View : 688 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author윤태숙-
dc.creator윤태숙-
dc.date.accessioned2016-08-26T03:08:37Z-
dc.date.available2016-08-26T03:08:37Z-
dc.date.issued2005-
dc.identifier.otherOAK-000000011954-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/195998-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000011954-
dc.description.abstractNa,K-ATPase은 세포막 효소로서 세포막을 경계로 Na^(+)과 K^(+) 이온의 농도 차이를 유발시켜 이온 항상성를 유지시킨다. Na,K-ATPase에 의한 이온 항상성은 세포 생존에 핵심적 기능을 하며 생리학적이고 병리학적인 현상들에 관여되어 있으므로, Na,K-ATPase 조절 기전을 이해하는 것은 중요하다. 본 연구는 Na,K-ATPase 활성이 다양한 세포내 조절 인자들이 관여하는 복잡한 기전에 의해 조절될 것이라는 가설에서 출발하였다. 최근 translationally controlled tumor protein (TCTP)는 Na,K-ATPase 활성을 억제하는 단백질로 보고되었다. TCTP에 의한 Na,K-ATPase 조절 기전을 연구하고자 yeast two-hybrid system을 이용하여 TCTP와 상호 작용하는 단백질을 조사하였다. 그 결과 TCTP가 oligomer을 형성할 수 있음을 확인하였다. Deletion analysis는 126-172 잔기인 C-말단 부위가 스스로와의 상호 작용에 기여함을 밝혔다. FPLC gel-filtration chromatography와 co-immunoprecipitation을 이용한 생화학적 실험들은 TCTP의 oligomerization 특성을 재확인시켜 주었다. 이것은 TCTP가 생리학적 기능을 수행하기 위해 dimer 혹은 고차 oligomer로 존재할 수 있음을 제시한다. 또한 본 연구는 TCTP와 상호 작용하여 그의 기능을 억제하는 단백질로서 sorting nexin 6 (SNX6)을 동정하였다. ^(86)Rb^(+) uptake assay와 in vitro Na,K-ATPase acivity assay는 SNX6가 TCTP의 Na,K-ATPase 억제 활성을 저해한다는 것을 증명하였다. 또한, SNX6의 과발현이나 siRNA를 이용한 TCTP 발현 억제에 의한 내인성 TCTP의 저해는 Na,K-ATPase 활성을 증가시킨다는 것을 확인하였다. Deletion analysis는 TCTP의 126-172잔기인 C-말단 부위와 SNX6의 1-166잔기인 N-말단 부위가 이들의 상호 작용에 기여함을 밝혔다. 하지만, TCTP 억제을 위해서는 전체의 SNX6가 필요되었다. 더욱이 insulin은 SNX6을 세포막으로 이동시킴으로써 TCTP와 SNX의 상호 작용을 유도하였다. Insulin은 대표적인 Na,K-ATPase 활성화 인자이므로, 이는 TCTP와 SNX6의 상호 작용이 insulin에 의한 Na,K-ATPase 활성 조절에 관여할 수 있음을 제시한다. TCTP의 siRNA를 이용한 실험은 내인성 TCTP에 의한 Na,K-ATPase 활성 억제가 정상적인 세포내의 Na,K-ATPase 활성 유지를 위해 존재하는 자연스런 현상이라는 것을 증명하였다. 따라서, TCTP의 발현 정도는 고혈압 같은 비정상적인 Na,K-ATPase 활성이 관여하는 질병과 관련되어 있을 수 있다. 이러한 가설을 증명하고자 13주령의 고혈압쥐인 spontaneously hypertensive rat (SHR)의 TCTP 발현 정도를 심근 조직에서 조사하였고, 그 결과 대조군인 정상혈압쥐 WKY에 비해 SHR에서 TCTP의 mRNA와 단백질 발현이 현저히 증가되어 있는 것을 확인하였다. 이것은 TCTP의 과발현이 고혈압을 유발시키는 요인들 중 하나일 수 있음을 제시한다. Na,K-ATPase의 C-말단은 독특한 인식 부위로서 다른 biomolecule들과의 상호 작용을 통해 목표 단백질의 세포 특정부위로의 이동이나 거대 복합체의 static/dynamic 형성과 같은 다양한 생물학적 과정에 관여한다고 알려져 있다. 본 연구는 Na,K-ATPase  subunit의 C-말단과 상호 작용하는 새로운 단백질을 동정하고자 yeast two-hybrid screening을 실시하였고 promyelocytic leukemia zinc finger (PLZF)을 발견하였다. PLZF는 Na,K-ATPase의 C-말단 뿐만 아니라 세포질내에 위치하는 부위 중 가장 큰 부위와도 상호 작용하고 있었다. PLZF의 과발현은 Na,K-ATPase 활성을 증가시켰으며 이는 PLZF가 Na,K-ATPase의 조절 단백질일 가능성을 제시한다. Na,K-ATPase 조절 기전에 대한 설명은 고혈압, 당뇨, 비만 같은 Na,K-ATPase 관련 질환의 폭넓은 이해와 치료제 개발을 도모할 것으로 기대되며, 본 연구는 이러한 Na,K-ATPase의 복잡한 조절 기전의 이해에 도움을 줄 것으로 사료된다.; Na,K-ATPase, a multimembrane-spanning enzyme, is essential for maintaining transmembrane gradients of Na^(+) and K^(+) ions. Because the ionic homeostasis by Na,K-ATPase is critical for cell survival and is closely involved in physiological and pathological phenomena, it is important to understand the regulatory mechanisms of Na,K-ATPase. I propose here that Na,K-ATPase activity may be regulated by a more complex mechanism involving the interaction of several cytoplasmic regulators with Na,K-ATPase. Recently the translationally controlled tumor protein (TCTP) has been reported to interact with Na,K-ATPase and suppress its activity. To further understand the regulatory mechanism related to TCTP, the yeast two-hybrid system was used to screen the TCTP-interacting molecules. One of the isolated clones corresponded to TCTP. The deletion analysis revealed that the C-terminal region of residues 126-172 was involved in self-interaction. Biochemical studies using FPLC gel-filtration chromatography and co-immunoprecipitation supported the self-interacting property of TCTP, suggesting that TCTP might exist as a dimer and/or high oligomer to play a physiological role. Yeast two-hybrid screening using TCTP as a bait also led to the identification of sorting nexin 6 (SNX6) which binds to TCTP as a novel negative regulator of TCTP. ^(86)Rb^(+) uptake assay and in vitro Na,K-ATPase acivity assay demonstrated that SNX6 inhibits Na,K-ATPase-suppressive activity of TCTP. I also showed that the inhibition of endogenous TCTP by overexpression of SNX6 or the knockdown of endogenous TCTP expression by siTCTP increased Na,K-ATPase activity above the basal level. The deletion analysis indicated that the C-terminal region of residues 126-172 in TCTP and the N-terminal region of residues 1-166 in SNX6 are essential for the association between TCTP and SNX6. However, the N-terminus of SNX6 alone did not activate Na,K-ATPase, implies that entire SNX6 is desired in TCTP inhibition. Furthermore, I found that insulin induces the translocation of SNX6 to the plasma membrane, therefore stimulates the association of SNX6 with TCTP. These results suggest that the interaction of TCTP with SNX6 may be involved in the regulation of Na,K-ATPase activity and that the activation of Na,K-ATPase by insulin may be involved in the interaction of TCTP with SNX6 recruited to the plasma membrane. In present study using siRNA of TCTP, I demonstrated that the inhibition of Na,K-ATPase by endogenous TCTP is a natural phenomenon existing for the maintenance of cellular Na,K-ATPase activity at normal resting state. Therefore, the expression level of endogenous TCTP may be involved in diseases related to Na,K-ATPase disorder, such as hypertension. The spontaneously hypertensive rat (SHR) is the most widely studied amimal model of hypertension. To investigate the expression of TCTP gene in SHR, I measured the levels of mRNA and protein of TCTP in heart tissue from SHR at 13 weeks of age. The significant increases of TCTP level in heart tissue of SHR were observed when compared with those of normotensive control WKY, suggesting that the ovexpression of TCTP may be one of unknown factors to drive the hypertension of SHR. It is now believed that the C-terminus of Na,K-ATPase, acting as unique recognition signatures, is involved in a variety of biological processes, such as protein targeting, subcellular anchoring, and the static/dynamic formation of macromolecular complexes, through the interactions with other biomolecules. I performed the yeast two-hybrid screening for novel proteins that interact with the C-terminus of Na,K-ATPase subunit, and found that the promyelocytic leukemia zinc finger (PLZF) interacts with Na,K-ATPase. It was confirmed by co-immunoprecipitation. PLZF interacted with the third large cytoplasmic domain of Na,K-ATPase  subunit as well as its C-terminus. The deletion analysis revealed that the C-terminal region of PLZF was involved in the interaction with Na,K-ATPase. Furthermore, The overexpression of PLZF enhanced Na,K-ATPase activity, suggesting that PLZF may be a novel activator of Na,K-ATPase. The elucidation of the regulatory mechanisms of Na,K-ATPase will lead to more comprehensive approaches to the understanding and the identification of therapeutic targets to diseases related to Na,K-ATPase such as diabetes, hypertension and obesity. My study enriches the understanding of the complex regulatory mechanism of Na,K-ATPase.-
dc.description.tableofcontentsAbstract viii I. General introduction 1 A. Na,K-ATPase 1 1. Structure and expression 1 2. Biological functions 3 3. Regulation of functions 6 B. TCTP 9 1. Structure 9 2. Expression 9 3. Biological functions 12 II. Study on the regulatory mechanism of Na,K-ATPase-suppressive activity of TCTP 15 A. Introduction 15 B. Materials and methods 22 1. Yeast two-hybrid screening analysis 22 1.1. cDNA libraries and plasmids encoding hybrid proteins 22 1.2. Screening of protein-protein interactions 22 1.3. Western analysis with yeast extracts 26 1.4. beta-Galactosidase assay 28 2. Deletion analysis of TCTP and SNX6 28 3. Production of recombinant TCTP by bacterial expression system 30 4. FPLC gel-filtration chromatography 32 5. Nondenaturing (native) and denaturing (SDS-PAGE) gel electrophoresis 32 6. Construction of epitope-tagged TCTP and SNX6 in mammalian expression vector 32 7. Cell culture and transfection 36 8. Northern blot 36 9. Immunoprecipitation and immunoblot 36 10. Fluorescence microscopy 37 11. Flow cytometry (FACS) using propidium iodide (PI) 38 12. Knockdown of TCTP expression by siRNA 38 13. Measurement of Na,K-ATPase activity 39 13.1. ^(86)Rb^(+) uptake assay 39 13.2. Purification of plasma membrane Na,K-ATPase from HeLa cells 40 13.3. In vitro ATPase activity assay 40 14. Subcellular and membrane fractionation 41 15. Measurement of TCTP level in heart tissue of SHR 42 15.1. Care of spontaneously hypertensive rat (SHR) and wistar-kyoto rat (WKY) 42 15.2. Measurement of blood pressure and body weight 43 15.3. Total RNA and protein extraction from heart tissue 43 15.4. Quantitative RT-PCR and western analysis 43 C. Results 45 1. Screening of TCTP-binding proteins 45 2. Identification of self-interaction of TCTP 45 2.1. Mapping of domain for self-interaction of TCTP 45 2.2. Detection of TCTP oligomer in vitro and in vivo 48 3. Identification of SNX6 as negative regulator of TCTP 56 3.1. Interaction of TCTP with SNX6 and Na,K-ATPase by immunoprecipitation 56 3.2. SNX6 does not interact any cytoplasmic domain of Na,K-ATPase 56 3.3. Mapping of domain for interaction between TCTP and SNX6 58 3.4. Effect of TCTP and SNX6 on cell viability 63 3.5. SNX6 interferes with suppression of Na,K-ATPase by TCTP 63 4. Overexpression of SNX6 activates Na,K-ATPase above the basal 68 5. Endogenous TCTP for control of Na,K-ATPase activity 76 6. Activation of Na,K-ATPase by insulin is involved in the interaction of TCTP with SNX6 79 6.1. Translocation of SNX6 to plasma membrane by insulin 79 6.2. Insulin induces the interaction between TCTP and SNX6 79 7. Hypertension phenotype of SHR is related to the overexpression of TCTP 82 7.1. Hypertension of spontaneously hypertensive rat (SHR) 82 7.2. Increased levels of TCTP mRNA and protein of SHR 82 D. Discussion 86 III. Identification of PLZF as a new regulatory protein of Na,K-ATPase 91 A. Introduction 91 B. Materials and methods 95 1. Yeast two-hybrid screen analysis 95 2. Cloning of full-length PLZF from cDNA library 96 3. Construction of epitope-tagged PLZF in mammalian expression vector 98 4. Immunoprecipitation and western blot 98 5. Measurement of Na,K-ATPase activity 100 5.1. ^(86)Rb^(+) uptake assay 100 5.2. Flow cytometry (FACS) using sodium dye 101 C. Results 102 1. Interaction of Na,K-ATPase with PLZF 102 2. Mapping of domain for the interaction between Na,K-ATPase and PLZF 102 3. Activation of Na,K-ATPase by PLZF 108 D. Discussion 111 IV. Conclusions and perspectives 113 V. References 115 Abstract in korean 137-
dc.formatapplication/pdf-
dc.format.extent4648850 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleStudy on the regulatory mechanisms of Na,K-ATPase by TCTP, SNX6, and PLZF-
dc.typeDoctoral Thesis-
dc.creator.othernameYoon, Taesook-
dc.format.pageix, 138 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 분자생명과학부-
dc.date.awarded2006. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE