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1 Introduction

Recently there are considerable interests in Jackiw-Teitelboim (JT) gravity in two dimen-
sions with a negative cosmological constant [1, 2], which may serve as a simple model for
quantum gravity (see [3–5] for reviews). In this model, there are no local dynamical degrees
of freedom in the bulk while all the gravity dynamics are fully reflected in the boundary
fluctuations of cutoff trajectories; these boundary (particle) dynamics are well-known to
be described by the Schwarzian theories [6–8]. In addition to the Euclidean path integral
approach [9], this boundary picture allows the canonical analysis in Lorentzian setup [10].
This analysis may be extended to the case of JT gravity including matter as far as the
matter field does not couple directly to the dilaton field [11].

The relevant AdS2 geometry in Lorentzian signature is intrinsically two-sided involving
left and right cutoff trajectories near the AdS2 boundary (see figure 1). In the context of
AdS/CFT correspondence, it is rather natural to expect that the dual boundary theory
has a description based on a tensor product structure of left and right theories. Hence
it appears that one is able to construct a one-sided Hilbert space out of JT gravity in a
natural manner. On the contrary, it has been argued that the quantized version of JT
theory allows only a two-sided Hilbert space H whereas a one-sided Hilbert space cannot
be defined [10, 12], which is coined as the factorization problem in JT gravity [10]. There
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are also related issues in higher dimensions on how to understand the behind-horizon
interactions from the viewpoint of CFTl ⊗ CFTr, which was emphasized in [13].

A recent observation says that the algebra of (bulk) operators A acting on a two-sided
Hilbert space H can be constructed in such a way that two one-sided algebras Al and
Ar are well defined and commute with each other preserving the causality at the level of
operator algebra [14–18] (see also [19], which appeared near completion of our work). It is
noticeable that, even at the level of the algebra, the algebra A is not a tensor product of Al
and Ar. In the JT gravity with matter, it is shown that the type of von Neumann algebra is
type II∞ and the corresponding algebra Al/r is fully specified by the boundary Hamiltonian
Hl/r and the boundary matter operator ϕ̂l/r derived from the bulk matter operator [11].

The Schwarzian theories involve higher derivative terms. However there is no inconsis-
tency since these higher derivative terms are constrained by a gauge symmetry of S̃L(2,R)
which leaves the full geometry including the cutoff boundaries invariant. By imposing the
corresponding gauge constraints with an appropriate gauge-fixing, the quantization of JT
theory with and without matter has been carried out in [11], which will be reviewed in
the following. Upon quantization, the reduced Hilbert space exhibits a genuinely two-sided
nature while the Hamiltonian Hl/r generates the left and right time evolution respectively.
From the viewpoint of this two-sided Hilbert space, the full dynamics of the system may
be described by the total Hamiltonian Hr + Hl with a single time parameter u evolving
the left and right at the same time. In pure JT gravity, Hr −Hl vanishes identically and
merely induces a pure gauge transformation. In the presence of matter, Hr −Hl becomes
nontrivial and generates a relative (boostlike) time evolution.

For JT theory with a massless scalar field specifically, its full general solutions are
presented explicitly in [20], which show some nontrivial aspects of two-sided black holes
involving the matter field. For instance, the left and right temperatures of two-sided black
holes become different from each other. Indeed, JT theory with matter seems to exhibit
many more nontrivial features. In this note, we consider the explicit canonical quantization
of JT gravity coupled to a massless scalar field. Based on explicit bulk expressions, we shall
provide the concrete expressions of matter SL(2,R) charges and the boundary matter
operators ϕ̂l/r. We also provide a comparison of the classical and quantum dynamics with
some comments on the classical realization of the gauge constraints.

In [21], it was shown that the disk partition function of pure JT gravity [9] can be
reproduced from an evaluation based on the two-sided picture (see the left diagram of
figure 2); there one starts the two-sided evolution from an initial geodesic curve connecting
two slightly separated boundary points in the bottom region of the disk and ends up with
a final geodesic curve between two slightly separated boundary points in the top region.
We generalize the computation to the case of JT theory with the massless scalar field, in
which one may additionally arrange initial and final states including the matter part by
inserting matter operators before and after the initial and final regularized curves (see the
right diagram of figure 2). In this note, we specify prescribed states1 at the initial and final

1The Hartle-Hawking construction on a half disk [19] may be a good alternative for preparing the initial
or final state. However, it is not clear to us how to land there starting from our Lorentzian two-sided picture.
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regularized curves generalizing the proposal in [21]. One may additionally insert boundary
matter operators along the two-sided evolution, which leads to higher two-sided correlation
functions. We investigate basic properties of these two-sided correlation functions.

This paper is organized as follows. In section 2, we give our basic setup of JT gravity.
In section 3, we review the canonical quantization of JT gravity with matter following [11].
In section 4 , we specialize in JT gravity with a massless scalar field and provide full details
of quantization. Especially we quantize the bulk scalar field leading to explicit expressions
of the matter SL(2,R) charges. We find that the matter charges Jmi form the oscillator
(Jordan-Schwinger) realization of SL(2,R). In the case of the massless scalar especially,
the mapping is given in terms of the matrices of D−j=1 representation. In section 5, we
consider the classical solutions of Schwarzian dynamics and its relation to bulk solutions.
We also check the gauge constraints in the classical setup. In section 6, we consider two-
sided correlation functions in the presence of the matter field. We present some explicit
evaluations of the two-sided correlation functions. In the final section, we summarize our
results and give some comments on future directions.

2 Jackiw-Teitelboim gravity with matter

We shall consider JT gravity [1, 2, 22] coupled to a matter field which is described by
action2

I = 1
2

∫
M
d2x
√
−g φ (R+ 2) + Isurf + Im(g, ϕ) , (2.1)

where φ is for a dilaton field, ϕ for the matter field, and

Isurf =
∫
∂M

du
√
−γuu φ (K − 1) ,

Im = −1
2

∫
M
d2x
√
−g

(
gab∇aϕ∇bϕ+m2ϕ2

)
. (2.2)

Here, u is our boundary time coordinate and γuu and K respectively denote the induced
metric and the extrinsic curvature on the boundary ∂M . The equation of motion following
from the dilaton variation is given by

R+ 2 = 0 , (2.3)

which fixes the metric to be AdS2. The remaining equations of motion read

∇a∇bφ− gab∇2φ+ gabφ = −Tab , (2.4)
∇2ϕ−m2ϕ = 0 , (2.5)

where Tab is the stress tensor of the matter field,

Tab = ∇aϕ∇bϕ−
1
2gab

(
gcd∇cϕ∇dϕ+m2ϕ2

)
. (2.6)

2Here, we have omitted a topological term which is irrelevant in our discussion below. We also set
8πG = 1 and the AdS radius ` = 1.
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Figure 1. On the left we draw the global AdS2 as a strip where the left and right lines denote the
µ = −π/2, π/2 boundaries of AdS2, respectively. On the right we illustrate the left and right cutoff
trajectories as curves near the AdS2 boundaries.

In the global coordinates, the metric of the AdS2 space is written as

ds2 = −dτ
2 + dµ2

cos2 µ
, (2.7)

where µ ∈ [−π
2 ,

π
2 ] which is strip-shaped as depicted on the left of figure 1. A vacuum

solution of the dilaton field (in a gauge-fixed form) is given by

φ = φ̄ L
cos τ
cosµ , (2.8)

which is describing a two-sided black hole spacetime that is left-right symmetric.
As is well known, in this 2d gravity theory, there are no local dynamical gravity

degrees of freedom in the bulk and all pure gravity dynamics are fully reflected in the
boundary fluctuations of cutoff trajectories of AdS2. For this, one introduces the cutoff
trajectories (τr/l(u), µr/l(u)) parametrized by the boundary time u for the right and left
cutoff boundaries. See the right diagram of figure 1. The prescription for metric and
dilaton to get the cutoff boundary becomes

ds2|cutoff = − 1
ε2
du2 , φ|cutoff = φ̄

ε
, (2.9)

and the corresponding boundary dynamics may be identified as a combination of
Schwarzian theories [6–8],

S =
∫
duLr +

∫
duLl , Lr/l = C2

[(
τ ′′r/l
τ ′r/l

)2

− τ ′2r/l

]
, (2.10)

where the total derivative terms are dropped and the coupling C may be identified with φ̄
that appears in the vacuum solution (2.8).

For each Schwarzian Lagrangian, one may follow a standard procedure in higher deriva-
tive theory by adding Lagrange multiplier terms pτr/l(τ ′r/l−e

χr/l/C) to the Lagrangian where
pτr/l work as Lagrange multipliers at this stage. Using the multiplier equations of motion,
the above may be rewritten as

Lr/l = C2χ
′2
r/l −

1
2C e

2χr/l + pτr/l

(
τ ′r/l −

1
C
eχr/l

)
. (2.11)
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By a further Legendre transform with canonical momenta pχr/l conjugated to χr/l, one
finds

Lr/l = pτr/lτ
′
r/l + pχr/lχ

′
r/l −Hr/l , (2.12)

with the following left and right Hamiltonians [10, 12, 23]

Hr/l = 1
2C
[
p2
χr/l

+ 2pτr/l e
χr/l + e2χr/l

]
. (2.13)

The linear dependence of Hr/l in pτr/l tells us that Hr/l are not bounded from below, which
may be viewed as an indication of instability of the system. This is, of course, the well-
known aspect of higher derivative theory. However, in the present case, there would be a
gauge symmetry described in detail below, which ensures the total Hamiltonian becomes
positive on physical Hilbert space [11, 12].

As reviewed in [24], the AdS2 space has an SL(2,R) symmetry under the isometric
coordinate transformations that are generated by Killing vectors

ξ1 = −∂τ ,
ξ2 = − cos τ sinµ∂τ − sin τ cosµ∂µ ,
ξ3 = − sin τ sinµ∂τ + cos τ cosµ∂µ . (2.14)

Each of the above left-right boundary systems then possesses SL(2,R) symmetry under
the transformations that are induced by the bulk SL(2,R) transformations along the left-
right cutoff boundaries. By the standard Noether procedure, the corresponding (quantum)
SL(2,R) generators may be constructed as [12]

J
r/l
1 = pτr/l ,

J
r/l
2 = ±eχr/l cos τr/l ∓ sin τr/l pχr/l ± cos τr/l pτr/l ±

i

2 sin τr/l ,

J
r/l
3 = ±eχr/l sin τr/l ± cos τr/l pχr/l ± sin τr/l pτr/l ∓

i

2 cos τr/l , (2.15)

where the upper/lower signs are for the right/left quantities respectively. These generators
satisfy the SL(2,R) algebra, [Jr/li , J

r/l
j ] = iεijkη

klJ
r/l
l , where εijk is a totally antisymmetric

symbol with ε123 = 1 and ηij = diag(−1, 1, 1). It is then straightforward to check that

2CHr/l = ηijJ
r/l
i J

r/l
j −

1
4 , (2.16)

which corresponds to the quadratic Casimir of SL(2,R) and so ensures the SL(2,R) in-
variance of the Hamiltonians.

Now, by turning on the bulk matter field, the corresponding boundary flux along the
cutoff boundaries may be in general nonvanishing and the equations of motion along the
boundaries are modified as [6]

C
{

tan
τr/l(u)

2 , u

}′
= τ ′2r/l Tτµ

∣∣
r/l
, (2.17)
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where the Schwarzian derivative is defined by {f(u), u} ≡ −1/2(f ′′/f ′)2 + (f ′′/f ′)′ and
the last r/l denote the evaluation of the stress tensor at the right/left cutoff boundary,
respectively. Thus, with this nonvanishing boundary flux, the boundary Lagrangians have
to be modified accordingly through explicit coupling to the bulk matter field along the
cutoff trajectories. In the context of the AdS/CFT correspondence, however, one imposes
the vanishing boundary condition

ϕ
∣∣
r/l

= O(cos∆µr/l) = O(ε∆) (2.18)

where ∆ denotes the dimension of the operator dual to the bulk matter field. In this
paper, we shall limit our consideration to the matter field with the vanishing boundary
condition (2.18) whose details will be further provided below. One is led to the vanishing
boundary flux along the cutoff trajectories in the ε → 0 limit. Then the forms of the
boundary Hamiltonians in (2.13) remain intact while the effect of the bulk matter on
the boundary systems are implicit through the constraints of the total conserved charges.
With (2.18), the corresponding bulk matter charges may be evaluated as

Jmi = −
∫ π/2

−π/2
dµ
√
−g T τa ξai =

∫ π/2

−π/2
dµ Tτa ξ

a
i , (2.19)

which are conserved and satisfy the SL(2,R) algebra [Jmi , Jmj ] = iεijkη
klJml . In fact, there

is an S̃L(2,R) gauge symmetry generated by

J̃i = Jri + J li + Jmi , (2.20)

which leaves the full geometry, including the cutoff boundaries, invariant. Classically, one
has the corresponding constraints, J̃i = 0, and imposing these leads to consistent solutions
of the left-right boundary dynamics once the bulk matter charges Jmi are specified appro-
priately. These boundary descriptions agree with those of the bulk gravity description, as
was explicitly verified in [20] for the case of m2 = 0. Quantum mechanically, imposing the
constraints properly on the wave function Ψ

J̃i Ψ = 0 (2.21)

will be the main part of our quantization of the system, whose details will be discussed in
the next section.

