View : 790 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김성희-
dc.creator김성희-
dc.date.accessioned2016-08-26T11:08:56Z-
dc.date.available2016-08-26T11:08:56Z-
dc.date.issued2008-
dc.identifier.otherOAK-000000038195-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/201740-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000038195-
dc.description.abstractInnate immunity is an evolutionary conserved host defense system throughout the animal and plant kingdoms. In response to microbial infection, the host initiates various inflammatory signaling pathways, such as NF-κB, to induce immune effector molecules. The production of antimicrobial peptides (AMPs) is the key feature of innate immunity aimed at neutralizing microbial infections in all multicellular organisms inhabiting various microbial environments. PART I In Drosophila melanogaster; although the NF-κB transcription factors play a pivotal role in the inducible expression of innate immune genes, such as antimicrobial peptide genes, the exact regulatory mechanism of the tissue-specific constitutive expression of these genes in barrier epithelia is largely unknown. I show that the Drosophila homeobox gene product Caudal functions as the innate immune transcription modulator that is responsible for the constitutive local expression of antimicrobial peptides cecropin and drosomycin in a tissue-specific manner. These results suggest that certain epithelial tissues have evolved a unique constitutive innate immune strategy by recruiting a developmental “master control” gene. PART II The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Spatzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Spatzle processing during the immune response has remained elusive for a decade. I report a protease, called Spatzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Spatzle processing and become highly susceptible to microbial infection. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes. PART III One of the fundamental questions relevant to all metazoans is how commensal microbiota can be maintained despite the robust anti-microbial properties of the digestive tract. At present, host factors required to maintain commensal-gut homeostasis are largely unknown. I show that the intestinal homeobox gene Caudal (Cad) is indispensable for immune homeostasis in preserving the indigenous commensal community and host health. In a commensal-rich gut environment where the NF-?B activation is maintained albeit at a low level, Cad maintains the minimum antimicrobial potential by repressing NF-?B-dependent antimicrobial peptide (AMP) genes. Cad-RNAi flies showed a constitutive gut-specific AMP overexpression, which in turn acts as a novel selection pressure altering the commensal community. In these flies, the dominance of a novel gut pathogenic commensal microbe in the Gloconobacter sp. strain EW707, eventually leads to high gut apoptosis, resulting in host mortality. Importantly, the restoration of healthy microbiota community structure and normal host survival in the Cad-RNAi flies can be achieved by genetic reintroduction of Cad. These results reveal that a specific genetic deficiency within a host can have a profound affect on the gut commensal microbial community and thereby the host physiology.;초파리(Drosophila)는 선천성 면역만을 가지고 있으며 미생물 감염에 매우 저항성이 크다고 알려져 있다. 항균물질(antimicrobial peptide; AMPs)은 미생물로부터 숙주를 보호하는데 역할을 하는 여러 인자들 중에 가장 강력한 immune effector로 작용한다. PART I 항균물질(AMPs)을 합성하는데 transcription factors인 NF-κB가 핵심역할을 한다. 하지만 점막 표면(barrier epithelia)에서 조직 특이적으로 constitutive한 AMPs의 발현 기전은 정확하게 연구되어 있지 않다. 초파리 homeobox 유전자인 Caudal이 조직 특이적으로 cecropin과 drosomycin의 constitutive local 발현을 조절하는 것을 보여 주었다. 이러한 결과는 배아발달에서 master control 역할을 하는 유전자가 침샘과 사정관 같은 점막조직의 constitutive 선천성 면역에서도 중요한 역할을 한다는 것을 말해준다. PART II Toll receptor는 배아형성 조절 인자로 동정 된 이 후 곤충류에서 포유류까지 여러 종에서 선천성 면역에 핵심적 역할을 한다고 연구되었다. 배아 발달 과정에서는 Easter가 pro-Spatzle를 활성화 시킨다고 알려졌으나 면역반응에서는 pro-Spatzle를 활성화를 특정 효소(enzyme)가 밝혀지지 않았다. Spatzle-processing enzyme (SPE)이라는 protease가 Toll 경로를 통한 선천성 면역반응에 핵심 인자임을 증명하였다. SPE- RNAi 초파리에서 pro-Spatzle의 활성화가 이루어지지 않고 미생물감염에 높은 치사율을 보인다. 이러한 결과로 하나의 ligand와 receptor간의 반응이 면역과 발달이라는 독립적인 생물학적 과정에서 서로 다른 자극인자를 통해 유사한 protease를 이용하여 일어 남을 증명하였다. PART III 장의 점막표피(mucosal epithelia)는 많은 양의 공생 미생물군(commensal micsobita)과 접촉하게 된다(39). 공생 미생물들은 선천성 면역, 발생, 항상성 등의 숙주의 장 생리학(gut physiology)에 영향을 준다(40-45). homeobox 유전자 Caudal(Cad)이 AMPs의 발현 억제를 통해서 장내 세균의 공생을 조절함을 밝혀냈다. Cad 발현억제(Cad-RNAi) 초파리는 AMP가 과발현되어서 특정 장내 세균인 Gluconobacter sp,. EW707 이 우세하게 되고 달라진 미생물군에 의해 세포 사멸이 유도되며 숙주의 치사율이 높아진다. Cad-RNAi 초파리에 Cad 유전자를 재도입하게 되면 장내 미생물군이 정상으로 돌아가고 생존율도 회복하게 된다. 이러한 결과는 숙주의 특정 유전자 결함으로 장내 공생 미생물군이 변화될 수 있으며 숙주의 생리기능에도 영향을 줄 수 있음을 보여준다.-
dc.description.tableofcontentsABSTRACT = viii INTRODUCTION = 1 Aim of Research = 9 2. MATERIALS & METHODS = 11 PARTⅠ = 11 I-1. Fly strains = 11 I-2. Electrophoretic mobility gel shift assay (EMSA) = 11 I-3. Real-time quantitative PCR analysis = 12 I-4. Reporter gene assay = 13 I-5. In vivo detection of reporter transgenes = 14 I-6. Plasmids and the generation of transgenic animals = 14 PART Ⅱ = 15 II-1. Constructs and Cell Transfection = 15 II-2. Fly Strains = 16 II-3. Antibodies = 17 II-4. Real-Time Quantitative PCR Analysis = 17 II-5. Embryo Injections = 18 PART Ⅲ = 19 III-1. Immunostaining = 19 III-2. Histology and apoptosis analyses = 19 III-3. In vitro antibacterial assay = 20 III-4. Germ-free animals = 20 III-5. Culture-independent identification of midgut commensal microbes based on a 16 rRNA gene library analyses = 21 III-6. Culture-independent identification of midgut commensal microbes by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses = 22 III-7. Isolation of commensal microbes = 23 III-8. Phylogenic analysis of 16S rRNA for phylotype determination = 23 III-9. Estimation of microbial diversity = 24 III-10. Colonization of germ-free animals with commensal microbes = 24 III-11. Gut infection experiment = 25 III-12. Real-Time PCR analysis = 25 III-13. Constructs and fly strains = 27 III-14. Survival experiment = 28 RESULTS = 29 PARTⅠ = 29 The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia = 29 I-1. Identification of CDREs in Cec and Drs promoters = 29 I-2. Mutations affecting CDREs do not abolish inducible systemic AMP expression = 36 I-3. Mutations affecting CDREs abolish constitutive local AMP expression = 39 I-4. Cad regulates the constitutive expression of Cec and Drs in a subset of epithelial tissues = 44 PART Ⅱ = 53 A Spatzle-processing enzyme Required for Toll signaling Activation in Drosophila Innate Immunity = 53 II-1. Purification and Characterization of a Bombyx Serine Protease Specifically Activated after Either PG or βG Treatment. = 53 II-2. Identification of SPE, a Drosophila Homolog of Bombyx BAEEase that Activates Spatzle and Toll Signaling = 57 II-3. Activated SPE Rescues Ventral and Lateral Development in Embryos Lacking Easter = 61 II-4. SPE Is Essential for Host Resistance to Fungi and Gram-Positive Bacteria = 64 II-5. SPE Is Required for Toll-Dependent Immune Gene Expression = 66 II-6. SPE Is Downstream of the psh and PGRP-SA Pathways = 69 PART Ⅲ = 72 Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila = 72 III-1. Role of gut commensal microbiota on IMD-Relish pathway = 72 III-2. Role of Cad on the gut AMP repression = 73 III-3. Role of Cad on gut homeostasis = 77 III-4. Role of Cad on gut commensal community structure. = 80 III-5. Role of normal commensal community on gut homeostasis = 87 III-6. Role of Cad on host physiology = 90 DISCUSSION = 91 REFERENCES = 94 논문 개요 = 101 Acknowledgement = 103 APPENDIX = 105-
dc.formatapplication/pdf-
dc.format.extent33824957 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleMutualism between gut and commensal microbiota in Drosophila-
dc.typeDoctoral Thesis-
dc.format.pageix, 105 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 생명·약학부생명과학전공-
dc.date.awarded2008. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE