DC Field Value Language
dc.contributor.author김지현-
dc.creator김지현-
dc.date.accessioned2016-08-26T02:08:17Z-
dc.date.available2016-08-26T02:08:17Z-
dc.date.issued1999-
dc.identifier.otherOAK-000000001616-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/193002-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000001616-
dc.description.abstract이 논문에서는 리만 다양체와 kahler 다양체에서 minimal 부분다양체에 대해서 살펴본다. 평균 곡률 벡터장이 0인 부분다양체를 minimal 부분다양체라 한다. 리만 다양체에서의 등거리사상의 고정점 집합의 모든 연결성분은 minimal 부분다양체임을 보이고 kahler 다양체에서 모든 복소 부분다양체는 minimal 부분다양체임을 보인다. 이로써 minimal 부분 다양체의 예를 찾아본다. ; We introduce the minimal submanfold in riemannian manifold and kahler manifold. The minimal submanifold is the submanifold whose mean curvature vector field is zero. We show that each connected component of the fixed point set of an isometry of a riemannian manifold is minimal and that every complex submanifold of kahler manifold is minimal. Then we find the examples of minimal submanifold.-
dc.description.tableofcontentsAbstract = ii Chapter 1 Introduction = 1 Chapter 2 MInimal submanifold in Riemannian manifold = 2 2.1 Definitions = 2 2.2 MInimal submanifold in Euclidean space and Sphere = 5 2.3 Totally geodesic submanifold = 9 Chapter 3 MInimal submanifold in Complex manifold = 11 3.1 Complex manifold = 11 3.2 Kahler manifold = 14 3.3 Examples of minimal complex subrmanifold = 17 Reference = 20 논문초록 = 21-
dc.formatapplication/pdf-
dc.format.extent735568 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleMinimal submanifolds in manifolds-
dc.typeMaster's Thesis-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 수학과-
dc.date.awarded1999. 2-
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML