View : 1141 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor조경숙-
dc.contributor.author와히다 슈미-
dc.creator와히다 슈미-
dc.date.accessioned2016-08-25T11:08:58Z-
dc.date.available2016-08-25T11:08:58Z-
dc.date.issued2009-
dc.identifier.otherOAK-000000054109-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/188091-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000054109-
dc.description.abstract본 연구의 목적은 충치(dental caries)의 원인균인 Streptococcus mutans의 치태(dental plaque) 형성 메커니즘을 이해하기 위하여 그 미생물들의 세포괴(aggregate)가 이빨 사이의 공간(diastema)에 붙은 부착능력과 바이오필름 형성을 억제하는 전단응력(shear stress)과 3가 철이온(III) 효과를 연구하였다. 1장에서는 S. mutans 생물막의 문헌들을 생물막 형성, 생물막 연구를 위한 기술 등의 주제들로 나누어 고찰하였다. 2장에서는 S. mutans 생물막 형성에 미치는 유속 및 당 농도의 효과를 마이크로 채널 (1 cm × 1 cm × 400 µm)에서 형성된 층류(laminar flow) 조건에서 연구하였다. 본 연구를 통해 S. mutans는 100 µM 자당(sucrose), 분당 50 µl 유속, pH 7의 조건에서 가장 많은 양의 exopolysaccharide (EPS)를 생산하여 크고 넓은 생물막을 형성함을 알 수 있었다. 3장에서는 마이크로 채널 (1 cm × 1 cm × 400 µm) 내부에서 형성된 S. mutans 생물막 내부에 존재하는 철이온의 공간적 분포를 3가 철이온 센싱 형광화학센서(fluorescent chemosensor)와 공초점 레이저 주사 현미경(confocal laser scanning microscopy)을 이용해 이미지화 하였다. 3가 철이온이 부족한 조건(Fe2(SO4)3 첨가하지 않은 조건)에 대비하여 3가 철이온이 풍부한 조건(100 μM Fe2(SO4)3)에서는 S. mutans는 현저히 줄어든 양의 EPS를 생산하여 작고 얇은 생물막을 형성하여 철이온 풍부한 조건에서는 생물막 형성이 억제됨을 알 수 있었다. 공초점 레이저 주사 현미경 이미지는 배양조건에 첨가된 3가 철이온 농도에 관계없이 철이온(III)이 생물막 외층에 많이 존재함으로 보여주었으며 이를 통해 EPS층이 생물막 외부에 존재하는 3가 이온을 흡수하여 세포들이 존재하는 내층으로 전달하는 역할을 수행함을 추측하게 하였다. 4장에서는 이빨 사이의 공간(diastema)을 모사하기 위해 미세가공된 깔대기 벽(45 µm 너비와 32.5 µm 깔대기간 공간)들이 부착된 미세유체소자(microfluidic device)를 제작하였으며, 본 소자를 이용해 깔대기 벽들에 부착된 약 50 µm의 직경을 지닌 세포괴들의 전단응력 내구력 (shear-stress tolerance)을 다양한 유속(분당 5에서 50 µl min-1)에서 측정하였다. 100 M 자당이 첨가된 조건에서 자란 S. mutans들이 형성한 세포괴들은 자당이 첨가되지 않은 조건에서 자란 S. mutans들에 비해 전단응력에 대한 내구력이 훨씬 높음을 알 수 있었다. 또한 전단응력에 대한 내구력은 부착 후 배양 시간에 따라 증가함을 알 수 있었다. 이는 배양시간 증가에 따라 더 많은 EPS가 형성되어 세포간 결합력 뿐만 아니라 깔때기 벽에 부착하는 능력도 증가하기 때문으로 사료된다. 결론적으로 본 연구 결과들은 미세유체소자가 이빨 사이의 제한적 공간들을 모사할 수 있으며 구강 세균들의 초기 부착과 생물막 형성을 연구하는 데 사용될 수 있음을 보여 주었다.;The purpose of this study is to understand the plaque formation mechanism of Streptococcus mutans, a major etiological agent of dental caries, by studying the inhibitory effects of shear stress and ferric ion (III) on attachment of cell aggregates and biofilm formation on the dental diastema, a gap or space between two teeth. Once S. mutans forms biofilms in the diastema or in the depth of occlusal fissures on posterior teeth, the biofilms become very stable and are difficult to remove. Although biofilm formation of S. mutans either under static condition or at flat surface has been extensively studied, little is known about biofilm formation of S. mutans at confined geometries under microfluidic condition which is expected to represent the physical condition in the diastema. Novel aspects of this study were the use of fluorescent chemosensor and microfluidic devices, which have never been used in the previous studies related to the biofilm of S. mutans. In Chapter 1, I reviewed literatures of biofilms on several subjects; biofilm formation under various conditions, techniques for biofilm studies, etc. In Chapter 2, the effects of flow rate and sucrose concentration on biofilm formation by S. mutans were studied under laminar flow condition generated by a microchannel (1 cm × 1 cm × 400 µm). The results showed that S. mutans formed biofilms with the maximum area and thickness by producing the largest amounts of exopolysaccharides (EPS) at pH 7.0 with the flow rate of 50 µl min-1 and the sucrose concentration of 100 µM. In chapter 3, the spatial distribution of ferric ion(III) over S. mutans biofilms formed inside a microchannel (1 cm × 1 cm × 400 µm) was imaged using a ferric chemosensor in conjunction with confocal laser scanning microscopy (CLSM). Our data showed that S. mutans produced significantly lower amount of EPS and thus formed thinner biofilms under iron-repleted conditions (supplemented with 100 μM Fe2(SO4)3 compared to the iron-depleted conditions (no supplementation with ferric ions), indicating that biofilm formation is inhibited in the presence of a sufficient amount of iron. CLSM imaging of the biofilms stained with the chemosensor showed higher amounts of ferric ions in the inner EPS layer of the biofilm formed under both the iron-depleted and iron-repleted conditions than the outer layer of the same biofilm, suggesting that the EPS layer in the biofilm is responsible for acquiring and delivering ferric ions to the cell body. In Chapter 4, a novel microfluidic device with microfabricated funnel walls (45 µm in width and 32.5 µm spacing) mimicking the dental diastema was used to study the shear stress tolerance of S. mutans aggregates with about 50 µm diameters attached to the walls. Shear stress tolerance of S. mutans aggregates trapped in the funnels was tested against various flow rates ranging from 5 to 50 µl min-1 in the microfluidic device containing saliva solution. The cell aggregates previously grown in the presence of 100 µM sucrose were more tolerant against shear stress than those in the absence of sucrose. The shear stress tolerance of sucrose-dependent aggregates was enhanced by longer incubation for 10, 30 and 60 min. The amount of EPS is increased by the longer incubation, which can help the aggregates to form strong bonding between the cells and the funnel walls. Conclusively, these results demonstrate that the microfluidic device can mimic the microenvironments with confined geometry in the teeth and thus used to investigate the initial attachment and biofilm formation of oral bacteria.-
dc.description.tableofcontentsChapter 1 Overview of the Biofilm and Microfluidic Devices = 1 1.1. Biofilm = 2 1.2. Biofilm structure = 4 1.2.1. Components of biofilm = 4 1.2.1.1. Microorganisms = 5 1.2.1.2. Exopolysaccharide (EPS) = 6 1.2.1.3. Void or water channels = 8 1.2.1.4. Available nutrients and physiological components = 8 1.2.2. Stages of biofilm formation = 9 1.2.3. Relationship among the microbial communities = 12 1.3. Key factors affecting the biofilm formation = 15 1.3.1. Bacterial surface = 17 1.3.2. Nutrient availability = 18 1.3.3. External environmental factors = 19 1.3.4. Gene expression and signaling molecules for biofilm formation = 20 1.3.5. Concentration of antimicrobial agents = 22 1.4. Importance of biofilm = 24 1.5. Biofilm study = 25 1.6. Microfluidics = 30 1.6.1. Microfluidics and its application = 30 1.6.2. Benefits of laminar microfluidic system = 31 1.7. Streptococcus mutans and dental plaque = 33 1.7.1. General characteristics of Streptococcus mutans = 33 1.7.2. Adhesion of S. mutans = 34 1.7.2.1. Pellicle formation = 35 1.7.2.2. Sucrose-dependent coaggregation = 36 1.7.2.3. Production of polymeric substance and the development of plaque = 37 1.7.3. Organisms responsible for dental plaque = 38 1.7.4. Factors affecting the dental plaque = 39 1.7.5. Dental plaque and related diseases = 40 1.7.6. Protection against the dental plaque = 42 1.8. Biofilm study of S. mutans = 44 1.8.1. S. mutans biofilm studies with different methods = 46 1.8.1.1. Conventional method of biofilm study in microtiter plate = 48 1.8.1.2. Capillary biofilm study = 48 1.8.1.3. Flow cell study = 49 1.8.1.4. Microfluidics biofilm study = 50 1.9. Further aspects = 51 Chapter 2 Environmental Factors Affecting Streptococcus mutans Biofilm Formation in Laminar Flow Condition = 53 2.1. Introduction = 54 2.2. Materials and methods = 59 2.2.1. Bacterial strain and cultural condition = 59 2.2.2. Conventional biofilm assay = 60 2.2.3. Microfluidic chip design and fabrication = 61 2.2.4. PDMS replica and chip preparation = 61 2.2.5. Microfluidic device packing and biofilm formation = 62 2.2.6. Optimization of the cultural conditions = 63 2.2.6.1. Effects of sucrose concentration = 63 2.2.6.2. Effects of pH and NaCl concentrations = 64 2.2.6.3. Incubation periods = 64 2.2.6.4. Effects of flow rates = 65 2.2.6.5. Effects of metal ions = 65 2.2.7. Microscopic observation and image processing = 66 2.2.8. Image analysis = 68 2.3. Results = 68 2.3.1. S. mutans forms biofilm in microtiter plates = 68 2.3.2. Design of microfluidic device = 70 2.3.3. Sucrose is required for initial attachment of the S. mutans cells on the surface = 72 2.3.4. Initial neutral pH enhances the EPS formation of S. mutans = 76 2.3.5. Increased concentration of NaCl reduces the biofilm formation of S. mutans = 78 2.3.6. Increased incubation period enhances the biofilm formation = 80 2.3.7. Medium flow accelerates the biofilm formation = 83 2.3.8. Ferric ions reduce EPS production of S. mutans = 85 2.3.9. Different stages of biofilm formation = 88 2.4. Discussion = 90 2.5. Conclusions = 94 Chapter 3 Fluorescence Imaging of the Spatial Distribution of Ferric Ions Over Biofilms Formed by Streptococcus mutans Under Microfluidic Conditions = 95 3.1. Introduction = 96 3.2. Materials and methods = 98 3.2.1. Bacterial strain and chemicals = 98 3.2.2. Fabrication of microfluidic device = 99 3.2.3. Growth rate and pH measurement = 100 3.2.4. Biofilm formation in the microchannel = 100 3.2.5. Staining EPS, live cells and ferric ions in the biofilms with fluorescent dyes = 101 3.2.6. CLSM imaging = 102 3.3. Results and Discussion = 103 3.3.1. pH changes during the culture = 103 3.3.2. Initial biofilm formation of S. mutans was inhibited under the iron-depleted conditions = 106 3.3.3. Spatial distribution of ferric ions in the biofilms = 110 3.4. Conclusions = 112 Chapter 4 The Shear Stress Tolerance of Streptococcus mutans Aggregates Determined by Microfluidic Device Mimicking Diastema = 113 4.1. Introduction = 114 4.2. Materials and methods = 116 4.2.1. Bacterial strain and reagents = 116 4.2.2. Saliva collection = 117 4.2.3. Microfabrication and device layout = 118 4.2.4. Simulation of microfluidic device for velocity, pressure and shear stress = 121 4.2.5. Sample preparation and sorting of aggregates = 121 4.2.6. Determination of shear stress tolerance = 122 4.2.7. Determination of incubation period for initial attachment of S. mutans aggregates = 124 4.2.8. Microscopic observation and analyzing of the images of the aggregates = 125 4.3. Results = 126 4.3.1. Distribution of pressure and velocity along the chip = 126 4.3.2. Shear stress distribution on the funnel walls = 130 4.3.3 Shear stress tolerance of S. mutants aggregates = 134 4.3.4. Adhesion period enhanced the attachment ability of S. mutans aggregates = 140 4.3.5. Sucrose-dependent aggregates form the EPS = 147 4.4. Discussion = 153 4.5. Conclusions = 158 References = 159 Appendix = 187 Appendix of chapter 2 = 187 Appendix of chapter 3 = 189 Appendix of chapter 4 = 191 국문초록 = 194-
dc.formatapplication/pdf-
dc.format.extent9635193 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleMicrofluidic Devices for Studying Biofilm and Aggregates of Dental Plaque Forming Streptococcus mutans-
dc.typeDoctoral Thesis-
dc.title.translated치태 형성 Streptococcus mutans의 세포괴와 생물막 연구를 위한 미세유체소자-
dc.creator.othernameWahhida Shumi-
dc.format.pageⅹix, 196 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 환경공학과-
dc.date.awarded2009. 8-
Appears in Collections:
일반대학원 > 환경공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE