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Abstract

Childhood overweight/obesity has been associated with negative consequences related

to brain function and may involve alterations in white matter pathways important for cogni-

tive and emotional processing. Aerobic physical activity is a promising lifestyle factor that

could restore white matter alterations. However, little is known about either regional white

matter alterations in children with overweight/obesity or the effects of aerobic physical

activity targeting the obesity-related brain alterations in children. Using a large-scale

cross-sectional population-based dataset of US children aged 9 to 10 years (n = 8019),

this study explored the associations between overweight/obesity and microstructure of

limbic white matter tracts, and examined whether aerobic physical activity may reduce the

overweight/obesity-related white matter alterations in children. The primary outcome mea-

sure was restriction spectrum imaging (RSI)-derived white matter microstructural integrity

measures. The number of days in a week that children engaged in aerobic physical activity

for at least 60 minutes per day was assessed. We found that females with overweight/obe-

sity had lower measures of integrity of the fimbria-fornix, a major limbic-hippocampal

white matter tract, than their lean peers, while this difference was not significant in males.

We also found a positive relationship between the number of days of aerobic physical

activity completed in a week and integrity measures of the fimbria-fornix in females with

overweight/obesity. Our results provide cross-sectional evidence of sex-specific micro-

structural alteration in the fimbria-fornix in children with overweight/obesity and suggest

that aerobic physical activity may play a role in reducing this alteration. Future work should

examine the causal direction of the relationship between childhood overweight/obesity

and brain alterations and evaluate potential interventions to validate the effects of aerobic

physical activity on this relationship.
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Introduction

Childhood obesity is a major pediatric health concern in the United States, with more than a

third of children and adolescents considered overweight or obese [1]. In addition to causing

physical health problems, overweight/obesity in children has been associated with a number of

negative consequences related to brain function, including low academic performance and

poor psychological well-being [2–5]. Without intervention, childhood overweight/obesity may

persist into adulthood and increase the risk of developing neuropsychiatric disorders, such as

depression and early-onset dementia [5, 6]. There is little information regarding regional brain

alterations associated with childhood overweight/obesity, making it difficult to understand the

brain mechanisms that may underlie the development of mental health-related outcomes in

children with overweight/obesity, thus limiting the ability to establish advanced therapeutic

strategies.

Previous studies demonstrated that adiposity negatively affects white matter microstructure

through multiple pathways, including the upregulation of neuroinflammation, insulin resis-

tance, and vascular dysfunction [7, 8]. One well-documented finding from animal and adult

human studies is reduced plasticity in the hippocampal circuits [8–11]. Recent animal studies

have shown that a high-fat diet stimulates neuroinflammation, decreasing brain-derived neu-

rotrophic factor (BDNF) levels, and results in impaired axonal growth in the hippocampal cir-

cuits [8]. It is noteworthy that neuroimaging studies in adults have also indicated that the

fimbria-fornix, a major limbic-hippocampal white matter tract, is more likely to be vulnerable

to obesity-related metabolic complications than other white matter tracts [9–11]. Interestingly,

it has also been demonstrated that lesions in the hippocampal circuits influence appetite

behavior and subsequent weight gain in animals [12], suggesting that microstructural alter-

ations in this brain region could precede weight gain and may be a target for obesity preven-

tion as well.

As a major projection and commissure tract leading out of the hippocampus to other limbic

structures, the fimbria-fornix plays an important role in memory and affective processing [13,

14]. In addition to the known impact of sociocultural and interpersonal factors (e.g., weight

stigma, lower self-esteem, and body image concern) in children with overweight/obesity [15],

microstructural alterations of the fimbria-fornix in relation to overweight/obesity may also be

a possible brain mechanism involved in the development of cognitive and emotional problems

in this population.

Efforts to investigate white matter alterations in children with overweight/obesity have

increased in recent years. However, while some studies have shown global decreases in white

matter volume or integrity in children with obesity [16, 17], findings on regional alterations

are few and inconsistent, potentially due to small sample sizes and varying sample characteris-

tics. Although neuroimaging studies in adults have reported evidence supporting the obesity-

related regional white matter alterations, detecting such associations may be more challenging

in children for two main reasons. First, if we assume the adverse effects of adiposity on the

brain, such effects may be less accumulated in children than in adults [7], suggesting that the

effect sizes may be relatively small in children. Further, the brain undergoes profound develop-

ment throughout childhood, making it difficult to isolate the obesity-related alterations in the

brain from the age-related variations when the sample includes a broad age range. To precisely

characterize the obesity-related regional brain alterations in children, a study design may

require both a sufficient sample size to detect the small effects as well as a narrow age span

rather than a broader age range to minimize possible age-related changes.

Aerobic physical activity is a safe and easily accessible intervention for improving brain

plasticity. Previous studies showed that aerobic physical activity/exercise has a positive effect
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on neuroinflammation, cerebrovascular function, and neurotrophic factor levels [18, 19].

Based on these previous findings, it is likely that dysfunctions of the hippocampus and adja-

cent brain pathways may have a high potential for recovery after engaging in aerobic physical

activity, possibly due to their high plasticity [19, 20]. However, it remains unclear the extent to

which aerobic physical activity would impact white matter integrity in children with over-

weight/obesity. Examining such relationships may help guide public health intervention

strategies.

Restriction spectrum imaging (RSI) is an advanced diffusion modeling technique that

enables the characterization of water diffusion undetectable by traditional diffusion tensor

imaging (DTI) techniques [21]. Traditional DTI techniques can calculate within-voxel diffu-

sion but are not well equipped to resolve sub-voxel complexities, such as crossing or bending

fibers [22]. Unlike traditional DTI, RSI utilizes multi-shell diffusion-weighted imaging data

obtained across a broader range of b-values in multiple directions to separate water diffusion

within the restricted compartment from the hindered compartment across different tissue

geometries. Thus, RSI provides improved quantification of white matter microstructural char-

acteristics, which accounts for within-voxel crossing and bending fibers, and may be less

affected by partial volume effects [21]. RSI metrics may be more sensitive in detecting micro-

structural properties of the developing brain when compared with traditional DTI measures

[23] and provide a novel opportunity to study white matter compromise in children with over-

weight/obesity.

In this study, we aimed to examine (1) the association between childhood overweight/obe-

sity and limbic white matter microstructural characteristics and (2) whether aerobic physical

activity reduces the white matter microstructural alterations in children with overweight/obe-

sity. We primarily focused on the fimbria-fornix since this region has been suggested to be sus-

ceptible to overweight/obesity [8–11]. We utilized data from the Adolescent Brain Cognitive

Development (ABCD) Study1, a large-scale population-based cohort study of children aged 9

to 10 years recruited from 21 data collection sites across the United States [24, 25]. This dataset

provides several advantages in addressing our research questions, including well-powered

analyses of white matter microstructures in relation to overweight/obesity and aerobic physical

activity, given the unprecedented sample size with a narrow age range.

Materials and methods

Participants

The data included in the current analysis were from the ABCD Study data release 4.0 (https://

data-archive.nimh.nih.gov/abcd). The ABCD Study protocol was approved by the institutional

review board (IRB) at each ABCD data collection site, with a central IRB approval at the Uni-

versity of California, San Diego. Parents/guardians provided written informed consent, and

assent to participate was obtained from the children. A detailed description of the enrollment

procedures of the ABCD Study is provided on the ABCD website (https://abcdstudy.org) and

elsewhere [24–26]. Our hypotheses were focused on clarifying the association between over-

weight/obesity status and brain white matter in a predominantly preadolescent group there-

fore our analyses included an examination of baseline data (ages 9 to 10 years) from this

cohort. Among 11876 children who completed the first wave of the ABCD Study from 2016 to

2018, we excluded children who met any of the following criteria (Fig 1): missing BMI data;

missing either diffusion or structural magnetic resonance imaging (MRI) data which passed

the quality control procedures (described in Hagler et al. [27]); underweight (BMI less than

5th percentile for age and sex on the Centers for Disease Control and Prevention [CDC]

growth charts for the United States [28, 29]); diagnosed with a current eating disorder based
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on parent responses to the Kiddie Schedule for Affective Disorders and Schizophrenia for the

DSM-5 (KSADS-5); clinically significant anatomical findings on brain imaging; mislabeled sex

assigned at birth, or transgendered; or missing data for covariates. We also removed extreme

outliers (i.e., values beyond four standard deviations [SD] from the mean) in continuous vari-

ables to avoid potential measurement errors. The final sample included 8019 children, and the

characteristics of these children are summarized in Table 1.

Fig 1. Flow chart of study participants. The study initially assessed 11876 children aged 9 to 10 years recruited from the ABCD

Study. After applying the screening and eligibility criteria, data of 8019 children were used in our analysis. a Some participants met

more than one criterion. b Data that did not pass the ABCD quality control [27] were excluded. c Parent responses to the KSADS-5

criteria were used for the diagnosis of eating disorders. ABCD = Adolescent Brain and Cognitive Development; BMI = body mass

index; dMRI = diffusion magnetic resonance imaging; sMRI = structural magnetic resonance imaging; KSADS-5 = Kiddie Schedule

for Affective Disorders and Schizophrenia for the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5); SD = standard

deviation; RSI = restriction spectrum imaging; OW = overweight; OB = obese.

https://doi.org/10.1371/journal.pone.0287682.g001
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Body mass index (BMI) class

BMI was calculated based on children’s weight and height, which were measured up to three

times and averaged. The measurements were taken in light clothing and without shoes. Chil-

dren were divided into two groups according to their BMI percentiles for age and sex on CDC

growth charts for the United States [28, 29] as follows: (1) lean (5th to 85th percentile, Lean

group), and (2) overweight or obese (�85th percentile, OW/OB group).

Magnetic resonance imaging (MRI) data acquisition

MRI scans were performed on 3T scanner platforms with a 32-channel head coil. High-resolu-

tion multi-shell diffusion-weighted images (DWIs) were acquired at 1.7 mm isotropic resolu-

tion. For all DWI acquisitions, the multiband echo-planar imaging (EPI) was used with the

following parameters: seven b = 0 s/mm2 frames, four b-values (six directions at b = 500 s/

mm2, 15 directions at b = 1000 s/mm2, 15 directions at b = 2000 s/mm2, and 60 directions at

b = 3000 s/mm2), and multiband acceleration factor = 3. A field map for each DWI was also

Table 1. Sample characteristics.

Characteristic All Males Females

(n = 8019) (n = 4152) (n = 3867)

Age, years 9.9 ± 0.6 9.9 ± 0.6 9.9 ± 0.6

BMI

5th to 85th percentile 5598 (69.8) 2875 (69.2) 2723 (70.4)

�85th percentile 2421 (30.2) 1277 (30.8) 1144 (29.6)

Mean, kg/m2 18.6 ± 3.6 18.5 ± 3.5 18.7 ± 3.7

Race or ethnicity

Asian 141 (1.8) 70 (1.7) 71 (1.8)

Black 950 (11.8) 463 (11.2) 487 (12.6)

Hispanic 1507 (18.8) 788 (19.0) 719 (18.6)

White 4597 (57.3) 2414 (58.1) 2183 (56.5)

Other 824 (10.3) 417 (10.0) 407 (10.5)

Income-to-needs ratio 3.9 ± 2.4 3.9 ± 2.4 3.8 ± 2.5

Highest parental education

�High school diploma 819 (10.2) 409 (9.9) 410 (10.6)

Some college 1996 (24.9) 1044 (25.1) 952 (24.6)

Bachelor’s degree 2170 (27.1) 1139 (27.4) 1031 (26.7)

Postgraduate degree 3034 (37.8) 1560 (37.6) 1474 (38.1)

Parent marital status

Married 5759 (71.8) 3014 (72.6) 2745 (71.0)

Widowed 58 (0.7) 32 (0.8) 26 (0.7)

Divorced 712 (8.9) 376 (9.1) 336 (8.7)

Separated 268 (3.3) 130 (3.1) 138 (3.6)

Never married 822 (10.3) 396 (9.5) 426 (11.0)

Living with a partner 400 (5.0) 204 (4.9) 196 (5.1)

Pubertal statusa 1.9 ± 0.7 1.6 ± 0.5 2.2 ± 0.8

Data are presented as mean ± standard deviation (SD) or n (%).
a Pubertal (Tanner) staging categories were assessed using the Pubertal Development Scale (1 = Pre, 2 = Early, 3 = Mid, 4 = Late, 5 = Post) [30]. The scores that were

averaged across caregiver and child reports are presented.

BMI = body mass index.

https://doi.org/10.1371/journal.pone.0287682.t001
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obtained for B0 distortion correction. For anatomical reference, T1-weighted images were col-

lected at 1 mm isotropic resolution using the three-dimensional magnetization-prepared rapid

acquisition gradient-echo (3D-MPRAGE) pulse sequence. The acquisition parameters for dif-

fusion-weighted and structural images were optimized and harmonized across sites [26, 27].

Image preprocessing and restriction spectrum imaging (RSI)

The DWI data were preprocessed by the ABCD Data Analysis and Informatics Center (DAIC)

using the pipeline described in Hagler et al. [27]. In brief, each DWI was corrected for eddy

current, motion, B0 distortion, and gradient nonlinearity distortion. Images were then resam-

pled into rigid-body alignment with an atlas brain with 1.7 mm isotropic resolution.

The RSI model was fitted to the preprocessed DWIs on a voxel-wise basis [27]. RSI sepa-

rated the fraction of restricted diffusion from the hindered diffusion, based on their intrinsic

diffusion properties of separable pools of water within the brain [21]. The diffusion signal was

modeled as mixtures of spherical harmonic basis functions. The restricted directional diffusion

was derived from the norm of second- and fourth-order spherical harmonic coefficients of the

restricted fraction. This feature reflects directional (anisotropic) water diffusion within the

intracellular spaces. An increase in restricted directional diffusion has been known to reflect

several microstructural properties of white matter, including increased myelination, axonal

integrity/coherence, and/or neurite density [31].

White matter tracts were labeled using AtlasTrack, a probabilistic atlas-based method to

automatically segment white matter tracts [32]. We chose the fimbria-fornix in the limbic sys-

tem as our primary region of interest based on previous studies suggesting that this region is

highly susceptible to overweight/obesity [8–11]. As an exploratory purpose, we also investi-

gated other limbic white matter tracts, including: cingulate cingulum; parahippocampal cingu-

lum; anterior thalamic radiation; and uncinate. On the basis of previous literature, we

expected lower fimbria-fornix integrity in children with overweight/obesity. For all white mat-

ter tracts, mean RSI metrics averaged for the bilateral hemispheres were standardized based on

the mean and standard deviation of the study sample for the subsequent analysis.

Aerobic physical activity

The ABCD protocol assessed aerobic physical activity by self-report [33]. Children reported

the number of days in a week that they spent time for a total of at least 60 minutes per day in

physical activity that increased their heart rate and made them breathe hard some of the time.

Statistical analysis

We used the mixed-effects models (mixed command in Stata) to examine the differences in

RSI metrics of white matter tracts between the Lean and OW/OB groups. Considering the sex-

ual dimorphism in brain development [34] and the potential sex-dependent effects of over-

weight/obesity on brain structure and function [2, 3, 35], we conducted the analysis stratified

by sex assigned at birth. We also tested the relationship between the number of days of aerobic

physical activity in a week and RSI metrics of white matter tracts altered in the OW/OB group

using the mixed-effects linear regression model. In all models, we included the following vari-

ables as covariates: age, race or ethnicity (Asian, Black, Hispanic, White, other), income-to-

needs ratio, highest parental education (�high school diploma, some college, bachelor’s

degree, postgraduate degree), parental marital status (married, widowed, divorced, separated,

never married, living with a partner), pubertal (Tanner) status (the average score of caregiver

and child reports on the Pubertal Development Scale [30]), and total intracranial volume.

Income-to-needs ratio was calculated as the mid-point of the household income band divided
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by the 2017 poverty threshold developed by the US Department of Health and Human Services

[36]. Calculation of the variance inflation factor (VIF) demonstrated no evidence of significant

multicollinearity among the covariates in any of the models (VIF < 2). The mixed-effects

model can accommodate potential within-cluster correlations in the data by incorporating

nested random effects. Thus, we included family ID, scanner serial number, and site as nested

random effects in all models to account for the inherent clustering caused by the multilevel

data structure of the ABCD Study data (e.g., large numbers of siblings and multiple scanners

within study sites). The effect of family was nested in scanner serial number, and scanner serial

number was nested in site, as has been recommended [37]. Significance was assessed using a

two-tailed p<0.05 after Bonferroni correction for multiple comparisons. All statistical analy-

ses were conducted using Stata MP version 16.0 (StataCorp LP, College Station, Texas, US).

As mentioned above, children with transgender identities were not included in our analy-

ses, however the descriptive statistics for children who met our inclusion criteria and identified

with transgender identities (n = 4) are presented in S1 Table.

Results

Among 8019 children (mean [SD] age, 9.9 [0.6] years [range: 8.9–11.0 years]; 4152 males

[51.8%]; 4597 White [57.3%]), 1277 males (30.8% of males) and 1144 females (29.6% of

females) were classified as the OW/OB group (Table 1). The demographic information by the

BMI class is summarized in S2 Table. As expected from previous research [38–40], several

demographic variables and pubertal status were related to the BMI class, supporting the use of

these variables as covariates in our statistical analysis.

The association between the BMI class and white matter integrity

Females in the OW/OB group showed lower fimbria-fornix integrity, as measured by RSI,

compared to those in the Lean group (restricted directional diffusion, R2 = 0.012, B = -0.14

[95% confidence interval = -0.19 to -0.08], z = -4.85, p<0.001)(Fig 2). This difference was not

significant in males (R2 = 0.010, B = -0.01 [95% confidence interval = -0.08 to 0.05], z = -0.42,

p = 1.00).

No other limbic white matter tracts demonstrated a significant difference in RSI-derived

integrity measure between the OW/OB and Lean groups in both males and females (Table 2).

As a supplementary analysis, we also examined the relationship between the tendency

towards overweight/obesity as measured by anthropometric indicators (BMI and BMI percen-

tile for age and sex) and integrity measures in limbic white matter tracts in the OW/OB group.

The mixed-effects linear regression analyses with the same covariates and random effects as

the above analyses showed no significant correlations in both sexes (S3 and S4 Tables).

The association between aerobic physical activity and white matter

integrity in children with OW/OB

In females with OW/OB, a higher number of days of aerobic physical activity per week was

associated with a greater fimbria-fornix integrity (restricted directional diffusion, R2 = 0.009, β
= 0.04 [95% confidence interval = 0.01 to 0.07], z = 2.36, p = 0.02)(Fig 3). This relationship was

not significant in males with OW/OB (R2 = 0.010, β = -0.02 [95% confidence interval = -0.06

to 0.03], z = -0.63, p = 0.53). Of note, there was no significant relationship between BMI and

the number of days of aerobic physical activity in a week in females in the OW/OB group (R2

= 0.125, β = -0.005 [95% confidence interval = -0.05 to 0.04], z = -0.21, p = 0.83), suggesting

that the significant association between aerobic physical activity and fimbria-fornix integrity

probably was not simply due to the differences in BMI across aerobic physical activity levels.

PLOS ONE Childhood overweight/obesity and the fimbria-fornix

PLOS ONE | https://doi.org/10.1371/journal.pone.0287682 July 12, 2023 7 / 16

https://doi.org/10.1371/journal.pone.0287682


Discussion

Using a large-scale database and an advanced diffusion modeling technique called RSI, we

demonstrated that there are relationships among weight status, aerobic physical activity, and

fimbria-fornix microstructural integrity in preadolescent females. Decreased fimbria-fornix

microstructural integrity in female children with overweight/obesity reflects reduced axonal/

dendritic density and less efficient neural processing between the hippocampus and other

brain regions in this population. From previous animal and adult human studies, a high vul-

nerability of the fimbria-fornix to overweight/obesity and its vascular/inflammatory cascades

Fig 2. Associations between the BMI class and fimbria-fornix integrity. In females, the OW/OB group showed lower restricted

directional diffusion (R2 = 0.012, B = -0.14 [95% confidence interval = -0.19 to -0.08], z = -4.85, p<0.001) in the fimbria-fornix than

the Lean group, while this relationship was not significant in males (R2 = 0.010, B = -0.01 [95% confidence interval = -0.08 to 0.05], z =

-0.42, p = 1.00). The mixed-effects model was used to compare RSI metrics between the BMI groups in each sex, including the

following variables: age, race or ethnicity, income-to-needs ratio, highest parental education level, parental marital status, pubertal

status, and total intracranial volume as fixed effects; and family ID, scanner serial number, and site as random effects. Each column and

error bar represents the mean and corresponding standard errors, respectively. The location of the fimbria-fornix mounted on the

T1-weighted slices is provided for reference. a RSI metrics that were adjusted for age, race or ethnicity, income-to-needs ratio, highest

parental education level, parental marital status, pubertal status, and total intracranial volume are presented. BMI = body mass index;

OW = overweight; OB = obese; RSI = restriction spectrum imaging; A = anterior; S = superior; L = left.

https://doi.org/10.1371/journal.pone.0287682.g002

Table 2. Associations between the BMI class and RSI-derived microstructural integrity measure in each limbic white matter tract.

Males Females

R2 B (95% CI) z p R2 B (95% CI) z p
Fimbria-fornix 0.010 -0.01 (-0.08, 0.05) -0.42 1.00 0.012 -0.14 (-0.19, -0.08) -4.85 <0.001

Cingulate cingulum 0.043 -0.05 (-0.11, 0.01) -1.70 0.45 0.027 -0.05 (-0.12, 0.01) -1.66 0.48

Parahippocampal cingulum 0.066 -0.03 (-0.08, 0.02) -1.13 1.00 0.087 -0.05 (-0.10, 0.004) -1.81 0.35

Anterior thalamic radiation 0.008 -0.04 (-0.09, 0.02) -1.38 0.84 0.007 -0.05 (-0.13, 0.02) -1.53 0.63

Uncinate 0.078 -0.05 (-0.11, 0.005) -1.78 0.37 0.073 -0.05 (-0.11, 0.002) -1.87 0.30

All p values were Bonferroni corrected for multiple comparisons.

BMI = body mass index; RSI = restriction spectrum imaging; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0287682.t002
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has been reported [8–11], suggesting a directional effect of microstructural integrity as a con-

sequence of weight gain. It has also been demonstrated that reduced integrity of this brain

region can increase food intake and subsequent weight gain in animal models [12]. Our results

add cross-sectional evidence for these relationships in preadolescent females. To clarify the

directional order of our results, longitudinal data analyses are warranted.

Further, given the important role of the fimbria-fornix in learning, memory, and emotional

processing, the observed white matter microstructural alterations suggest that childhood over-

weight/obesity may be associated with different developmental trajectories of the hippocampal

networks and related cognitive and emotional functions. Collectively, our findings may sug-

gest the need for proactive and effective intervention against overweight/obesity in preadoles-

cent females.

While the current study design cannot precisely isolate the causal factors for the sex-specific

association of overweight/obesity and fimbria-fornix integrity, there are at least four potential

candidates, including differences in pubertal development between males and females, X chro-

mosome dosage, and sexual dimorphism in brain development as well as in the brain’s reward

system, each of which may have contributed to some extent. First, though the exact

Fig 3. Associations between aerobic physical activity and fimbria-fornix integrity in females with OW/OB. The

number of days of aerobic physical activity in a week was positively associated with restricted directional diffusion of

the fimbria-fornix in females with OW/OB (R2 = 0.009, β = 0.04 [95% confidence interval = 0.01 to 0.07], z = 2.36,

p = 0.02). The mixed-effects linear regression model was used to test the relationship between aerobic physical activity

and RSI metrics, including the following variables: age, race or ethnicity, income-to-needs ratio, highest parental

education level, parental marital status, pubertal status, and total intracranial volume as fixed effects; and family ID,

scanner serial number, and site as random effects. Bold and thin solid lines represent the regression line and its 95%

confidence interval, respectively. a RSI metrics that were adjusted for age, race or ethnicity, income-to-needs ratio,

highest parental education level, parental marital status, pubertal status, and total intracranial volume are presented. b

We assessed the number of days in a week that the children spent time for a total of at least 60 minutes per day in

physical activities that increased their heart rate and made them breathe hard some of the time. OW = overweight;

OB = obesity or obese; RSI = restriction spectrum imaging.

https://doi.org/10.1371/journal.pone.0287682.g003
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mechanisms are largely unknown, it has been reported that pubertal development may

increase the risk of metabolic complications, such as increased insulin resistance, low-grade

inflammation, oxidative stress, and vascular dysfunctions [41–44], in children and adolescents

with overweight/obesity, which, in turn, may confer white matter microstructural impair-

ments [45]. Females with overweight/obesity in our sample showed a relatively faster pubertal

development than males with overweight/obesity, with most females with overweight/obesity

being early to mid stages of puberty, while a large portion of males with overweight/obesity

being pre- to early stages of puberty (S2 Table). Thus, we tentatively speculate that differences

in pubertal status between females and males may partly have influenced the observed sex-spe-

cific white matter alterations.

In addition to the role that sex differences in pubertal development may play in affecting

the fimbria-fornix integrity, it is also possible that genetic components related to sex differ-

ences in metabolism may underlie the observed sex differences. Most genes on one of the two

X chromosomes in females are silenced to compensate for gene dosage differences between

females (XX) and males (XY). However, some of these genes escape the silencing process and

are expressed at higher levels in females than in males. Previous rodent studies [46–48] have

revealed that X-linked genes involved in lipid metabolism, such as Kdm5c and Eif2s3x, are crit-

ical for sex differences in obesity and metabolism. In these previous studies, the modulation of

genomic dosage of these genes in female mice has resulted in adipose tissue expansion as well

as increased obesity-related metabolic disturbances, including hyperinsulinemia and dyslipi-

demia, all of which may affect white matter microstructure [45]. These possible influences of

genetic components on white matter could be a contributing factor affecting our results, con-

sidering that children in our sample were mainly pre-pubertal or entering puberty.

Another possibility to influence the sex-dependent result is the differences in white matter

development between males and females. A recent study on brain development indicated that

boys aged 8 to 11 years display more dramatic growth of the fimbria-fornix than girls [36].

This may have made us less likely to detect the overweight/obesity-related microstructural

alterations of the fimbria-fornix in males and may play a role in our findings.

The aforementioned speculations on our sex-specific results are based on the assumption

that overweight/obesity influences white matter microstructure. However, the opposite direc-

tion (e.g., sex-dependent brain mechanisms underlying weight gain) should also be noted. Pre-

vious studies have reported sex differences in the involvement of the limbic circuits in reward-

related behavior. For example, an increase in BMI in females may be related to more promi-

nent alterations in core reward network regions associated with emotional regulation than in

males [49, 50]. Genetic contribution to the sex-dependent development in the reward circuit

has also been reported [51]. These studies support that sex-specific brain alterations preceding

weight gain may contribute to our results.

We were not able to detect significant associations between anthropometric indicators

(BMI and BMI percentile for age and sex) and white matter integrity within the OW/OB

group in both sexes, suggesting that the integrity in limbic white matter tracts is not different

depending on the levels of overweight/obesity. However, it should be acknowledged that BMI

may be poor in differentiating between body fat and lean mass. It may be important to assess

other indices of obesity, apart from BMI, including body fat percentage and central/visceral

adiposity, in future studies validating the relationships between overweight/obesity and brain

abnormalities.

Notably, we also found a positive association between the number of days of aerobic physi-

cal activity in a week and fimbria-fornix integrity in females with overweight/obesity,

highlighting the potential therapeutic role of aerobic physical activity for children with over-

weight/obesity. The current finding supports the previously reported evidence for the effects
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of aerobic physical activity on restoring white matter integrity. A number of studies have dem-

onstrated that aerobic physical activity/exercise effectively reduces vascular and inflammatory

stress [18, 19], thereby recovering brain plasticity and myelination of the hippocampus and

adjacent brain regions [52].

However, one other explanation may account for the current findings, and that is the effect

of the low frequency of aerobic physical activity on the reduction of white matter integrity.

Specifically, previous studies reported that limited movement may suppress the maturation of

the hippocampal circuits by decreasing circulating neurotrophins such as BDNF [53]. Future

intervention studies could directly examine the effects of aerobic physical activity on the fim-

bria-fornix in children with overweight/obesity.

Further, the abovementioned association between aerobic physical activity and fimbria-for-

nix integrity was found only in females with overweight/obesity and not in males with over-

weight/obesity. The observed difference may be due to baseline white matter characteristics. In

detail, females with overweight/obesity had reduced fimbria-fornix microstructural integrity,

while males with overweight/obesity did not, and thus females with overweight/obesity may

show greater benefit from aerobic physical activity. This speculation is supported by a previous

study in children aged 7 to 11 years [54], which reported positive associations between cardio-

respiratory fitness and white matter volume only in children with white matter reductions.

Limitations and future directions

The cross-sectional design of the current study does not allow us to ascertain the direction of

causality. Nevertheless, our findings, along with the existing literature, have public health mes-

sages suggesting the overweight/obesity-associated brain alterations in children, as well as a

potential intervention to minimize these alterations. A major strength of our study was its

sample size, the largest sample used to date to examine the associations between overweight/

obesity and fimbria-fornix microstructure in preadolescent children. This enabled us to detect

the relatively small effects (0.9–1.2% of the variance), as observed in other neuroimaging stud-

ies with large sample sizes [55]. Given the observed effect sizes, the clinical significance of our

findings may not be quite profound at this moment. Nonetheless, the current findings may

provide meaningful insight into brain health, considering that potential effects of overweight/

obesity on white matter microstructure may accumulate over time [7]. The results should be

interpreted with caution since it is possible that the relationships among overweight/obesity,

aerobic physical activity, and white matter integrity are mediated by variables not included in

this study, such as screen time [56, 57] and sleep duration and disturbances [57, 58]. An addi-

tional limitation of our study is that the types and intensity of aerobic physical activity were

not classified. Our assessment was based on the number of days in a week that children

engaged in aerobic physical activity for a total of at least 60 minutes. Future studies with a

more detailed examination of the nature of aerobic physical activity would help clarify

advanced clinical guidelines.

As noted, our findings of reduced fimbria-fornix integrity in females with overweight/obe-

sity suggest that typical patterns of fimbria-fornix development may be disrupted in this popu-

lation and warrant future studies to examine the clinical relevance of our findings. Previous

studies have reported that decreased fimbria-fornix integrity is associated with the develop-

ment of cognitive and emotional disturbances [13, 14, 59]. Intriguingly, low longitudinal aca-

demic achievement and the development of psychological symptoms in children and

adolescents with overweight/obesity have often been more prominent in girls than in boys [2,

3]. While there is a widely acknowledged impact of sociocultural and interpersonal factors,

including weight stigma, lower self-esteem, and body image concerns, on psychological
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problems in female children with overweight/obesity [15], our results, together with the evi-

dence that reduced fimbria-fornix integrity may cause hippocampal volume decrease [60],

might shed light on the brain-level mechanisms underlie the sex-specific development of such

neuropsychiatric conditions.

While our findings serve as a base point for the female-specific association between over-

weight/obesity and limbic white matter alterations in preadolescent children, whether this

association would continue or be mediated by dynamic neurologic and physiologic changes

during adolescence should be explored in future longitudinal analyses. In addition, elucidating

the directional relationship between overweight/obesity and the brain would provide useful

insights for the management as well as prevention of overweight/obesity. As an ongoing longi-

tudinal study, the ABCD Study will provide an opportunity to address such research

questions.

Conclusion

To our knowledge, this is the first study providing cross-sectional evidence of reduced micro-

structural integrity of the fimbria-fornix in preadolescent females with overweight/obesity.

Our findings suggest sex-related differences in the developmental trajectories of brain regions

involved in cognitive and emotional processing in childhood overweight/obesity. Also, we first

showed a positive association between aerobic physical activity and microstructural integrity

of the fimbria-fornix in females with overweight/obesity, providing insights for future inter-

vention studies examining neurobiological roles of aerobic physical activity on the overweight/

obesity-related brain alterations in children.
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