nitrophenyl benzenesulfonate (10c), signifying the fact that the nitro group at ortho position on the parting aryloxide does not apply any steric hindrance. The Hammett plot associated with σo constants shows too much scattered points, whereas the Hammett plot using σ– constants gives a good correlation. The stepwise mechanism where the departing group departs in the RDS is not considered as the incoming NH2NH2 is a poor nucleofuge as compared to the leaving aryloxide. Thus, the reactions of (10a-f) were recommended to ensue via concerted method. Eighth section contain reactions of Y-substituted phenyl phenyl carbonates (C6H4OCO2C6H4-Y, 11a-h) with glycylglycine (glygly) and hydrazine (NH2NH2) in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1°C. Stronger electron-withdrawing group on substituent (Y) enhances the reactivity for (11a-h) with glygly and NH2NH2. The reactions of C6H4OCO2C6H4-Y (11a-h) with glygly and NH2NH2 was found to ensue via mechanism in which the ground-state stabilization influence is remarkably noteworthy on reaction rates, also the degree of departing group leaving and negative charge created in the acyl group at the rate-determining TS is measured to be large for the glygly system than the NH2NH2 system supported by r values. The amount of the α-effect is considered to be reliant on the substituent Y structure i.e., an electron-donating group enhances the α-effect whereas an electron-withdrawing group reduces the α-effect. It is concluded from the current investigation that the ground-state effect is vital for the reaction rate but not merely accountable for the α-effect, therefore intramolecular H-bonding interactions are suggested for the basis of the enhancing or decreasing α-effect perceived in the current system. In the ninth section, reactions of Y-substituted phenyl methanesulfonates (12a-h) with DBU are investigated. The plots for DBU resulted in straight lines ensue via origin showing that common base catalysis by participation of another amine molecule is missing. The reactions of methanesulfonate with DBU are therefore considered to proceed through E1cb reversible method. The reactions of 2,4-dinitrophenyl methanesulfonate and 3,4-dinitrophenyl methanesulfonate using seven different alicyclic secondary amines were also performed in 80 mol % H2O/20 mol % DMSO and in H2O. The kobsd graphs for piperidine and 3-methylpiperidine resulted in downward curvature while the reactions of these substrates with other amines resulted in linear plots for kobsd vs. amine concentration. These results suggest that piperidine and 3-methylpiperidine are basic enough to remove the acidic proton while the other amines are not too basic to abstract the proton from substrate.-
dc.description.tableofcontentsⅠ. Introduction 1 Ⅱ. Experimental 25 Ⅱ-1. Purification and preparation of materials 25 Ⅱ-1-1. Substrates 25 Ⅱ-1-1-1. Substrates (1a-i) 25 Ⅱ-1-1-2. Substrates (2a-i) 27 Ⅱ-1-1-3. Substrates (3a-i) 29 Ⅱ-1-1-4. Substrates (4b-h) 29 Ⅱ-1-1-5. Substrates (5a-h) 30 Ⅱ-1-1-6. Substrates (6a-g) 31 Ⅱ-1-1-7. Substrates (7a-g) 32 Ⅱ-1-1-8. Substrate (8) 32 Ⅱ-1-1-9. Substrate (9) 32 Ⅱ-1-1-10. Substrates (10a-f) 33 Ⅱ-1-1-11. Substrates (11a-k) 34 Ⅱ-1-1-12. Substrates (12a-h) 35 Ⅱ-1-2. Nucleophiles 35 Ⅱ-1-3. Reaction media 36 Ⅱ-2. Kinetics 36 Ⅲ. Results and Discussion 37 Ⅲ-1. Aminolyses of Y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates: Effect of change of electrophilic center from P=O to P=S 37 Ⅲ-1-1. Effect of replacing P=O by P=S on reactivity 38 Ⅲ-1-2. Effect of leaving group on reactivity 39 Ⅲ-1-3. Reaction mechanism determined from Hammett and Yukawa-Tsuno plots 40 Ⅲ-1-4. Effect of amine basicity on reaction rate 47 Ⅲ-1-5. Structures and activation parameters 48 Ⅲ-2 Reactions of 2,4-dinitrophenyl and 3,4-dinitrophenyl 2-furoates: Effect of ortho-group on rate and mechanism 62 Ⅲ-2-1. Effect of ortho-group on rate and mechanism 63 Ⅲ-2-2. Determination of microscopic rate constants 65 Ⅲ-2-3. Effect of ortho-group on microscopic rate constants 67 Ⅲ-3. Aminolysis of Y-substituted phenyl 2-furoates and cinnamates: Effect of nonleaving group subsituent on reaction rate and mechanism 77 Ⅲ-3-1. Effect of leaving group basicity on rate and mechanism 78 Ⅲ-3-2. Effect of nonleaving group on reactivity 81 Ⅲ-3-3. Evaluation of microscopic rate coefficients 82 Ⅲ-4. Aminolysis of 2,4-dinitrophenyl 2-furoate and benzoate: Effect of nonleaving group on reactivity and mechanism 94 Ⅲ-4-1. Effect of nonleaving group on reaction rate 95 Ⅲ-4-2. Effect of nonleaving group on reaction mechanism 98 Ⅲ-5. Piperidinolysis of 4-nitrophenyl X-substituted benzenesulfonates and related compounds: Effect of changing leaving group and electrophilic center 106 Ⅲ-5-1. Effect of nonleaving group substituent X on reactivity 107 Ⅲ-5-2. Effect of changing electrophilic center from C=O to SO2 on ρX and r values 109 Ⅲ-6. Aminolysis of O-4-nitrophenyl O-phenyl thionocarbonate and O-4-nitrophenyl thionobenzoate: Effect of medium and nonleaving group on rate and mechanism 119 Ⅲ-6-1. Reaction mechanism and determination of microscopic rate constants 119 Ⅲ-6-2. Effect of medium on reactivity and reaction mechanism 126 Ⅲ-6-3. Effect of nonleaving group on rate and reaction pathway 127 Ⅲ-7. Aminolysis of Y-substituted phenyl benzenesulfonates: Effect of nucleophile on rate and mechanism 157 Ⅲ-7-1. Examination of steric hindrance from Brønsted-type analysis 157 Ⅲ-7-2. Determination of reaction mechanism 159 Ⅲ-7-3. Hammett correlations with σo and σ ̄ constants 161 Ⅲ-7-4. Transition state structures 162 Ⅲ-8. An unusual ground-state stabilization effect and origins of the α-effect in aminolyses of Y-substituted phenyl phenyl carbonates 170 Ⅲ-8-1. Reaction mechanism 171 Ⅲ-8-2. Origin of the α-effect 173 Ⅲ-9. Aminolyses of Y-substituted phenyl methanesulfonates: Evidence of SN2(S) and E1cb reversible mechanism 193 Ⅲ-9-1. Effect of amine basicity on reactivity 193 Ⅲ-9-2. Reaction of OH ̄ with methanesulfonates 195 Ⅲ-9-3. Determination of reaction mechanism 196 IV. Conclusion 223 References 228 국문초록 248-
dc.formatapplication/pdf-
dc.format.extent1619246 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleMechanistic Studies on Nucleophilic Substitution Reactions of P=S, C=O, C=S and O=S=O Centered Compounds-
dc.typeDoctoral Thesis-
dc.title.subtitleReaction Mechanism and the α‒Effect-
dc.format.pagexxxviii, 255 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2014. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE