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Machine learning models for 
predicting depression in Korean 
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Background: The incidence of depression among employees has gradually risen. 
Previous studies have focused on predicting the risk of depression, but most 
studies were conducted using basic statistical methods. This study used machine 
learning algorithms to build models that detect and identify the important factors 
associated with depression in the workplace.

Methods: A total of 503 employees completed an online survey that included 
questionnaires on general characteristics, physical health, job-related factors, 
psychosocial protective, and risk factors in the workplace. The dataset contained 
27 predictor variables and one dependent variable which referred to the status 
of employees (normal or at the risk of depression). The prediction accuracy of 
three machine learning models using sparse logistic regression, support vector 
machine, and random forest was compared with the accuracy, precision, 
sensitivity, specificity, and AUC. Additionally, the important factors identified via 
sparse logistic regression and random forest.

Results: All machine learning models demonstrated similar results, with the lowest 
accuracy obtained from sparse logistic regression and support vector machine 
(86.8%) and the highest accuracy from random forest (88.7%). The important 
factors identified in this study were gender, physical health, job, psychosocial 
protective factors, and psychosocial risk and protective factors in the workplace.

Discussion: The results of this study indicated the potential of machine learning 
models to accurately predict the risk of depression among employees. The 
identified factors that influence the risk of depression can contribute to the 
development of intelligent mental healthcare systems that can detect early signs 
of depressive symptoms in the workplace.
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Introduction

Depression in the workplace and young adults have become a growing global concern due 
to greater societal costs and reduced work productivity (1). In 2019, the incremental economic 
burden of Korean adults with depression was an estimated a total of KRW 4.83 trillion, with 
14.3% in direct costs and 85.6% in indirect costs. Among indirect costs, workplace costs 
accounted for the highest percentage (65.6%) including absenteeism (18%) and presenteeism 
(42%) (2). Employees’ depression severity increased direct costs through utilization of mental 
health services and indirect costs attributable to overall work impairment (1, 3).
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The highest prevalence of depression in young adults especially 
contributes to increasing an enormous economic and social burden 
(4). Approximately 25% of Korean younger adults aged 19–39 years 
experienced moderately severe depression, compared with about 
18% of adults aged 40–50 years (5). However, only 7.4% of Korea 
employees had a diagnosis of depression by a doctor, while more 
than 20% had a diagnosis of depression in Canada (20.7%), 
United States (22.7%) and South Africa (25.6%) (6). Owing to fear 
of losing their job and mental health stigma, they were reluctant to 
disclose mental health problems and seek mental health 
service (6, 7).

Previous studies commonly used traditional statistical methods, 
such as regression analysis, to infer the relationships between 
depression and specific variables (8–10) which were derived from 
work-related theories such as the conservation of resources theory 
(11), self-determination theory (12), and the job demands-resources 
theory (13). Several studies identified factors associated with 
depression, including sociodemographic factors, traits, stressors, 
relationship stability, and cognitive processes (14, 15). In particular, 
work-related factors such as long working hours, workload, and 
burnout have been found to increase the risk of depression among 
employees (16, 17). However, traditional statistical methods are 
limited on representing real-world complexities and predicting 
future data due to their assumption of linearity between variables 
(18, 19).

Traditional statistical methods aim to test hypotheses which 
derive from theories, while machine learning (ML) methods focus 
on discovering hidden interaction in the specific data-set to make 
predictions (8, 9, 20). ML methods provide more accurate 
prediction by analyzing complex and non-linear interactions among 
datasets rather than separately considering the effect of one variable 
on an outcome of interest (21, 22). ML methods can facilitate early 
detection by predicting the risk of diseases (23–25). However, there 
were few studies on the prediction of depression using ML 
algorithms in young children (26), university students (27), and 
older adults (24).

Therefore, this study aimed to evaluate the performance the 
performance of different ML algorithms, such as sparse logistic 
regression, support vector machines (SVM), and random forest (RF), 
and identify the important factors influencing the risk of depression 
among Korean employees.

Methods

Data and sample

The target population were Millennial and Generation Z (MZ) 
employees in South Korea. This study included participants who were 
aged between 20 and 40; Millennials were born between 1983 to 1994, 
and Generation Zs were born between 1995 to 2004.

The Ewha womans university institutional review board approved 
this study (ewha-202206-0001-01). Potential participants were 
recruited from a website and social networking services during June 
2022. Of the 505 employees completed the survey via the online 
survey platform, we excluded two participants (0.4%) who were over 
the age of 40. A total of 503 employees were used for data analysis.

Outcome variable

The outcome variable was the depression CES-D score (28), which 
consists of 20 items that are rated on a 4-point Likert scale (0–3). 
Possible score ranges from 0 to 60, with a higher score indicating more 
depression-related symptoms. The Cronbach’s alpha of the CES-D was 
0.85–0.90 (28) and 0.91 in the current study. Based on the CES-D 
cutoff score ≥ 16 (29), we  divided the young employees into two 
groups: normal (n = 176) and at risk of depression (n = 327).

Predictor variables

The predictor variables consisted of a set of demographics, 
physical health-related, job-related, and study variables that were 
selected based on literature reviews of the risk and protective factors 
for depression among employees. Study variables included 
personality-related variables, psychosocial protective variables, 
psychosocial risk variables in the workplace, and psychosocial 
protective variables in the workplace. Cronbach’s alpha test was used 
to determine inter-item reliability (Table  1). However, due to the 
potential for misleading results stemming from limited item variance 
(30, 31), Cronbach’s alpha test was not applied to measures with fewer 
than three items, including the 10-item Big Five Inventory (32, 33) and 
relationship questions (34).

Demographic characteristics included age, gender, religion, and 
marital status. Age was used as a continuous variable, while the rest of 
variables were used as dummy variables.

Personality-related factors included physical activity per week; the 
amount of sleep and number of meals per day; and drinking and 
smoking. The frequency of physical activity per week and the number 
of meals per day were used as continuous variables, while the rest of 
the variables were used as dummy variables.

Regarding job characteristics, we  examined total years of job 
experience, employment period at their current workplace, number 
of turnovers, weekly working hours, monthly salary, and 
income satisfaction.

As psychosocial protective factors, we considered personality, grit, 
attachment, satisfaction with life, and interpersonal relationships. For 
personality, the 10-item Big Five Inventory (32, 33) was used. Grit was 
measured using the short grit scale (35), and attachment was measured 
by the relationship questions (34). The satisfaction with life scale (36) 
and relationship change scale (37) were also included.

Psychosocial risk factors in the workplace included burnout and 
occupational stress. Burnout was measured by the burnout assessment 
tool (38). Occupational stress was measured by the Korean 
Occupational Stress Scale-Short Form (39).

Psychosocial protective factors in the workplace included 
occupational self-efficacy, social problem-solving style, meaning in 
work, work-life balance, and psychological safety. Occupational self-
efficacy was assessed using the occupational self-efficacy scale (40), 
social problem-solving style was evaluated using the Social Problem-
Solving Inventory-Revised Short Form (41), meaning in work was 
measured by using the Working and Meaning Inventory (42), work-
life balance was assessed using the Work-life Balance Scale (43), and 
psychological safety was evaluated using the Team Psychological 
Safety Scale (44).
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With advances in data science technology, this study demonstrated 
the practical applicability of ML algorithms in predicting the risk of 
depression among MZ employees. We  applied three different ML 
algorithms – sparse logistic regression, RF, and SVM. We found the 
highest accuracy of RF. Our study identified the important variables 
influencing the risk of depression among Korean employees such as 

gender, inadequate sleep, smoking habits, occupational stress, 
burnout, social problem-solving styles, sense of meaning at work, 
attachment, interpersonal relationships, and satisfaction in life. These 
findings contribute to the development of intelligent mental healthcare 
systems for the early detection of depression. Additionally, our study 
can help develop target interventions designed to prevent employees’ 

TABLE 1 Predictor variables.

