View : 272 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor이혜숙-
dc.contributor.author진현성-
dc.creator진현성-
dc.date.accessioned2016-08-26T11:08:04Z-
dc.date.available2016-08-26T11:08:04Z-
dc.date.issued1994-
dc.identifier.otherOAK-000000057609-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/203148-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000057609-
dc.description.abstractFor a prime power q>1 and an integer m>1, let F(q)^(m) and F(q) be the finite fields of order q^(m) and q, respectively. In this thesis we determine the form of competely free elements and find the conditions that a normal basis is a completely normal basis in F(q)^(m) over F(q), provided that m is a prime power. Also we determine all optimal normal bases and the cardinality of them in F(q)^(m) over F(q).;이 논문에서 우리는 유한체 F(q)상의 유한 확장 F(q)^(m)에서 특히 m이 소수의 멱일때, 모든 완전 자유 원소들의 형태를 결정하고, 정규 기저가 완전 정규 기저가 될수 있는 조건을 찾는다. 또한 우리는 유한체 F(q)상의 유한 확장 F(q)^(m)에서 모든 최적 원소와 그것의 개수를 결정한다.-
dc.description.tableofcontentsTABLE OF CONTENTS = i ABSTRACT = ii INTRODUCTION = iii Ⅰ. NORMAL BASES = 1 Ⅱ. COMPLETELY NORMAL BASES = 4 Ⅲ. OPTIMAL NORMAL BASES = 29 REFERENCES = 36 논문초록 = 37-
dc.formatapplication/pdf-
dc.format.extent934447 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleNORMAL BASES IN FINITE FIELDS-
dc.typeMaster's Thesis-
dc.format.pageiv, 37 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 수학과-
dc.date.awarded1994. 2-
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE