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Abstract 
Standigm ASK™ revolutionizes healthcare by addressing the critical challenge of identifying pivotal target genes in disease mech-
anisms—a fundamental aspect of drug development success. Standigm ASK™ integrates a unique combination of a heterogeneous 
knowledge graph (KG) database and an attention-based neural network model, providing interpretable subgraph evidence. Empowering 
users through an interactive interface, Standigm ASK™ facilitates the exploration of predicted results. Applying Standigm ASK™ to 
idiopathic pulmonary fibrosis (IPF), a complex lung disease, we focused on genes (AMFR, MDFIC and NR5A2) identified through KG 
evidence. In vitro experiments demonstrated their relevance, as TGFβ treatment induced gene expression changes associated with 
epithelial–mesenchymal transition characteristics. Gene knockdown reversed these changes, identifying AMFR, MDFIC and NR5A2 as 
potential therapeutic targets for IPF. In summary, Standigm ASK™ emerges as an innovative KG and artificial intelligence platform 
driving insights in drug target discovery, exemplified by the identification and validation of therapeutic targets for IPF. 
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INTRODUCTION 
The process of developing a new drug, from identifying a target to 
securing approval from the Food and Drug Administration (FDA), 
spans 10–15 years and exceeds the cost of $2.6 billion [1]. Nine 
out of 10 drug candidates entering clinical studies face potential 
failure across Phase I, II or III clinical trials and the drug approval 
process [2]. Most clinical trial failures occur in the late stages of 
development, resulting in substantial financial and societal costs. 
The primary causes of high failure rates are a lack of efficacy 
or unmanageable toxicity issues, with stoppages often attributed 
to inaccurate drug target identification [2]. Efficacy failures were 
responsible for terminating 48% of Phase II and 55% of Phase III 
clinical trials [3, 4], underscoring the urgent need for enhanced 
approaches to selecting more effective drug targets at the early 
development stage. While it is widely acknowledged that identi-
fying high-potential drug targets with strong clinical efficacy is a 

critical step in contemporary drug discovery [5], finding action-
able therapeutic targets remains a challenging task for several 
reasons. These challenges include biological complexity, a lack 
of comprehensive knowledge about the molecular mechanisms 
underlying various diseases and the heterogeneity of diseases. 
Moreover, traditional experimental-based drug identification is 
a time-consuming and expensive method that relies on individ-
ual laboratory experiments and available physical resources. To 
address this issue, there is a need for enhanced approaches to 
selecting more effective drug targets during the early develop-
ment stage. 

The development of computer-based methods, including arti-
ficial intelligence (AI) and machine learning (ML), has been exten-
sively studied to support drug development by narrowing down 
the scope of experimental targets, shortening the drug discovery 
and development cycle and reducing experimental costs [6–8]. 
Recent milestones, such as AI-designed anticancer compounds
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reaching phase 2/3 clinical trials, underscore AI’s growing impact 
in the field [9]. Nevertheless, integrating diverse data sources 
presents technological challenges, necessitating specialized com-
putational frameworks for successful drug development. 

One of the promising approaches for AI/ML-driven drug discov-
ery is using a heterogeneous graph consisting of a large amount 
of various relational information, often referred to as a knowledge 
graph (KG). Since a variety of early drug discovery tasks (e.g. target 
identification, drug repurposing) can be translated into a link 
prediction problem over KG, KG-based methodologies are heavily 
studied based on recommender system, knowledge graph embed-
ding (KGE) and graph neural networks (GNNs) [10–14]. These stud-
ies, however, are simply importing and utilizing successful models 
from other research domains; therefore, several improvements 
could be made, such as exploiting the properties of biological KGs 
more or developing models that give more promising results for 
biology researchers. 

We constructed Standigm ASK™, an AI-assisted platform tai-
lored for identifying novel target genes associated with diseases 
of interest, based on interpretable subgraph evidence to provide 
better interpretability and more accurate results to researchers. 
Using the subgraph evidence and interactive user interface, users 
can judge the prediction results by estimating the underlying 
mechanism of action with their biological information, which 
other KG-based AI models rarely express. 

To demonstrate the real-world impact of Standigm ASK™, we 
applied it to identify novel target candidates for idiopathic pul-
monary fibrosis (IPF) (available at https://ipf.standigm.com). IPF 
is a chronic and irreversible interstitial lung disease of unknown 
cause. The literature indicates that the median survival time 
following an IPF diagnosis is short [15, 16]. Additionally, IPF is often 
diagnosed at a late stage, limiting treatment options and resulting 
in a poor prognosis [17]. Currently, pirfenidone and nintedanib are 
the only drugs approved by the FDA for treating IPF. While these 
drugs can delay disease progression and alleviate symptoms, they 
don’t offer a cure for IPF or significantly improve survival rates [18, 
19]. Moreover, these drugs are associated with side effects such as 
thrombocytopenia, gastrointestinal discomfort and dermatologi-
cal reactions [20, 21]. Given these limitations, there is a critical 
need to identify new therapeutic targets to treat IPF effectively. 
Although the pathogenesis of IPF remains unclear, existing studies 
have reported that EMT plays a crucial role in its development and 
progression. 

In this study, given the crucial role of EMT in IPF development 
and progression, we identified a ranked set of IPF drug targets 
(AMFR; Autocrine Motility Factor Receptor, MDFIC; MyoD Family 
Inhibitor Domain Containing and NR5A2; Nuclear Receptor sub-
family 5 group A member 2) through Standigm ASK™ and com-
plementary DNA (cDNA) microarray analysis. As an experimental 
validation, the results showed that treatment with TGFβ, an  EMT  
activator and fibrosis inducer, increased both mRNA and protein 
levels of these genes in L132 cells. Small interfering RNA (siRNA) 
knockdown of these genes activated E-cadherin promoter activ-
ity and inhibited mesenchymal cell marker expression, revers-
ing TGFβ-induced EMT-related changes. Moreover, gene knock-
down inhibited TGFβ-induced morphological changes and cell 
migration without affecting cellular proliferation. These findings 
identify AMFR, MDFIC and NR5A2 as potential novel therapeutic 
targets for IPF treatment through regulating the EMT pathway. 

Taken together, Standigm ASK™ has fundamentally reshaped 
the drug discovery and development paradigm. In this con-
text, we elucidate the process involved in identifying novel 
targets for IPF throughout this platform’s conceptualization and 

implementation stages, along with the validation results. This 
study underscores the significant impact of Standigm ASK™ in 
expediting the drug discovery process. 

MATERIAL AND METHODS 
KG construction 
KGs are often constructed for drug discovery tasks, including 
target identification, because KGs can have type information in 
their nodes and edges with the different components referred to 
as metanode and metaedge [14] that give the interconnectivity 
of biomedical systems to drug discovery prediction models. We 
built a KG connecting multimodal biomedical data retrieved from 
public repositories [22–61] (see  Table 1 for public data sources). 

Label construction for target prioritization 
To assess the large amount of information in the KG of Standigm 
ASK™, some metrics have been established to rationalize the 
assessment and prioritization of actionable therapeutic targets. 
We selected five strategic summary criteria: biological relevance, 
disease causality, druggability, toxicity and novelty (Figure 1A). 

The five criteria are individually quantified and assigned a 
global score to identify potential disease-associated therapeutic 
targets. For example, a list of 20 genes with the highest ranking 
was extracted for IPF. Drug targets were first prioritized based 
on the given information, including disease association (rank 
and association score), druggability (Protein Data Bank, small 
molecules and antibodies), development filters (active max phase 
and development level), target family, tissue specificity and tox-
icity filters (gene essentiality and cancer specificity). Then, the 
number of potential target candidates is narrowed down to highly 
promising targets associated with the disease. Finally, individual 
‘target candidates’ are generated to represent the overall assess-
ment visually and quickly interpretably to end users for any given 
target (Figure 1B). 

Pre-training representation of KG 
Standigm ASK™ uses QuatE [62] as the underlying KGE model, 
which is known for its ability to resolve complex relationships, 
including symmetry, anti-symmetry and inversion, by using the 
score functions defined on the quaternion domain (see Supple-
mentary Material available online at http://bib.oxfordjournals. 
org/ for detail). Note that we used KGE as preprocessed data for 
Standigm ASK™ to improve performance on the target discovery 
task and to provide supportive information selected from the KG 
instead of making predictions based on the results of KGE alone. 

Metapath selection and path extraction 
In graph theory, a path is defined as a sequence of edges where 
neighboring edges must be connected through a common node 
[63]. In the KG of Standigm ASK™, we defined a path using the 
same definition and additionally defined a type of path (called 
metapath) as the metaedge sequence of the edges in the path. 
Standigm ASK™ extracts paths between a given query node and 
a retrieved node and then uses those paths to learn whether an 
actual edge exists. 

However, using all possible paths can lead to an exponen-
tial increase in required computing resources and a decrease in 
explanatory power, so only a few crucial paths were extracted and 
used. Briefly, we established the following procedure. First, select 
a set of metapaths by solving a data-driven optimization problem, 
where the optimization problem is designed to remove redundant 
or irrelevant metapaths. Then, for each chosen metapath, we pick
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Table 1: List of public databases used by Standigm ASK™ KG 

Name Data types 

Bgee expressed_low, expressed_high 
BindingDB binds_to 
BioGRID PPI 
ChEMBL binds_to 
ClinGen associated 
CTD binds_to, downregulated_by, treats, upregulated_by, associated 
DISEASES associated 
DisGeNET associated 
DrugCentral PC, binds_to, treats, categorized_in 
EFO DI 
ERC covaries 
FAERS SE, causes 
GO GO, biological_process, cellular_component, molecular_function 
GWAS Catalog associated 
Harmonizome downregulated_in, upregulated_in 
IntAct PPI 
LINCS Connectivity Map downregulated_by, upregulated_by, associated, KD_downregulates, KD_upregulates, OX_downregulates, OX_upregulates 
MEDLINE occurs_in, presents, mentioned_with 
NCBI Genes GE 
MINT PPI 
Open Targets associated 
Pathway Commons PPI 
PDSP Ki Database binds_to 
PharmacotherapyDB treats 
Reactome PW, involved_in, PPI 
STARGEO downregulated_in, upregulated_in 
STRING PPI 
TRRUST PDI 
Uberon AN 
Misc. PPI 

Figure 1. Our workflow of target identification. (A) Targets are assessed based on five strategic criteria. The five criteria are individually quantified, and 
a global score is then computed to prioritize the top targets for which the overall rationale is the highest. Target identification is further performed 
independently for each disease based on several flexible filters. (B) Top 20 hits for IPF. The ranking of the targets and additional filters are applied to 
refine the list to satisfy the objectives of the user’s study. The high color intensity in the heatmap stands for high ratings. 

top-k paths based on the path score (see Supplementary Material 
available online at http://bib.oxfordjournals.org/ for details). 

Neural network architecture 
By applying the above methods, we can extract the information 
needed for further investigation for each query-retrieval pair. 
However, it still needs to be more practical to manually search the 

evidence paths between a given query and thousands of candi-
dates. Therefore, we designed a neural network trained to predict 
the existence of an association (Figure 2). We can perform the 
first filtering round by excluding candidates with low prediction 
scores. 