Factors Variables Indicator Cronbach’ α
Demographic Age

Gender: Male = 0, Female = 1

Religion Nonreligious = 0, Religious = 1

Marital status Single = 0, Married = 1

Physical health-related factors Psychical activity per week

Amount of sleep Less than 6 h = 0 More than 6 h = 1

Number of meals per day

Drinking Nondrinker = 0, Drinker = 1

Smoking Nonsmoker = 0, Smoker = 1

Job-related factors Total years of job experience

Employment period at their current 

workplace

Number of turnovers

Weekly working hours Less than 40 h = 0 40 h = 1 From 40 to 52 h = 2 

More than 52 h = 3

Monthly salary

Income satisfaction Dissatisfied = 0 Satisfied = 1

Psychosocial protective factors Personality (10-item big five 

inventory)

Extraversion, Conscientiousness, Openness to 

experience, Neuroticism, Agreeableness

Grit (Short Grit scale) Consistency of interest, Perseverance of effort 0.63

Attachment (Relationship questions) Secure, Fearful, Preoccupied, Dismissing 

attachment.

Satisfaction with life (Satisfaction 

with Life Scale)

0.84

Interpersonal relationships 

(Relationship Change Scale)

Satisfaction, Communication, Trust, Intimacy, 

Sensitivity, Openness, Understanding.

0.90

Psychosocial risk factors in the 

workplace

Burnout (Burnout Assessment Tool) Exhaustion, Mental distance, Emotional 

impairment, Cognitive impairment

0.88

Occupational stress (Korean 

Occupational Stress Scale– Short 

Form)

Job demands, Degree of autonomy, Job 

instability, Organizational system, Lack of 

reward, Occupational climate

0.79

Psychosocial protective factors in the 

workplace

Occupational self-efficacy 

(Occupational Self-Efficacy Scale)

0.87

Social Problem-Solving style (Social 

Problem-Solving Inventory-Revised-

Short Form)

Positive problem orientation, Negative problem 

orientation, Rational problem solving, 

Impulsive/careless style, Avoidance style

0.76

Meaning in work (Working and 

Meaning Inventory)

Positive meaning in work, Meaning-making 

through work, Greater good motivation

0.87

Work-Life Balance (Work-Life 

Balance Scale)

Family, Leisure, Growth, Life

Psychological safety (Team 

Psychological Safety Scale)

0.54
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depression and provide a situation-specific theory that predicts 
depression among MZ employees. However, this study focuses solely 
on MZ employees, and thus, careful consideration is recommended 
before generalizing these findings to other demographic groups.

Statistical analysis

Prediction models
Our goal is to predict the class of a sample given set of predictor 

variable values. Three different models are considered for the risk 
prediction: sparse logistic regression, support vector machine, and 
random forest. Logistic regression is one of the most widely used 
statistical prediction model for binary classification problem. When 
the response variable is binary, logistic regression predicts the 
probability to be classified to one of two groups given a set of covariate 
values. The model has the nice property that the estimated coefficients 
is log odds ratio. However, it is hard to interpret the results when the 
number of variables gets bigger. To overcome this problem, sparse 
logistic regression that employs least absolute shrinkage and selection 
operator (LASSO) in the model is considered in our problem. This 
model conducts feature selection and the estimation simultaneously, 
which enables interpretation with few selected important predictors.

Support vector machine is a famous machine learning technique 
for the binary classification problem. SVM seeks a decision boundary 
that well separate the data into two groups. It is well known that SVM 
performs well when data exhibit high-dimensionality while its 
computational cost is relatively cheap compared to other machine 
learning methods (45).

Random forest is the representative classification method of 
ensemble models, which consists of many decision trees. Ensemble 
method is an approach to combines prediction results from numerous 
algorithms to improve prediction power by avoiding overfitting. 
Random forest aggregates the prediction results from many decision 
trees to make the final decision.

To evaluate the prediction performance of above three estimated 
models, we used 70% of dataset for the estimation of models and last 
30% of data were used for the test. To select the optimal 
hyperparameters in each model, 5-fold cross validation (CV) were 
used. For sparse logistic regression, we re-fit logistic regression using 
only selected features from sparse logistic regression with CV to avoid 
possible bias of results. Various measures including accuracy, 
precision, sensitivity, specificity, F1, and AUC were calculated to 
compare prediction performance. All statistical analyses were 
performed using R version 4.1.13 statistical package (R Project for 
Statistical Computing).

Results

Table 2 shows the participants’ characteristics by their level of 
depressive symptoms. The p-values were computed using the t-test or 
chi-square test depending on the type of each variable. The results 
demonstrated that gender and marital status were significantly 
different between the normal and depression-risk groups.

Performance measures calculated from analysis results of three 
methods are shown in Table 3. While all three models show relatively 
comparable performance, random forest shows little higher 

performance on every performance measure except AUC. This implies 
that random forest predicts the risk of depression more accurately. 
Also, random forest ranks the importance of features by comparing 
the reduction of average impurity on prediction for each feature. 
Figure  1 shows the results including first five features selected as 
important variables: Cognitive impairment, Negative problem 
orientation, emotional impairment, satisfaction with life, and 
employment period at their current workplace.

It is worth to note that sparse logistic regression shows better 
performance on AUC compared to random forest. These results imply 
that sparse logistic regression shows better performance in terms of 
arrangement of samples from low depression probability to high 
probability. In addition to that, sparse logistic regression yields 
interpretable results with the estimated effect size of selected features. 
Table 4 includes the estimated result of logistic regression model using 
selected features from the sparse logistic regression. Gender, amount 
of sleep hours, smoking status, year of job experience, weekly working 
hours, interpersonal relationships, occupational stress, and social 
problem-solving style were shown to be important to predict the risk 
of depression for workers in Korea. Several features including negative 
problem orientation, emotional impairment is commonly shown as 
important features for the risk prediction in both random forest and 
sparse logistic regression models. Figure  1 shows significant RF 
variables. Burnout, social problem-solving style, and satisfaction with 
life were selected as important features in the RF.

Discussion

This study provides evidence that the ML algorithms can help 
reduce bias and accurately predict the likelihood of depression among 
MZ employees. The main strength of this study was the use of the MZ 
employees’ dataset to predict and identify personal and work-related 
factors of depression using ML techniques. MZ employees exhibited 
unique depression symptoms, such as narcissistic tendencies, a feeling 
of victimization from supervisors, difficulty accepting criticism, and 
an inferiority complex (46). Our study applied to advanced ML 
techniques to improve intelligent mental healthcare systems which 
will be used to detect early depressive symptoms and increase access 
to mental health services for MZ employees in Korea.

The primary objective of this study is to develop ML algorithms 
to predict the risk of depression among MZ employees. This objective 
differs from hypothesis testing, which seeks statistically effective 
variables in relationship with response variables. In this case, too small 
sample size leads to low power of the test, which means inefficient use 
of resources including data and time. To overcome the problem, often 
optimal sample size calculation for getting enough power based on the 
expected type I and II error of hypothesis test can be conducted (47). 
This approach can be  wildly found in randomized control trials 
(RCT), especially clinical trials.

On the other hands, our study is focused on developing the 
predictive model, and we  assess their performance using several 
prediction performance measures such as sensitivity and specificity. 
To assess the generalizability of their prediction power, ML typically 
uses partial portion of the data called the training dataset, and test 
their prediction performance using the data unused for the model 
construction, called the test dataset. The test set is used to get the 
accuracy of the ML algorithms and assess model performance 
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regardless of sample size (10, 48). This approach enables us to estimate 
a prediction error (generalizability) on new data. In our study, the 
dataset was divided into a training set (70%) and a testing set (30%). 
Also, cross-validation method the we employed for ML model training 
is one of the representative devised method to overcome the situation 
with not enough sample size situation.

Machine learning techniques, sparse logistic regression, SVM, and 
RF, were applied to develop models for predicting the risk of 
depression among MZ employees. In this study, sparse logistic 
regression, SVM, and RF techniques yielded very close accuracies, 
with RF being slightly higher. Feature selection performed using 
sparse logistic regression and RF showed similar variables as the 
important factors of the risk of depression. Sparse logistic Regression 
provided interpretable results via feature selection procedure with the 
estimated effect size and p-values for testing its significance, while RF 
gives a comprehensive view of variable importance through impurity 
reduction (49, 50). SVM also showed comparable prediction 
performance, but also limitation of the method is clear that it does not 
yields any results regarding importance of each feature for prediction. 
The important variables identified by Sparse logistic Regression and 
RF could be useful as a selection tool for mental health professionals 
to identify employees at risk of depression.

We found that female employees were more likely to suffer from 
depression than male employees. This result in consistent with 

previous studies which reported higher levels of depression among 
female employees (51–53). Although the mechanisms that underlie 
this gender difference remain unclear, one possible explanation is 
related to sex-specific factors. A reduction in estrogen levels may 
contribute to an increased risk of depression among women (54). 
Moreover, female employees in East Asia face heavier domestic 
workloads, including housework and childcare than males, which 
may contribute to their depression (2, 55). These results highlight 
the need to identify the mechanisms underlying depression among 
female employees and develop tailored interventions to address 
their needs.

Our finding indicates that employees who sleep less than six hours 
per night were at a higher risk of depression than those who sleep for 
more than six hours. This is consistent with previous studies which 
reported that short sleep was associated with a performance of works 
and depression (56, 57). Our result suggests that adequate sleep is 
crucial for preventing depression among employees. Additionally, 
smokers were more likely to suffer from depression than non-smokers 
in this study. This result was consistent with previous studies that 
depression was associated with current smoking (58, 59). Chronic 
nicotine exposure can affect neurotransmitters such as dopamine and 
5-HT, leading to depression (60, 61). To successfully prevent the risk 
of young employees’ depression, smoking cessation and preventive 
interventions must be developed.

TABLE 2 Socio-demographic characteristics (N = 503).

Young employees’ depression p-Values

Normal range 
(n = 176, 35.0%)

Risk of depression (n = 327, 
65.0%).

Age Median [1st, 3rd quartile] 32.00 [29.00, 3,500] 32.00 [30.00, 36.00] 0.204

Gender

  Male n (%) 81 (46.0%) 112 (34.3%) 0.010

  Female n (%) 95 (54.0%) 215 (65.7%)

Religion

  Nonreligious n (%) 115 (65.3%) 220 (67.3%) 0.661

  Religious n (%) 61 (34.7%) 107 (32.7%)

Marital status

  Single n (%) 109 (61.9%) 245 (74.9%) 0.003

  Married n (%) 67 (38.1%) 82 (25.1%)

Work related characteristics

Total years of experience Median [1st, 3rd quartile] 6.00 [3.00, 10.00] 5.00 [3.00, 9.00] 0.482

Employment period at their current 

workplace

Median [1st, 3rd quartile] 3.00 [1.00, 5.00] 4.00 [2.00, 5.00] 0.001

Number of turnovers Median [1st, 3rd quartile] 1.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.371

Monthly salary (mln won) Median [1st, 3rd quartile] 2.80 [2.50, 3.50] 3.00 [2.50, 3.20] 0.453

TABLE 3 Performance of machine learning algorithms.

Accuracy Precision Sensitivity Specificity AUC

Sparse logistic 

regression
0.8675 0.8700 0.9255 0.7719 0.9171

SVM 0.8675 0.8491 0.9574 0.7192 0.8384

Random Forest 0.8874 0.8889 0.9362 0.8070 0.8716
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In our study, occupational stress and burnout were identified as 
psychosocial risk factors in the workplace pivotal in predicting 
depression risk in young generation employees. These findings were 
in similar with the results from prior studies, which reported that 
work-related stress was associated with higher depression in 
employees (4, 62). A logistic regression analysis also showed that 
higher occupational stress from highly demanding jobs were more 
likely to lead to depression. However, employees whose years of job 
experience were longer and weekly work hours were between 40 to 
52 h showed a lower risk of depression. A potential explanation is that 
employees who face high job demands such as high workloads, time 
pressure, and long working hours may tend to develop the risk of 
depression by feeling hopelessness and powerlessness at work when 
they have little or no control over their work (63–66).

Moreover, higher burnout from emotional impairment was a 
predictor in both Logistic Regression and RF approach. This 

supports the results of previous studies showing that individuals 
with major depressive disorder struggle with regulating emotions 
due to a dysfunction of their emotional brain systems (67, 68). 
This result can be  explained that employees who experience 
difficulty in understanding, recognizing, and controlling 
emotions may undergo decreased contextual information and 
memory processing that subsequently impairs the autonomic 
nervous system and brain structure, which results in depression 
(67, 69, 70). Consistent with this notion, an emotional regulation 
program such as mindfulness and Emotional Focused Therapy 
(EFT) is needed to prevent young employees’ depression.

We discovered a social problem-solving style and meaning in 
work as significant psychosocial protective factors in the 
workplace for predicting employees’ depression. According to 
earlier studies, the deterioration of social problem-solving was 
associated with depression (71). Negative interpretations of the 

FIGURE 1

Random forest analysis results.
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TABLE 4 Logistic regression analysis results.

Estimate Std error Exp coef p-Value

Gender

  Male – – – –

  Female 1.216 0.544 3.374 0.025

Marital status

  Single – – – –

  Married −0.836 0.579 0.434 0.149

Sleep hours

  Less than 6 h. – – – –

  More than 6 h. −1.069 0.536 0.343 0.046

Smoking status

  Non-smoker – – – –

  Currently smoker 4.530 1.263 92.776 0.000

  Total years of job experience −0.227 0.081 0.797 0.005

Weekly working hours

  Less than 40 h – – – –

  40 h −1.578 0.850 0.206 0.063

  From 40 to 52 h −2.379 1.012 0.093 0.019

  More than 52 h 0.690 1.701 1.994 0.685

  Income satisfaction −0.664 0.697 0.515 0.341

Personality

  Conscientiousness −0.042 0.423 0.959 0.921

  Openness to experience 0.376 0.329 1.457 0.253

Grit

  Consistency of interest −0.624 0.439 0.536 0.155

Attachment

  Fearful 0.418 0.180 1.520 0.020

  Preoccupied 0.192 0.197 1.211 0.330

  Satisfaction with life −0.115 0.062 0.891 0.065

Interpersonal relationships

  Openness −0.211 0.098 0.809 0.031

Burnout

  Exhaustion 0.294 0.359 1.342 0.413

  Emotional impairment 1.493 0.486 4.451 0.002

  Cognitive impairment 0.368 0.418 1.446 0.378

Work and meaning

  Greater good motivation −0.256 0.141 0.774 0.071

Occupational stress

  Job demands 0.034 0.017 1.035 0.042

Social Problem-Solving style

  Negative problem orientation 0.240 0.087 1.271 0.006

Work-Life Balance

  Work-Family Balance −0.026 0.227 0.975 0.909

  Work-Growth Balance −0.296 0.222 0.744 0.182
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work environment and events tend to be  likely to increase 
depressive rumination as individuals recall more negative past 
experiences. In contrast, a greater sense of meaning in work 
predicted lower depression and higher psychological well-being. 
Employees who have a desire to help others and contribute to 
society experienced fewer symptoms of depression (72, 73). To 
reduce depression, intervention can help MZ employees view 
their work as meaningful, understand challenges, and develop 
abilities to deal with stress and difficulties at work.

Three psychosocial protective factors, including attachment, 
interpersonal relationships, and satisfaction in life, were identified in 
predicting depression in young employees. Young employees with fearful 
attachments were more likely to become depressed, while young 
employees with interpersonal openness were less likely to become 
depressed. Employees with fearful attachment likely have a negative view 
of themselves and others causing social isolation and loneliness, but those 
who are confident in self-expression and have higher self-esteem feel 
socially connected to others which results in preventing depression 
(74, 75).

The current study has some limitations. First, cross-sectional data 
restricts the interpretation of causal relationships. Secondly, the 
sample was limited to young Korean young employees, making it 
difficult to generalize to older employees, those at different career 
stages, and individuals from other cultural backgrounds. Finally, the 
RF approach identified several important predictive factors, but the 
direction of effect is unclear.

Conclusion

With advances in data science technology, this study 
demonstrated the practical applicability of ML algorithms in 
predicting the risk of depression among MZ employees. 
We  applied three different ML algorithms – sparse logistic 
regression, RF, and SVM. We  found the highest accuracy of 
RF. Our study identified the important variables influencing the 
risk of depression among Korean employees such as gender, 
inadequate sleep, smoking habits, occupational stress, burnout, 
social problem-solving styles, sense of meaning at work, 
attachment, interpersonal relationships, and satisfaction in life. 
These findings contribute to the development of intelligent 
mental healthcare systems for the early detection of depression. 
Additionally, our study can help develop target interventions 
designed to prevent employees’ depression and provide a 
situation-specific theory that predict depression among MZ 
employees. However, this study focuses solely on MZ employees, 
and thus, careful consideration is recommended before 
generalizing these findings to other demographic groups.
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