The underlying neural network requires three inputs: informa-
tion for the query, information for the retrieval and the extracted
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Figure 2. Details of Standigm ASK™ model. Given a query disease and a target gene, Standigm ASK™ extracts a set of paths between the query and 
the target based on predefined metapaths. Each path is passed through a convolutional neural network and transformed into a path vector. The path 
vectors are concatenated with the query vector, target vector and metapath vector and then merged into a single-feature vector based on attention 
mechanism. Finally, the feature vector, query and target vector are used for the final score prediction. 

paths between the query and the retrieval. For the query and 
the retrieval information, Standigm ASK™ directly uses the node 
embedding vectors obtained from the pre-trained KGE model. A 
path is processed to a path vector, computed from the embedding 
vectors of the nodes belonging to it. Specifically, the node vectors 
are stacked, passed through a convolutional neural network and 
then converted into a single path vector. Path vectors are then 
aggregated into a single feature vector using an attention mech-
anism to obtain different weights of importance for each path 
depending on the context. Finally, we can compute the association 
score using the query, target and feature vectors (see Supplemen-
tary Material available online at http://bib.oxfordjournals.org/ for 
details). 

Training with ranking loss 
In a typical classification problem, a model is trained using cross-
entropy loss by conceptualizing the model’s score as a probability. 
However, in the link prediction task on the graph, it is some-
times hard to distinguish whether the lack of association is ‘truly 
negative’ or ‘positive but not yet observed’. This implies that the 
negative data in the training set might be false negative, which 
could be potentially problematic. Furthermore, some association 
edges in our KG contain information on causality, and the causal 
edges over the association edges were prioritized. 

Thus, we adopted a different approach from the recommender 
system. When a query is provided, Standigm ASK™ attempts 
to learn the rank of the target by increasing the difference in 
scores for the following cases: (i) a target that is known to have a 
causal relationship with a given query and the other is just asso-
ciated with it (casual versus association) and (ii) a target known 
to have an association with a given query and the other does 
not (association versus no association). Loss functions designed 
for this kind of problem include Bayesian personalized ranking 
loss (BPR; [64]) and weighted approximately ranked pairwise loss 
(WARP; [65]). We used WARP loss for training (see Supplemen-
tary Material available online at http://bib.oxfordjournals.org/ for 
details). 

Performance comparison 
The following simple comparative analysis was performed to 
demonstrate the superior performance of our proposed model. We 
first applied QuatE on our KG and measured the predictive per-
formance for the baseline. Then, we trained Standigm ASK™ and 
other well-known state-of-the-art models using the pre-trained 
embeddings. For the state-of-the-art models, we chose neural 
factorization machine (NFM) [66], relational graph convolutional 
network (R-GCN) [67] and graph attention network (GAT) [68] with  
modification from Kamiński et al. [69] to handle edge features 

(here, we’ll denote it as EGAT). Notice that we do not use external 
features (e.g. genetic sequences of genes, textual explanation of 
diseases, . . . ) for every method. All models share the same fixed 
QuatE node embedding and were trained with the same optimizer, 
same loss function and same hyperparameters. 

The performance metric for every query disease using average 
precision (AveP) and precision at 20 (Prec@20) was evaluated with 
two different ground truth test sets: (i) using all association edges 
as the ground truth and (ii) using causal edges only. The training 
set and test set were split using the following procedure. For each 
query disease, 50% of DI = asw = GE edges were randomly picked as 
the test edge. If the number of test edges associated with a specific 
query disease was less than 20, all such test edges were excluded 
from the test set. All association edges used for training were 
removed entirely for every evaluation case, and the training/test 
set was shared for each experiment. 

Application for IPF target identification 
Following the prioritization of the top hypotheses on candidate 
targets using the Standigm ASK™ scoring system, the rationale is 
subsequently consolidated through a deep-dive investigation by 
biologists and pharmacologists. During this consolidation phase, 
an extensive literature review and in-house translational data 
analyses are performed to confirm that the identified target 
candidates are involved in specific disease pathways and are 
druggable with a specific compound modality. 

Researchers can then validate target hypotheses by exper-
imentally confirming that disease activity is impacted fol-
lowing perturbation of the target of interest using various 
biological/chemical approaches. Wet-lab gene inhibition (e.g. via 
CRISPR-Cas9 deletion or RNA silencing) or preclinical experi-
ments using cellular assays or animal models are commonly 
implemented to support the hypothesis that drugs interact-
ing with the target exhibit the anticipated pharmacological 
activity. 

For IPF, the score for every target was computed, and all but the 
top 10% of targets were removed. Secondary filtering was then 
performed by giving each subgraph a specific condition. These 
conditions can vary, for example, ‘contains a certain gene’ or ‘has 
a certain metapath’. 

Experimental methods for validating IPF targets 
Cell culture 
A human normal lung epithelial cell line (L132) and HEK 293T cells 
were supplied by the American Type Culture Collection (Rockville, 
MD, USA) and cultured in RPMI (Gibco, Gaithersburg, MD, USA) 
or DMEM supplemented with 10% fetal bovine serum and 1% 
penicillin–streptomycin at 37◦C in a humidified 5% CO2 incubator.
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siRNA transfection and TGFβ1 treatment 
siRNAs against GP78 (sc-43809), MDFIC (sc-89686), NR5A2 (sc-
37897) and a control siRNA (sc-37007) were purchased from Santa 
Cruz Biotechnology (Dallas, TX, USA). For transient siRNA trans-
fection, L132 cells were plated and incubated for 24 h to reach 70% 
confluency. The cells were then transfected with the designated 
siRNAs (60 nM) in each experiment using Lipofectamine 3000 
(Invitrogen, Carlsbad, CA, USA) and OPTI-MEM (Gibco), in accor-
dance with the manufacturers’ protocols. Transforming growth 
factor-beta 1 (TGFβ1) was purchased from Bio-Techne R&D Sys-
tems (240-B-002; Minneapolis, MN, USA) and cells were treated 
with 5 ng/ml TGFβ1. 

Microarray experiment 
In accordance with previously described methods [70], total RNA 
from mouse lung tissues was prepared using the Easy-Spin™ 
total RNA extraction kit according to the manufacturer’s instruc-
tions (iNtRON Biotechnology, Seoul, Republic of Korea). Before 
performing the microarray experiment, the quality of the purified 
RNA was measured using the Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA); only samples with an RNA 
integrity number greater than 7.0 were included in the microarray 
analysis. RNAs from triplicate experiments at each time point 
were pooled to exclude experimental bias. Isolated total RNA was 
amplified and labeled using the Low RNA Input Linear Ampli-
fication kit PLUS (Agilent Technologies, Santa Clara, CA, USA) 
and then hybridized to a microarray containing approximately 
44 000 probes (∼21 600 unique genes), in accordance with the 
manufacturer’s instructions (Agilent Mouse Whole Genome 44K, 
Agilent Technologies). The arrays were scanned using an Agilent 
DNA Microarray Scanner (Agilent Technologies). 

RNA isolation and qRT-PCR 
Total RNA was isolated from the sample using TRIzol® reagent 
(Qiazen, Valencia, CA, USA). RNA purity and concentration were 
measured with a Nanodrop. The RNA was reverse-transcribed 
using a ReverTra Ace® qPCR RT Kit (Toyobo, Osaka, Japan), 
in accordance with the manufacturer’s protocol. PCR was 
performed to assess expression of the candidate genes using 
primers designed for mRNA sequences. mRNA expression was 
assessed using real-time PCR with an SYBR Green PCR Master 
Mix kit (Bioline USA Inc., Taunton, MA, USA) and CFX96 Touch™ 
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA), 
equipped at Ewha Drug Development Research Core Center. The 
2−��Ct method was used to analyze the relative changes in gene 
expression based on real-time quantitative PCR. Gapdh was used 
as an internal control gene. Reaction conditions started with 
enzyme activation at 95◦C for 2 min, followed by 40 cycles of 
95◦C for  5 s,  58◦C for 10 s and 72◦C for 20 s. The primer sequences 
for qRT-PCR are listed in Supplementary Table 2 available online 
at http://bib.oxfordjournals.org/. 

Luciferase reporter assay 
HEK293T cells were seeded at a density of 1.5 × 105 cells/dish 
in 35 mm cell culture dishes. The cells were transiently trans-
fected with 0.3 μl of an E-cadherin promoter plasmid DNA for 
3 h, followed by transfection of designated siRNAs. After 24 h of 
incubation, the cells were treated with TGFβ1 (5 nM)  for 24 h and  
E-cadherin promoter activity was measured using the Luciferase 
Assay System with Reporter Lysis Buffer (E4030; Promega, Madi-
son, WI, USA). 

MTT assay 
Cell proliferation upon the transfection of siRNAs and treatment 
with TGFβ was determined using an MTT [3-(4,5-dimethylthazol-
2-yl)-2,5-diphenyl tetrazolium bromide] assay (M5655; Sigma-
Aldrich, St. Louis, MO, USA) in 96-well plates. L132 cells were 
seeded at a density of 4 × 103 cells/well and treated with siRNAs 
for 24 h,  followed by TGFβ treatment for 12, 24 and 48 h. Then, 
at different time points, cells were incubated with MTT (final 
concentration 5 mg/ml) for 4 h in an incubator. Then, the medium 
was carefully removed and 100 μl of DMSO was added to each 
well to solubilize the cells. The absorbance was measured on a 
microplate reader (Tecan, Männedorf, Switzerland), equipped at 
Ewha Drug Development Research Core Center. At least three 
independent experiments were performed. 

Immunoblotting 
For immunoblotting, cells were lysed with RIPA lysis buffer (Bios-
esang, Incheon, Republic of Korea). Protein concentration was 
determined by the Bradford method (Bio-Rad). The samples were 
boiled for 5 min, and an equal amount of protein was analyzed 
by SDS-PAGE (6–15%) using standard conditions. The horseradish 
peroxidase (HRP) activity was measured using enhanced chemi-
luminescence (EzWestLumi, Tokyo, Japan) at Ewha Drug Develop-
ment Research Core Center. Protein band intensity was visualized 
on ChemiDoc (Bio-Rad) and quantified using ImageJ software 1.45 
(National Institutes of Health, Bethesda, MD, USA). 

Antibodies and reagents 
Protein levels were detected using commercial antibodies as fol-
lows: MDFIC, NR5A2, N-Cadherin, β-actin (Santa Cruz Biotech-
nology); AMFR (Proteintech, Rosemont, IL, USA); E-cadherin (BD 
Biosciences, Santa Clara, CA, USA); α-SMA (Sigma-Aldrich); snail, 
slug (Cell Signaling Technology, Danvers, MA, USA); twist (Abcam, 
Cambridge, UK); and β-catenin, Alexa488-conjugated phalloidin 
(Invitrogen). The details of the antibodies used for immunoblot-
ting and immunofluorescence staining are provided in Supple-
mentary Table 3 available online at http://bib.oxfordjournals.org/. 

Phalloidin staining of F-actin 
To observe changes of the actin cytoskeleton, fluorescence-
conjugated phalloidin staining was performed. After siRNA trans-
fection and TGFβ treatments, cells were fixed and permeabilized. 
To visualize the actin cytoskeleton, F-actin was stained by Alexa 
Fluor™ 488 Phalloidin for 90 min in the dark. Then, the nuclei of 
the stained cells were counterstained with DAPI (F6057; Sigma-
Aldrich) and stained cells were imaged using a Zeiss Apotome 
(Carl Zeiss, Oberkochen, Germany), equipped at Ewha Drug 
Development Research Core Center. 

Wound healing assay 
For monolayer wound healing assays, transfected cells were 
plated in 6-well dishes to reach confluency of 90% (for 24 h) and 
80% (for 48 h). Treatment with TGFβ (5 nM) was applied for 24 h, 
and parallel wounds of 1 mm were made using an SPLScar (SPL, 
Gyeonggi-do, Republic of Korea). The sizes of the wounds after 24 
and 48 h were measured using a light microscope (Carl Zeiss) in 
three independent experiments. 

Statistical analysis 
Data were analyzed using GraphPad Prism 5.0 (GraphPad Software 
Inc., San Diego, CA, USA). The statistical significance of differences 
with the control group was determined by Student’s t-test. The
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Figure 3. Standigm ASK™ general framework. Data sources are curated and integrated into a KG. For each application starting from one disease or a 
set of diseases, the KG is mined to evaluate the predicted targets, generate hypotheses and assist the consolidation. 

Table 2: Simple quantitative comparison with other biological KGs 

KG name Number of 
nodes 

Number of 
metanodes 

Number of 
edges 

Number of 
metaedges 

Number of 
sources 

Standigm ASK™ 73 K 8 4.4 M 25 36 
HetioNet 47 K 11 2.2 M 24 29 
DRKG 97 K 13 5.7 M 107 34 
BioKG 105 K 10 2 M 17 13 
PharmKG 7.6 K 3 500 K 29 7 
OpenBioLink 184 K 7 4.7 M 30 17 
Clinical Knowledge Graph 16 M 35 220 M 57 35 

differences were considered statistically significant at P ≤ 0.05, P 
≤ 0.01 and P ≤ 0.001. 

RESULTS 
Construction of Standigm ASK™ 
Figure 3 provides a summary of Standigm ASK™, the platform 
that we used to discover novel targets. It involved three steps: 
(1) building a KG from the relevant biological data from different 
sources; (2) applying algorithms to the graph to generate and rank 
hypotheses about new targets or drug repurposing; and (3) post-
processing with subgraph evidence and exploiting the knowledge 
of researchers on an interactive user interface. 

In this study, we employed a KG consisting of 73 227 nodes 
categorized into 8 metanodes and 4 425 359 edges categorized 
into 25 metaedges (Figure 4 and Supplementary Table 1 avail-
able online at http://bib.oxfordjournals.org/). As shown in Table 2, 
the contained information on KG used by Standigm ASK™ is 
comparable to other well-known biological KGs [10, 14, 71–74]. 
Based on the KG, we obtain a list of metapaths as in Table 3. The  
KG is further combined with supplementary attributes (e.g. fold 
changes, P-values) and enriched with semantics or ontologies to 
facilitate navigation through the concepts (e.g. GO, ChEBI, EFO 
and MedDRA), although we do not employ these attributes in this 
study. 

The five strategic criteria, biological relevance, disease causal-
ity, druggability, toxicity and novelty, confer biological actionabil-
ity to Standigm ASK™. Biological relevance is based on cumu-
lative evidence predicting that a gene or protein is relevant due 
to biomolecular associations or dysregulations. Genes with high 
biological relevance tend to cluster and form disease modules 
within the KG. Disease causality assesses whether a target is a 
cause or consequence in the observed pathophysiology. This can 
be determined by analyzing genetic associations, expression of 
the relevant cells or tissues (e.g. from GTeX) and AI/ML predic-
tions. The causality of each data plays an important role when 
training the model. Druggability is the likelihood of modulating 
the function of a target with either small synthetic or biological 
drugs. This is assessed using the measure proposed by Open 

Table 3: List of selected metapaths 

DI = mnw = DI = asw = GE DI = mnw = DI = uri = GE  
DI = asw = GE  > pdi > GE DI = asw = GE = ppi = GE  
DI = oci = AN = oci = DI = asw = GE DI = trt = CO = trt = DI = asw = GE  
DI = trt = CO = trt = DI = uri = GE DI = trt = CO = bin = GE = ppi = GE  
DI = trt = CO = drb = GE = ppi = GE DI = trt = CO = urb = GE = ppi = GE  
DI = asw = GE = bin = CO = drb = GE DI = asw = GE = bin = CO = urb = GE  
DI = asw = GE = drb = CO = drb = GE DI = asw = GE = drb = CO = urb = GE  
DI = asw = GE = inv = PW = inv = GE DI = dri = GE = ppi = GE 
DI = dri = GE = bin = CO = drb = GE DI = dri = GE = bin = CO = urb = GE 
DI = uri = GE = drb = CO = bin = GE DI = uri = GE = inv = PW = inv = GE  

Targets [ 45] based on clinical trial data, discovery experiments 
and computational predictions. In addition, toxicity is related to 
the potential toxic implications of interfering with a given target. 
Finally, novelty can be determined through clinical trial data, 
patents and literature mining using natural language techniques 
(NLP). 

Performance of Standigm ASK™ 
Figure 5 indicated that Standigm ASK™ outperformed the other 
baseline models in terms of both AveP and Prec@20 (Figure 5A), 
achieving significantly high improvements (Figure 5B). The differ-
ence in performance was even more dramatic when limited to IPF, 
where Standigm ASK™ had an AveP of 0.148 (on all-association 
ground truth) and 0.378 (on causal-only ground truth). Meanwhile, 
none of the other baselines had an AveP above 0.1 (Figure 5C). 

Prediction of epithelial–mesenchymal 
transition-related IPF targets 
We selected IPF as a disease of interest for the empirical valida-
tion study of Standigm ASK™ because IPF is a progressive and 
fatal lung disease of unknown cause, and there is still a large 
unmet clinical need for more efficacious and better-tolerated 
drugs. Although the exact mechanisms of IPF are unclear, recent 
studies highlight the significant role of EMT in its development 
and progression [75, 76]. In the early stages, persistent damage
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Figure 4. KG schema of Standigm ASK™. 

and inflammation prompt epithelial cells to undergo epithelial– 
mesenchymal transition (EMT), transforming into mesenchymal 
cells. These mesenchymal cells then differentiate into fibrob-
lasts, fostering fibrosis and interacting with other cells to worsen 
the fibrotic process. Targeting EMT is, therefore, crucial for the 
advancement of IPF therapies. 

To establish a set of potential IPF targets related to the 
EMT pathway, we first obtained a set of genes predicted to 
be associated with IPF generated through KG learning. Then, 
exploiting the availability of a learned KG for each gene, we used 
the characteristics of these gene sets to extract targets, including 
EMT pathway nodes (SNAI2, CTNNB1, TWIST1 and ZEB1) from  
the KGs. Interestingly, four paths were found in all subgraphs: 
IPF-[urb]-(SNAI2)-[ppi]-Targets; IPF-[trt]-(Dinoprostone)-[urb]-
(CTNNB1)-[ppi]-(Target); IPF-[urb]-(TWIST1)-[ppi]-Targets; and IPF-
[urb]-(ZEB1)-[ppi]-Targets. In these paths, the IPF node is directly 
connected to either EMT pathway nodes (SNAI2, TWIST1 and ZEB1) 
or dinoprostone (a pulmonary fibrosis regulator that expresses β-
catenin), which is linked to CTNNB1. In addition, a total of 28 genes 
were discovered in subgraphs on protein–protein interaction 
with EMT nodes. As a result, these targets were predicted to be 
potential drug targets against IPF, acting through regulation of the 
EMT pathway (Figure 6A). 

Further target filtering with cDNA microarray 
data 
To demonstrate the biological significance of the genes selected 
through KG learning, we analyzed the cDNA microarray in a 

pulmonary fibrosis mouse model [70]. Specifically, to identify 
genes selected for KG learning, we selected genes presenting 
greater than 2-fold change in expression compared with the 
control group in mouse models of pulmonary fibrosis induced 
by 75 Gy radiation or bleomycin (BLM). We selected four genes 
(NR5A2, AMFR, MDFIC and AXIN) that were upregulated more than 
2-fold in the pulmonary fibrosis mouse model compared with 
the levels in the control group. However, we excluded the AXIN 
gene due to its role as both a positive and a negative effector of 
the Wnt signaling pathway [77, 78]. The genes NR5A2, AMFR and 
MDFIC were selected from the KG learning and cDNA microarrays, 
suggesting they may be responsible for IPF (Figure 6B). 

EMT experimental results for new target 
validation 
To elucidate whether the AMFR, MDFIC and NR5A2 genes are 
involved in the EMT process, we investigated these genes’ respon-
siveness to TGFβ, a well-known EMT activator, as well as an 
inducer of fibrosis [79, 80]. Treatment of L132 lung epithelial 
cells with 5 nM TGFβ increased these three genes’ mRNA and 
protein levels, with similar induction rates being identified among 
the genes (Figure 7A and B). We also examined E-cadherin pro-
moter activity after siRNA transfection of each gene with or 
without TGFβ treatment. siRNA of AMFR, MDFIC and NR5A2 acti-
vated E-cadherin promoter activity, with little difference in acti-
vation potency among the three genes. Treatment of HEK293T 
cells with 5 nM TGFβ inhibited E-cadherin promoter activity, 
but siRNA treatments of the three genes restored this promoter
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Figure 5. (A) Performance comparison of prediction association/causal edges between naive models on KGEs versus Standigm ASK™. Average precision 
(AveP) and precision at 20 (Prec@20) are evaluated for each disease query and displayed as boxplots. (B) P-values for one-sided Wilcoxon signed-rank 
tests on AveP. The x-axis represents the baseline method, and the y-axis represents the comparison method. Non-significant performance improvement 
(P-value >0.001) is not colored. (C) Precision–recall curves calculated from predicted scores of IPF. 

activity ( Figure 7C). Furthermore, the western blotting data from 
the siRNA treatment of all three genes confirmed the regulation of 
β-catenin expression (Supplementary Figure 1A available online 
at http://bib.oxfordjournals.org/). 

EMT-related genes such as E-cadherin (epithelial cell marker), 
β-catenin, α-SMA, Snail, Slug, Twist and Vimentin (mesenchymal 
cell markers) were also examined using L132 cells. The results 

showed that TGFβ treatment increased mesenchymal cell mark-
ers and inhibited epithelial cell markers; however, siRNA treat-
ment of these genes reversed these trends, with similar effects 
being identified at the mRNA and protein levels (Figure 8A and B 
and Supplementary Figure 1B and C available online at http://bib. 
oxfordjournals.org/). Similar effects were observed when another 
cell line, such as the human normal bronchial epithelial cell line
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Figure 6. The process of potential IPF target identification. (A) Twenty-eight genes were predicted as ‘IPF candidate drug targets’ through filtering with 
EMT pathway–related gene nodes (SNAI2, CTNNB1, TWIST1 and ZEB1). (B) Microarray analysis after treatments of BLM and 75 Gy of radiation in mice 
showed the upregulated expression of potential targets (NR5A2, AMFR and MDFIC) that can contribute to the development of lung fibrosis. 

Figure 7. AMFR, MDFIC and NR5A2 could be the targets inducing EMT in lung fibrosis. (A) qRT-PCR data of AMFR, MDFIC and NR5A2 after 24 h of 
treatment with TGFβ. (B) Immunoblots of AMFR, MDFIC and NR5A2 after 24 or 48 h of TGFβ treatment. (C) E-Cadherin promoter activity after siRNA 
transfection with or without 24 h of treatment with TGFβ measured by luciferase reporter assay (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 compared with control 
cells; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with cells treated with TGFβ alone). 
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Figure 8. Expression of downstream components associated with lung fibrosis. (A) qRT-PCR  and (B) immunoblot analysis of the mRNA levels of genes 
associated with lung fibrosis after transfection of designated siRNAs with or without treatment of TGFβ (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; �P < 0.05,
��P < 0.01, ���P < 0.001; �: control (+TGFβ) versus siRNA  (+TGFβ). 

(BEAS-2B), was used ( Supplementary Figure 2 available online at 
http://bib.oxfordjournals.org/). 

Additional experiments were then performed to identify EMT-
related morphological changes. Control L132 cells were round or 
polygonal and exhibited very close cell–cell proximity, reminis-
cent of cellular tight junctions. Meanwhile, TGFβ treatment trans-
formed the cells into a spindle shape. However, in cells treated 
with siRNA of the three genes, these TGFβ-induced morphological 
features were inhibited, with the morphology being restored with 
similar efficiency among all siRNA treatments (Figure 9A). Wound 
healing assay also showed that TGFβ-mediated cell migration 
was dramatically inhibited by the siRNA of each of the three 
genes, with similar efficiency among all three knocked-down 
genes (Figure 9B). Regardless of TGFβ treatment, the cellular pro-
liferation rate was not changed by the knockdown of any of the 
three genes (Figure 9C). 

DISCUSSION AND CONCLUSION 
In this study, we introduced Standigm ASK™, a novel AI-assisted 
drug discovery platform consisting of a KG and a neural network, 
and we applied it to discover potential targets for IPF and selected 
three novel genes, AMFR, MDFIC and NR5A2, based on the KG 
evidence and cDNA microarray analysis. The target prediction 
for IPF was validated successfully by empirical experiments in 
an IPF disease cell model in which the inhibition of these pre-
dicted target genes by siRNA showed efficacy in wound heal-
ing assays. The results revealed that these genes were upreg-
ulated by TGFβ, a critical factor in fibrosis and EMT. We also 
showed that silencing of these genes reversed the EMT-related 

changes induced by TGFβ, such as changes in cell morphology, cell 
migration and marker expression, without affecting cell prolif-
eration. These findings indicate that AMFR, MDFIC and NR5A2 
could be novel therapeutic targets for treating IPF by inhibiting 
EMT. MDFIC enhances cancer stem cell chemoresistance and is 
implicated in cancer development [81, 82]. Meanwhile, NR5A2 
promotes cancer stem cell properties and tumorigenesis, affecting 
the prognosis of certain cancers. It has also been reported that 
BRD4-induced NR5A2 activation drives the progression of pancre-
atic cancer [83–85]. Furthermore, AMFR promotes myofibroblast 
differentiation and pulmonary fibrosis, while playing a role in 
cancer metastasis and EMT [86, 87]. While all three genes impact 
cancer growth and metastasis, AMFR is specifically linked to pul-
monary fibrosis [88, 89]. This study is possibly the first to explore 
the AMFR-EMT relationship in IPF, with the findings corroborated 
by gene set enrichment (GSE) analysis showing AMFR’s correlation 
with the incidence of IPF in humans (Supplementary Figure 3 
available online at http://bib.oxfordjournals.org/). 

Comparative analysis showed that Standigm ASK™ provides 
clear benefits in target discovery and outperforms several well-
known state-of-the-art models, including NFM, R-GCN and EGAT. 
Some possible reasons can be proposed to explain this perfor-
mance gain. First, Standigm ASK™ employs paths as additional 
features, which contain more valuable contexts and help pre-
dict the score. While the general KGE models do not consider 
the surrounding information and GNNs aggregate every neigh-
boring information of the nodes, Standigm ASK™ can employ 
the specific context between two nodes, represented as paths. 
Standigm ASK™ is also expected to perform better on biological 
KGs because they tend to be denser than common sense KGs, 
meaning that there are more paths between two nodes; thus,
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Figure 9. Phenotypes of designated siRNA-transfected cells. (A) Effects of siRNAs on F-actin organization in L132 cells in the presence of TGFβ for 24 h. 
F-actin was visualized by Alexa Fluor™ 488 Phalloidin. The magnification is 40′. (B) The migration capacity of siRNA-transfected cells with or without 
treatment with TGFβ was detected using a wound-healing assay. (C) Cell proliferation upon transfection of siRNAs with or without TGFβ treatment was 
determined by MTT assay (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 compared with control cells; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with cells treated 
with TGFβ alone). 

Standigm ASK™ can capture the richer context. Second, Standigm 
ASK™ focuses on predicting a specific edge type only, so the 
underlying task becomes more straightforward than the predic-
tion of all edge types. 

Nonetheless, there is still substantial room for improvement, 
most trivially via updating the backbone network architecture 
into the transformer [90]. The transformer originates from NLP 
studies but has recently emerged as the most powerful model, 
being applied in almost every domain (e.g. ViT [91] on images, 
AlphaFold [92] on proteins). Note that the transformer takes a 
sequence as an input, and Standigm ASK™ takes paths as input 
where the path is a sequence of nodes and metaedges extracted 
from KG. Since both models employ data sequences, Standigm 
ASK™ has a very favorable structure for applying the transformer 
backbone. In addition, recent works have proved that the trans-
former can effectively learn multimodal domains of data (e.g. 
CLIP [93] on images and languages), which is also a promising 
result for KGs. Instead of utilizing heterogeneous features in 
KGs as described in [10–12], Standigm ASK™ can adopt a multi-
modal transformer for employing these features. Another poten-
tial improvement to the model is refining the metapath selection 
algorithm. There is no good way of preventing the appearance of 
nonsense metapaths in the current method. A potential solution 
is to frame it as a human-in-the-loop problem [94], where the 
algorithm proposes initial candidates and the domain experts 
select the proposed metapaths. The process can be repeated until 
a specified number of metapaths have been selected. 

KGs have considerable value in the pharmaceutical industry 
due to the importance of analyzing and integrating heterogeneous 
biomedical data [95]. The properties of KGs, such as versatil-
ity, visualization and compatibility to ML, have accelerated the 
creation of numerous KG-based models for diverse drug discov-
ery tasks ranging from drug repurposing to target identification, 

adverse drug reaction prediction and omics data analysis [95– 
98]. However, some problems, such as insufficient data quality, 
potential security risks, complexity of the biomedical ontology 
and inadequate validation methods, remain and impede the real-
world applications of the models by the pharmaceutical industry. 
Data quality issues and potential security risks have been contin-
uously emphasized in the KG application [95–97, 99, 100]. The mul-
tifaceted issues of data quality in data extraction and curation, 
bias, data poisoning and dataset update have been considered 
substantially by us and others and mitigated by diverse solutions, 
including the new NLP technology development [101, 102], domain 
experts assignment [103], stepwise bias-mitigating framework 
[104], adversarial training [105] and automatic updating system 
for primary dataset sources, respectively. The ontology problems, 
such as acronyms, homonyms and the hierarchy of biomedical 
terminology, have been improved, but we still encounter problems 
in KG-based models, requiring a unified multimodal biomedical 
ontology system for ML [101, 106, 107]. Most of all, validation 
methods are important to KG-based drug discovery models for 
real-world applications. We successfully demonstrated the prac-
tical performance of Standigm ASK™ with empirical biological 
data, but the wet lab validation process usually demands signif-
icant time and cost to seek the relevant biological system and 
test assays; therefore, the robust experimental design should be 
accompanied by KG construction and algorithm design as well as 
in silico validation metrics. Lastly, considering the specificity and 
complexity of biomedical knowledge in drug discovery research, 
we address the development of contextualized KGs to realize 
personal medicine in the near future [108]. 

Comparing Standigm ASK™ with existing KGs, we empha-
size that Standigm ASK™ is well balanced in composition and 
well equipped with documentation quality. As shown in Table 2, 
Standigm ASK™ has suitable numbers of nodes and edges despite
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the biggest number of sources in the table, which facilitates 
efficient learning. Standigm ASK™ meets the evaluation cate-
gories in the recent review of Bonner et al. [96]; schema, relation 
explanation and dataset filtering for documentation quality of 
Standigm ASK™ were clarified in Figure 4, Table 1 and Supple-
mentary Table 1 available online at http://bib.oxfordjournals.org/, 
respectively. Moreover, although none of the KGs was updated in 
the review, we have been updated for internal use and are cur-
rently testing an automatic database updating and extension to 
various other data sources, which includes in-house private data. 

The potential uses of Standigm ASK™ vary because of its 
comprehensive multimodal KG. On-target repurposing based on 
target identification will be easily performed without additional 
algorithm changes in the platform [95]. Synthetic lethality can be 
predicted by learning about the local morphology of two specific 
gene nodes in KG and the known synthetic lethality pairs under 
particular cell lines or diseases [109]. Predicting synergetic drug 
combinations can also be realized because large-scale combina-
tion screening data such as DrugCombDB [110] and Oncology-
Screen [111] are publicly available. Integrating the screening data 
to the multimodal KG of Standigm ASK™ will provide us with 
the necessary relations on top of the existing relations such 
as drug–protein, drug–disease and protein–protein connections, 
which facilitates the application of ML algorithms for synergetic 
drug combination [112, 113]. 

Overall, Standigm ASK™ is a promising approach for novel 
target discovery. Here, we successfully applied it to identifying 
novel targets of IPF, demonstrating the qualification for real-world 
application. Our KG-based platform will shed light on drug target 
identification, easing the cumbersome drug discovery process 
caused by complex and enormous biomedical knowledge. Fur-
ther research will be needed to confirm the universal power of 
Standigm ASK™ in the other types of drug discovery tasks, such 
as drug repurposing, synthetic lethality and drug combination 
predictions. 

Key Points 
• Standigm ASK™ is an artificial intelligence–aided plat-

form that suggests novel target genes for diseases using 
a heterogeneous knowledge graph and a neural network 
model. 

• The platform was applied to identify three genes (AMFR, 
MDFIC and NR5A2) as potential targets for idiopathic 
pulmonary fibrosis, a lung disease that involves epithe-
lial–mesenchymal transition (EMT). 

• The three genes were validated by experiments showing 
their role in modulating EMT and fibrosis in response to 
TGFβ, an EMT activator and fibrosis inducer. 
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