For the resulting physical Hilbert space, we shall further impose |τr(u1)− τl(u2)| < π

at any real u1, u2 for any nonvanishing Ψ. This condition basically ensures the causality
constraint as the left-right boundary systems are causally disconnected from each other
through the bulk.3 In fact one may show that the above condition automatically follows
from the condition |τr(u1)− τl(u2)| < π at some u1 and u2, say u1 = u2 = 0 [11].

3One can explicitly verify that this causality constraint is indeed respected for full general bulk solutions
with m2 = 0 [20].
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3 Canonical quantization

In this section, we consider the canonical quantization of JT theory without matter or with
matter. The presentation in this section is mostly a review of the construction given in [11].
Our starting point is the unconstrained Hilbert space H0 = L2⊗Hm where an L2 function
is further specified as a complex function of the variables τr, τl, χr, χl that has a support
only when |τr − τl| < π. Here in the presence of matter, the function is dependent upon
the matter part but we shall not spell out this matter dependence explicitly in this section.

Let us impose the gauge constraint at quantum level. Since the S̃L(2,R) is noncom-
pact, we may use a quantization scheme based on the equivalent classes defined by [25]

Ψ ∼= gΨ (3.1)

where g ∈ S̃L(2,R). These equivalent classes are called the coinvariant classes of the group
S̃L(2,R). We then introduce inner product by the integral

〈Ψ̃|Ψ〉 =
∫
dg (Ψ̃, gΨ) , (3.2)

where dg is the left and right invariant measure of the group S̃L(2,R). It is clear that this
inner product depends only on the equivalent classes of Ψ and Ψ̃, so the formula defines
the Hilbert space of coinvariants. It also ensures the constraints

J̃i

∫
dg gΨ ∼= 0 (3.3)

at the quantum level, or equivalently 〈Ψ̃| J̃i |Ψ〉 = 0 for any choice of |Ψ〉 and |Ψ̃〉. Now we
note that, for any (τr, τl, χr, χl) with |τr − τl| < π, one may set τl = τr = 0 and χr = χl
by an appropriate gauge transformation. This implies that the physical Hilbert space of
coinvariants is generated by a gauge-fixed wavefunction of the form [11]

Ψ = δ(τr)δ(τl)δ(χrel)ψ(χ) (3.4)

where χ ≡ 1
2(χr + χl) and χrel ≡ χr − χl. With this gauge-fixing condition, the con-

straints (3.3) near g = 1 are realized as

J̃1 ∼= pτr + pτl + Jm1
∼= 0 ,

J̃2 ∼= pτr − pτl + Jm2
∼= 0 ,

J̃3 ∼= pχr − pχl + Jm3
∼= 0 , (3.5)

and the inner product is reduced to

〈Ψ̃|Ψ〉 =
∫
dχ ψ̃∗(χ)ψ(χ) . (3.6)

With help of the above relations, one may replace pτr/l and pχr/l by

pτr/l
∼= −

1
2 (Jm1 ± Jm2 ) , pχr/l = 1

2pχ ± pχrel
∼=

1
2 (pχ ∓ Jm3 ) , (3.7)
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where the replacements are acting on the physical Hilbert space H = L2(χ) ⊗Hm. Then
Hr/l become [11]

2CHr/l = 1
4 (pχ ∓ Jm3 )2 − (Jm1 ± Jm2 ) eχ + e2χ , (3.8)

which are acting on the physical Hilbert space H with pχ = −i∂χ satisfying [χ, pχ] = i.
It is straightforward to show that Hr commutes with Hl. In case of pure JT gravity, one
finds that Hr is identical to Hl with the well known expression 2CH0

r/l = 1
4p

2
χ + e2χ [10].

In this case, the boost generator Hr −Hl becomes zero and merely induces a pure gauge
transformation.

4 Explicit quantization with m2 = 0

From now on, we shall consider JT gravity with a massless field to be specific. For this
case, the bulk scalar field is dual to a dimension one (∆ = 1) operator in the boundary
side. The corresponding bulk field may be solved by4

ϕ =
∞∑
n=1

1√
nπ

sinn
(
µ+ π

2
) (
ane
−inτ + a†ne

−inτ
)
, (4.1)

with the boundary condition (2.18). Upon quantization, the creation and annihilation
operators satisfy

[am, a†n] = δmn , (4.2)

while all the remaining commutators among them vanish identically. Starting with (4.1),
the matter SL(2,R) charges can be identified as

Jm1 = −
∞∑
n=1

na†nan ,

Jm2 = 1
2

∞∑
n=1

√
n(n+ 1)

(
a†nan+1 + ana

†
n+1

)
,

Jm3 = 1
2i

∞∑
n=1

√
n(n+ 1)

(
a†nan+1 − ana†n+1

)
, (4.3)

which follows from the definition of charges in (2.19). Here, Jm1 may involve an extra
constant term but we fix this contribution to zero as it is required in order to allow a trivial
representation on the vacuum sector of the bulk matter field. Of course, this vacuum sector
should correspond to pure JT theory. Let us introduce a number operator defined by Nm =∑∞
n=1 a

†
nan, which may be shown to be commuting with Jmi . Then one has [Nm, Cm] = 0,

where Cm denotes the Casimir operator given by ηijJmi Jmj . It then follows that5

[Nm, Hr/l] = [Cm, Hr/l] = 0 . (4.4)

4The most general solutions for arbitrary m are presented in [20, 26]. See also [27, 28].
5Since the number operator and the Casimir do not commute with the boundary matter operator ϕ̂l/r,

they are not a center of the left or right algebra Al/r.
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Hence, the time evolution of the system occurs within a sector with a given total oscillator
number. The matter Hilbert space Hm has a basis

|~k〉 = |k1k2k3 · · · 〉 , (4.5)

with a†nan|~k〉 = kn|~k〉 where kn is a nonnegative integer. With this basis, one has

Nm|~k〉 =
∞∑
n=1

kn|~k〉 , Jm1 |~k〉 = −
∞∑
n=1

nkn|~k〉 , (4.6)

which in particular shows that the generator Jm1 is nonpositive definite. The SL(2,R)-
invariant matter vacuum state belongs to the trivial representation of SL(2,R). It is also
clear that the matter part of Hilbert space above the vacuum is given by a direct sum
of the discrete series representation D−j=q of SL(2,R) specified with Cm = q(1 − q) and a
given Nm. See appendix A for some details of representations of matter charges.

Let us introduce the dual boundary operators which may be inserted along the left
and right cutoff trajectories. In the present case of ∆ = 1, the boundary operators may be
identified as

ϕ̂r/l = lim
ε→0

(
φ̄

ε

)∆

ϕ
∣∣∣
r/l
. (4.7)

In fact, this is a slight generalization of the standard AdS/CFT dictionaries reviewed
in [29]. In two dimensions, the cutoff trajectories become dynamical and one needs to take
into account of these dynamical fluctuations of boundary geometries. Using the relation
cosµ

∣∣
r/l

= ετ ′r/l = ε
C e

χr/l , one finds

ϕ̂r/l = eχr/l√
π

∞∑
n=1

(∓)n+1√n
(
ane
−inτr/l + a†ne

inτr/l
)
. (4.8)

We note that

[ϕ̂r, ϕ̂l] = 2i
π
eχr+χl

∞∑
n=1

(−)n+1n sin(τr−τl) = 2ieχr+χl
(
δ′(τr−τl+π) + δ′(τr−τl−π)

)
(4.9)

where the second equality is defined over the interval τr − τl ∈ [−π, π]. Since |τr − τl| < π,
one has [ϕ̂r, ϕ̂l] = 0. It is also straightforward to check that [J̃i, ϕ̂r/l] = 0, so the left
and right boundary operators are gauge invariant. Expressed in the physical Hilbert space
variables after the gauge-fixing, these boundary operators become

ϕ̂r/l = eχ√
π

∞∑
n=1

(∓)n+1√n
(
an + a†n

)
. (4.10)

Finally, one may also check that [Hr/l, ϕ̂l/r] = 0. Any left-side operators that are con-
structed out of Hl and ϕ̂l are commuting with the right-side operators that are generated
by combinations of Hr and ϕ̂r.

There are two types of time evolutions in our theory. One is our system time defined
for the action (2.10), where the time parameter u evolves the left and right system equally
with the Hamiltonian

Htot = Hr +Hl = 1
C

( 1
4
(
p2
χ + Jm3

2
)
− Jm1 eχ + e2χ

)
. (4.11)
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In this note, we use this time evolution primarily. One may introduce a time-evolved
operator by

ϕ̂r/l(u) = eiuHtotϕ̂r/l e
−iuHtot (4.12)

Alternatively, one may add an independent evolution by Hrel = 1
2(Hr −Hl) with a boost

evolution parameter urel, Unlike the case of pure JT, this boost operator becomes physical.
Then one may evolve the left and right operators separately by

ϕ̂r/l(ur/l) = eiur/lHr/lϕ̂r/l e
−iur/lHr/l . (4.13)

Since the left operators are fully commuting with the right operators, the two definitions
agree with each other. Thus, the latter evolution works equally well and is equivalent to the
former in our case. In either ways, the time-ordered n(= nr +nl)-point transition function

G(ur1, · · · , urnr ;u
l
1, · · · , ulnl) = 〈Ψ̃|Tr

nr∏
k=1

ϕ̂r(urk) Tl
nl∏
k′=1

ϕ̂l(ulk′)|Ψ〉 , (4.14)

may be defined irrespective of the orderings between the left and the right boundary
operators. This reflects the fact that the left and right cutoff boundaries are causally
disconnected with each other. Note also that [Nm, ϕ̂r/l] 6= 0 and [Cm, ϕ̂r/l] 6= 0. Hence
with insertion of operators, the total number of oscillators and the value for the matter
Casimir are not preserved in general. Of course, without insertion of extra operators,
these two are preserved under the left and right Hamiltonian evolutions.

5 Comparison with bulk solutions

In this section, we consider the gauge constraints and the gauge-fixing of the Schwarzian
theories in the classical limit. First, one may recall the equations of motion given by the
Hamiltonians (2.13)

p′τr/l = 0 , pχr/l = Cχ′r/l , e2χr/l + pτr/le
χr/l = −Cp′χr/l , eχr/l = Cτ ′r/l , (5.1)

which retain their forms even in the presence of the matter. The solutions to these equations
are given by

1
C
pτr/l = ±Cr/l , (5.2)

1
C
eχr/l = Ar/l cos τr/l +Br/l sin τr/l ∓ Cr/l , (5.3)

1
C
pχr/l = −Ar/l sin τr/l +Br/l cos τr/l , (5.4)

where Ar/l, Br/l and Cr/l are integration constants. The last equation in (5.1), eχr/l = Cτ ′r/l,
together with the solution (5.3) leads to boundary cutoff trajectories [20] parametrized as

tanh 1
2Lr/l(u− u

r/l
0 ) =

√
1 + qr/l
1− qr/l

tan 1
2
(
τr/l(u)− τ r/lB

)
, (5.5)
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where ur/l0 are another integration constants and6

tan τ r/lB ≡
Br/l
Ar/l

, qr/l ≡
±Cr/l√

A2
r/l +B2

r/l

, Lr/l ≡
√
A2
r/l +B2

r/l − C
2
r/l . (5.6)

For these solutions, the on-shell values of SL(2,R) generators Jr/li in (2.15) are given by

J
r/l
1
∣∣
sol

= ±C Cr/l , J
r/l
2
∣∣
sol

= ±C Ar/l , J
r/l
3
∣∣
sol

= ±CBr/l , (5.7)

and so the on-shell values of the Hamiltonians are given by

Hr/l

∣∣
sol

= C2
(
A2
r/l +B2

r/l − C
2
r/l

)
. (5.8)

As is well-known as the Darboux’s theorem, the solution space of the equations of
motion is symplectomorphic to the phase space in classical mechanics [30, 31]. In this
regard, the eight constants Ar/l, Br/l, Cr/l and u

r/l
0 describing classical solutions correspond

to the eight-dimensional (unconstrained) phase space described by four variables (τr/l, χr/l)
and their canonical conjugate momenta (pτr/l , pχr/l). To obtain physical phase space with
the causality constraint |τr−τl| < π, we need to take a symplectic quotient by the constraint
group S̃L(2,R). This quotient or reduction of variables can be understood as fixing the
integration constants. The constants ur/l0 may be chosen, which corresponds to a certain
gauge choice, such as

tanh 1
2Lr/l u

r/l
0 =

√
1 + qr/l
1− qr/l

tan 1
2τ

r/l
B , (5.9)

and then, τr/l(u = 0) = 0. One may note that the gauge invariant combination of remaining
constants Ar/l, Br/l and Cr/l appears in the cut-off trajectory expression in (5.5), which
is given by Lr/l or equivalently the right/left energies Hr/l|sol. So, the solution space is
described by the variables Lr/l (i.e. Hr/l|sol). In pure JT gravity, Hr + Hl = 2Hr = 2Hl

and its conjugate variable 1
2(τr + τl) form two-dimensional phase space [10, 11], while in

JT gravity with matter Hr+Hl and Hr−Hl give us different time evolutions and energies.
Of course, this reduction can also be understood from the canonical variables. Concretely,
by using J̃1 and J̃2, one can set τr = τl = 0. Using the remaining constraint generator J̃3,
one can set eχr = eχl . See appendix B for the details of the gauge-fixing.

Now, let us consider the bulk scalar solution and its on-shell matter Jmi charges to
check the gauge constraints on the classical solutions. First of all, one may note that the
on-shell matter charges, computed by the bulk integral (2.19) for the classical scalar field
solution ϕ given in (4.1), takes the same form with (4.3). This can be rewritten as

Jmi
∣∣
sol

= −(Qri −Qli) , (5.10)

6In pure JT gravity, Lr/l reduces to the horizon radius L since Ar = Al = L for the vacuum black hole
solution in (2.8). This will become clearer after we discuss the match between the bulk solution and the
boundary Schwarzian solution provided below.
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where Qr/li read

Q
r/l
1 = ±

∞∑
n=1

1
2na

†
nan ,

Q
r/l
2 = φ̄L∓

∞∑
n=1

1
4

√
n(n+ 1) (a†nan+1 + an+1a

†
n) ,

Q
r/l
3 = ∓

∞∑
n=1

1
4i

√
n(n+ 1) (a†nan+1 − a†n+1an) , (5.11)

where a†n should be interpreted as the complex conjugate of an in the classical solutions.
We have judiciously rewritten the on-shell matter charges Jmi |sol in terms of Qr/li ’s,

since those are related to the asymptotic form of the bulk dilaton field φ. For the bulk
scalar field solution, ϕsol under a vanishing boundary condition, the bulk dilaton solution
can be obtained by solving (2.4). From the explicit asymptotic expressions of the bulk
dilaton solution, one can see that the dilaton solution φ at the cutoff boundaries takes the
form of the vacuum solution as (see appendix C for a summary of these solutions in [20])

φ −→
µ→µr/lc

ηijQ
r/l
i Yj

∣∣∣
µ
r/l
c

, Yi =
(

tanµ, cos τ
cosµ,

sin τ
cosµ

)
. (5.12)

Equivalently, using the equations of motion (2.4), one immediately sees that the relevant
bulk integral reduces to a surface term, resulting in the above expression of Jmi |sol. For
instance, Jm1 |sol can be computed as

Jm1 |sol = −
∫ µrc

µlc

dµ Tττ |sol = 1
cosµ

∂

∂µ
(φ cosµ)

∣∣∣∣µ
r
c

µlc

= −(Qr1 −Ql1) , (5.13)

which shows why the matter charges Jmi |sol are related to the asymptotic forms of the dila-
ton field φ. Note that the left and right constants Qr/li are not independent but related by

Qr1 = −Ql1 , φ̄L−Qr2 = −(φ̄L−Ql2) , Qr3 = −Ql3 . (5.14)

Now, let us check the gauge constraints by relating the bulk solutions to the boundary
solutions in Schwarzian variables (eχr/l , τr/l) through the cutoff conditions given in (2.9).
By using the relation of the dilaton at the cutoff trajectories with the Schwarzian variables,
one obtains

eχr/l = Cτ ′r/l = C
ε

cosµr/lc = φ cosµr/lc |µ→µr/lc
= ∓Qr/l1 +Q

r/l
2 cos τ +Q

r/l
3 sin τ , (5.15)

where the metric cutoff condition (2.9) is used in the second equality, the dilaton cutoff
condition (2.9) with C = φ̄ is used in the third equality, and the asymptotic form of φ
in (5.12) is used in the last equality. By matching this expression to the boundary solution
in (5.3), one can deduce that it is consistent with the gauge constraint τr = τl by taking
τ = τr/l, and that

C Cr/l = Q
r/l
1 , C Ar/l = Q

r/l
2 , CBr/l = Q

r/l
3 . (5.16)
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Using this matching of constants, (5.7) and (5.10), it is straightforward to check

J̃i
∣∣
sol

=
(
Jri + J li + Jmi

)
|sol = 0 , (5.17)

which tells us that the gauge constraints are automatically satisfied in classical solutions
when the Schwarzian variables and the dilaton at the cutoff trajectories are related by the
cutoff conditions (2.9).

As a side remark, we would like to note that matter charges are related to the left or
right coefficients Qr/li as

Q
r/l
1 = ∓ 1

2J
m
1
∣∣
sol
, Q

r/l
2 = φ̄L∓ 1

2J
m
2
∣∣
sol
, Q

r/l
3 = ∓ 1

2J
m
3
∣∣
sol
. (5.18)

6 Two-sided correlation functions

In this section, we shall consider the partition function and two-sided correlation functions
of JT theory with matter from the viewpoint of two-sided picture. Let us begin with the
case of pure JT theory. Without matter contribution, the total Hamiltonian becomes

Htot = Hr +Hl = 2Hr =
( 1

4p
2
χ + e2χ

)
/C . (6.1)

This is a Liouville quantum-mechanical system that involves an exponential potential.
Note that the renormalized geodesic length between two boundary points τl(u) and τr(u)
is given by

`ren ≡ `bare − ln 2φ|r − ln 2φ|l = ln
(

cos2 τr−τl
2

C2τ ′l τ
′
r

)
= −2χ (6.2)

where, for the first equality, (2.9) is used and the last equality follows from the gauge-fixing
condition in the above. The corresponding eigenvalue problem,

Htot ψs(χ) = s2

C
ψs(χ) , (6.3)

can be solved by [10]

ψs(χ) = NsK2is(2eχ) , Ns = 2
π

(2s sinh 2πs)
1
2 , (6.4)

which satisfies the scattering normalization∫ ∞
−∞

dχψ∗s(χ)ψs′(χ) = δ(s− s′) . (6.5)

In the scattering regime of χ→ −∞, the wavefunction behaves as

ψs →
Γ(−2is)√
π |Γ(−2is)|

(
e2isχ +R(s)e−2isχ ) , (6.6)

where the reflection amplitude may be identified as R(s) = Γ( 2is )
Γ(−2is) . In the forbidden region

of χ→∞, on the other hand, the wavefunction decays doubly-exponentially as

ψs(χ)→ Ns

√
π

4eχ e
−2eχ . (6.7)

– 13 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
5

βl βrβl βr

Figure 2. On the left we draw the two-side evolution for pure JT theory. On the right, we depict
the evolution for JT theory with matter. The big dots represent insertions of the boundary operators
at the initial and the final points of the evolution. The red curves in each diagram represent the
initial and final cutoff geodesics.

Now let us turn to the evaluation of the disk partition function in the two-sided picture.
The relevant density of states is basically one-sided quantity whereas our physical Hilbert
space is inherently two-sided. In this respect, currently there is no well-defined procedure
computing the disk partition function based on the two-sided description. Here we follow
the proposal in [21]

Z(β) ∝ lim
χc→∞

〈χc| e−
β
2Htot |χc〉 , (6.8)

which is based on the picture in the left side of figure 2. Since Hl = Hr in the present
case, βHtot/2 may be replaced by βlHl + βrHr with βl + βr = β.

In this two-sided picture, one starts the evolution from an initial geodesic connecting
two slightly separated boundary points somewhere on the bottom side as illustrated in the
left side of figure 2. Its renormalized length `cren (= −2χc) goes to negative infinity as the
above two points approach each other. Then we evolve through the bulk leading to the final
geodesic between two regularized points on the top side. Basically the evolution is based
on the propagator with an appropriate Boltzmann weight, which defines the path integral
computation in the two-sided picture. With this prescribed regularization, one finds

Z(β) ∝ lim
χc→∞

W (χc)
∫ ∞

0
dss sinh 2πs e−β

s2
2C (6.9)

where
W (χ) = 2 e−4eχ

π eχ
. (6.10)

Note here that the factor W (χc) is independent of the variable s and may be absorbed
into the overall coefficient of the partition function or the constant part of the entropy S0.
Hence up to this overall coefficient, the disk partition function may be identified as

Z(β) =
∫ ∞

0
dss sinh 2πs e−β

s2
2C =

√
2 C

3
2

β
3
2

e
2π2C
β (6.11)

which agrees with the previous results based on the one-sided picture [9, 32] (See also [33–
36] for related works). The question yet remaining is how to specify the initial (or final)
state and an alternative based on the Hartle-Hawking state on a half disk is given in [19].
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We now turn to the case of JT gravity with a massless matter field. The two-sided
function now depends on βr and βl since Hr and Hl differ from each other.7 In the
semiclassical regime, the left and right black holes involving a nontrivial matter field indeed
become different from each other as was constructed explicitly in [20]. The corresponding
Euclidean disk geometry becomes two-sided8 with insertion of operators in the bottom and
the top region. This insertion of matter state (as a linear combination of |~k〉) induces a
state at the initial curve as |ΦI〉 =

∑
~k
δ(χ− χc~k) c~k |

~k〉, by which the bulk will be affected
in general. We also assume the final cutoff state |ΦF 〉 = |ΦI〉 for simplicity. Of course,
this assumption can be relaxed and the definition may be generalized to the case where
|ΦF 〉 6= |ΦI〉. With this preparation, we consider

ZI(βr, βl) ∝ lim
χc
~k
→∞
〈ΦI | e−(βrHr+βlHl)|ΦI〉 (6.12)

where the way to send χc~k to infinity will be specified further below. The corresponding
two-sided evolution is depicted in figure 2. Again one begins with an initial geodesic curve
connecting two slightly separated points in the bottom region. The precise locations of these
two points may be adjusted by an infinitesimal amount depending on each matter basis
state |~k〉 (see below). From this, we evolve the two-sided system with a Boltzmann weight
e−(βrHr+βlHl) which ends up with the final geodesic curve prescribed by the same way as
the initial one. The corresponding left/right evolution times are given by βl/βr with the
Hamiltonians Hl/Hr, respectively. Due to the initial and final insertions of operators, the
bulk state and the left and right Hamiltonians are affected in general. In the semiclassical
limit, this corresponds to the so-called vev deformation whose details are studied in [26].

To be specific, let us consider the case with βr = βl = β
2 and |ΦI〉 = δ(χ−χc~k) |

~k〉. In
this case, one has βrHr + βlHl = β

2Htot. The relevant eigenvalue problem Htot|Φ〉 = E|Φ〉
may be solved perturbatively by decomposing

Htot = H(0) +H(1) (6.13)

where
H(0) = 1

C

( 1
4p

2
χ − Jm1 eχ + e2χ

)
, H(1) = 1

4C (Jm3 )2 . (6.14)

We solve the zeroth-order eigenvalue problem CH(0)|Φ〉(0) = s2|Φ〉(0) with a state of the
form |Φ〉(0) = ψq,s(χ) |~k〉. This leads to an eigenvalue equation( 1

4p
2
χ + q eχ + e2χ

)
ψq,s(χ) = s2ψq,s(χ) , (6.15)

where q =
∑∞
n=1 nkn ≥ 0. This q-dependent potential is everywhere nonnegative definite

and becomes zero as χ→ −∞. This problem is solved by

ψq,s = Nq,s Yq,s(4eχ) , Nq,s = 2
π

(2s sinh 2πs)
1
2

∣∣∣∣Γ(1
2 + q + 2si)
Γ(1

2 + 2si)

∣∣∣∣ , (6.16)

7βl and βr are simply left and right Euclidean evolution parameters, which should not be confused with
the left and right temperatures.

8The Euclidean geometry of the 3d Janus two-sided black hole was constructed in [37], whose boundary
of the thermal disk part is intrinsically two-sided involving different left and right Hamiltonians.
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with Yq,s(z) =
√
π/zW−q,2si(z) where Wκ,µ(z) is the Whittaker function satisfying

d2

dz2Wκ,µ +
(
− 1

4 + qz−1 +
(1

4 − µ
2
)
z−2

)
Wκ,µ = 0 . (6.17)

The wavefunction is again scattering-normalized as∫ ∞
−∞

dχψ∗q,s(χ)ψq,s′(χ) = δ(s− s′) . (6.18)

In the scattering region of χ→ −∞, the wavefunction behaves as

ψq,s →
24si Γ(−4is)√
π |Γ(−4is)|

Γ(1
2 + q + 2is)

|Γ(1
2 + q + 2is)|

(
e2isχ +Rq(s)e−2isχ ) , (6.19)

where the reflection amplitude is given by Rq(s) = Γ( 4is )
Γ(−4is)

Γ( 1
2 +q−2is)

Γ( 1
2 +q+2is)2−8si. On the other

hand, in the forbidden region of χ → ∞, the wave function decays again doubly-
exponentially as

ψq,s → Nq,s

√
π

(4eχ)q+
1
2
e−2eχ . (6.20)

With the prescribed regularization in the above, one finds

Zq

(
β

2 ,
β

2

)
∝ lim

χcq→∞
Wq(χcq)wq

∫ ∞
0
ds ρq(s) e−β

s2
2C (6.21)

with

ρq(s) =
π |Γ(1

2 +q+2is)|2

|Γ(1
2 + q) Γ(1

2 +2is)|2
s sinh 2πs , Wq(χ) =

8 Γ(1
2 +q)2 e−4eχc

π2 (4eχ)2q+1wq
. (6.22)

Of course, at this point, one may freely adjust the redundant factor wq. Since Wq(χcq)
is independent of s, we may drop this in the limit where χcq goes to infinity. Hence the
leading-order contribution of the two-sided function reads

Z(0)
q

(
β

2 ,
β

2

)
= wq

∫ ∞
0
ds ρq(s) e−β

s2
2C , (6.23)

where wq is not determined at the moment.
Without insertion of any matter operators (q = 0 and w0 = 1), the above expression

agrees with pure JT result in (6.11), i.e. Z(0)
q=0(β2 ,

β
2 ) = Z(β); this also gives the partition

function even in the presence of matter as was argued in [11]. For q 6= 0, the above involves
an initial (or final) insertion of boundary matter operators leading to (two-sided) 2-point
correlation functions in general.

With q = 1, for instance, one has

ρ1 = (1 + 16s2) s sinh 2πs (6.24)

which leads to
Z

(0)
q=1

(
β

2 ,
β

2

)
= w1Z(β)

(
1 + 48C

β
+ 64π2 C2

β2

)
. (6.25)
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×
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ϕ̂r/l

k

k−1 k+1

(a) (b) (c)

Figure 3. In (a) and (b), we draw the two-side evolution for JT theory with matter operators
inserted along the left right evolutions. In these diagrams, the matter insertions are marked by
cross symbols. (a) depicts the case where one starts from and ends with the matter vacuum state.
(b) describes the case with general matter initial state. With a left or right insertion of matter
operator, an Nm = k state before the insertion turns into a linear combination of a k + 1 and a
k − 1 state, which is depicted in (c).

Similarly, for the larger value of q, one may work out the zeroth-order contribution to the
partition function. Adding the contribution from the first-order perturbation, one has

Zq

(
β

2 ,
β

2

)
= Z(0)

q

(
β

2 ,
β

2

)
e−

β
8C 〈~k|(J

m
3 )2|~k〉 (6.26)

where 〈~k|(Jm3 )2|~k〉 = 1
2
∑∞
n=1

[
n(n + 1)knkn+1 + n2kn

]
. Considering now a general matter

initial state
∑
~k
c~k|~k〉, we need to fix the relative factor wq. There seems no general principle

to fix this relative factor because the χ→∞ limit around the initial and final regularized
surfaces is not well understood. Here we propose to set the relative factor wq = 1 and to
adjust χc~k such thatWq(χc~k) = W0(χc~0) in the χc~k →∞ limit. We then drop the overall factor
W0(χc~0) uniformly for any |~k〉. Then for the matter initial state

∑
~k
c~k|~k〉, the zeroth-order

two-sided function becomes

Z(0)

(
β

2 ,
β

2

)
=
∑
~k

|c~k|
2
∫ ∞

0
ds ρq~k(s) e−β

s2
2C (6.27)

where q~k denotes
∑∞
n=1nkn. With the above prescription, one has ρq~k(s) → ρ0(s) in the

s→ 0 limit; this also corresponds to fixing each density of states to that of pure JT theory
in the zero temperature limit.

In general, the evolution by Hl/r preserves Nm and Cm quantum numbers as they
commute with the left and right Hamiltonians. Thus, for instance, one may start from a
matter initial state which belongs to a particular matter sector specified by the eigenvalues
of Nm and Cm. Then, along the evolution by Hl/r, matter states stay within the initially
prescribed sector.

As depicted in figures 3a and 3b, one may consider inserting matter operators along
the boundary trajectories. Let us introduce the corresponding correlation function defined
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by

GEI (yr1, · · · , yrnr ; y
l
1, · · · , ylnl) = 〈

nr∏
k=1

ϕ̂r(−iyrk)
nl∏
k′=1

ϕ̂l(−iylk′)〉I , (6.28)

with yr/lk ∈ [0, βr/l]. In this case, as a pair of the Euclidean times yl and yr evolves,9 one
will encounter insertions of left or right matter operators order by order. Now in between
each successive encounters, let us focus on a state belonging to an Nm = k sector with
k ≥ 0, where its evolution remains within the sector in between the encounters. This state
will eventually encounter a left or right operator ϕ̂l/r at a certain slice which is denoted by
the dotted line in figure 3c. Right after the encounter, the Nm = k state turns into a linear
combination of Nm = k − 1 and k + 1 states where the Nm = − 1 state (with k= 0) does
not exist and should be removed additionally. This process goes on with next encounters
of operators. It then follows that any correlation function, defined with |ΦI〉 = |ΦF 〉 that
belongs to a particular Nm = k sector, vanishes if nr + nl is odd.

For the sake of illustration, let us consider the case where one starts from and ends with
the matter vacuum state. Of course, for the partition function, the corresponding evolution
stays within the matter vacuum sector. Now once we add matter operators along the
evolution, the state no longer stays within the matter vacuum sector and mixing between
sectors will occur as described in the above. The first nontrivial example is the two-point
correlation function GE|~0〉(y

r
1; yl1) where we further assume βr = βl = β/2 and yr1 < yl1 for

simplicity. Then one may evolve the system with Htot with Euclidean time 0 < y < β/2.
For 0 < y < yr1, the system remains within the matter vacuum sector. Then, for yr1 <

y < yl1, the state belongs to the Nm = 1 sector. Finally for yl1 < y < β/2, the evolution
is restricted to the matter vacuum sector due to the final state condition. An explicit
evaluation of this two-point function does not seem to be so straightforward. Neither is it
clear to us how the above correlation functions are related to the conventional correlation
functions in literatures [3, 34, 36, 38–41]. Further studies are required in this direction.

7 Conclusion

In this paper, we have presented the detailed canonical quantization of JT gravity coupled
to a massless scalar field. Especially, we have identified the bulk matter charges Jmi explic-
itly, and shown that the (matter) number operator Nm and the Casimir Cm commute with
the boundary Hamiltonians Hl/r. This allows us to choose the simultaneous eigenstate of
Hl, Hr, Nm and Cm in the two-sided Hilbert space. And then we computed some simulta-
neous eigenfunctions in the two-sided Hilbert space. In pure JT gravity, we reproduced the
well-known eigenfunction given by a modified Bessel function. In [21], the two-sided version
of the disk partition function was proposed by starting two-sided boundary evolution from
an initial geodesic curve connecting two slightly separated boundary points in the bottom
region of the disk and ending up with a final geodesic curve between again two slightly
separated boundary points in the top region. From this definition of the two-sided partition

9The two-sided evolution here is very much dependent upon ways of slicing yl and yr. However the final
answer should be independent of slicing, as dictated by any gravity theories.
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function, the disk partition function was reproduced in the same reference. In the presence
of matter, one may additionally arrange initial and final states including the matter part
before and after the initial and final regularized curves, by which the bulk of the disk is
affected in general. Thus we have introduced a two-sided correlation function in the pres-
ence of prescribed matter states. In particular, we tried to specify the prescribed states at
the initial and final regularized curves generalizing the proposal of [21]. In JT gravity with
a massless scalar, the eigenfunction of Htot is shown to be given by a Wittaker function
and the two-sided correlation function for βr = βl = β/2 is evaluated perturbatively for
some simple initial states. One may additionally insert boundary matter operators along
the two-sided evolution leading to the higher two-sided correlation functions. We have
investigated some basic properties of these two-sided correlation functions.

The two-sided correlation functions we have introduced require the specific regular-
ization procedure of initial (or final) state at the initial (or final) curve, which is not so
well-motivated unfortunately. Instead one may provide some controlled initial (or final)
state there and the resulting two-sided correlation functions may be directly related to
the conventional correlation functions in [3, 34, 36, 38–41]. However the precise guiding
principle to construct such initial (or final) state is lacking at this stage. Further investiga-
tions are required in this direction. In addition we have not considered the bulk wormhole
contribution [11]. It would be interesting to include its effect at the level of the partition
function and to consider the factorization issues.
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A Representations of the matter charges

In this appendix, we show that the matter Hilbert space Hm is decomposed of negative
discrete series of irreducible representations D−j of SL(2,R) (see [42] for a review of SL(2,R)
representation). Introducing

Jm± = Jm2 ± iJm3 , (A.1)

we can rewrite the SL(2,R) algebra as

[Jm1 , Jm± ] = ±Jm± , [Jm+ , Jm− ] = −2Jm1 . (A.2)

Thus Jm± may be considered as raising/lowering operators for the eigenstates of Jm1 . The
Casimir operator Cm becomes

Cm = −(Jm1 )2 − Jm1 + Jm− J
m
+ . (A.3)
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In terms of the operators a and a† in (4.1), Jm± are given by

Jm+ =
∞∑
n=1

√
n(n+ 1)a†nan+1 ,

Jm− =
∞∑
n=1

√
n(n+ 1)ana†n+1 , (A.4)

Note that, for each pair of adjacent oscillators, Jm± shift the oscillator number by one to
the left/right, respectively. In particular, Jm+ annihilates states |k〉 ≡ |k000 · · · 〉 for any k,

Jm+ |k〉 = 0. (A.5)

Since
Jm1 |k〉 = −k|k〉 , Cm|k〉 = k(1− k)|k〉 , Nm|k〉 = k|k〉 , (A.6)

we can identify |k〉 as the highest weight state of the representation D−k (with Nm = k)
of SL(2,R) in negative discrete series. Then applying Jm− , we obtain basis vectors of the
representation {|l〉} with l = k, k + 1, . . . which are eigenstates of Jm1 with Jm1 |l〉 = −l|l〉.
Normalized vectors are

|l〉 ≡
√

(2k − 1)!
(k + l − 1)! (l − k)! (Jm− )l−k|k〉 . (A.7)

Recall that the number operator Nm commutes with Jmi ’s. Then, from (4.6), we see
that |l〉 consists of the oscillator states |~k〉 with

l−k+1∑
n=1

kn = k ,
l−k+1∑
n=1

nkn = l . (A.8)

Note that the upper limit of the summation range is limited by l − k + 1. As l increases,
there are more oscillator states involved to make a particular |l〉 state. For instance, for
l = k + 1 and k + 2, we get

|k + 1〉 = 1√
2k
Jm− |k〉 = |k − 1, 1, 0, 0, · · · 〉 ,

|k + 2〉 = 1√
4k(2k + 1)

(Jm− )2|k〉

=

√
2(k − 1)
2k + 1 |k − 2, 2, 0, 0, · · · 〉+

√
3

2k + 1 |k − 1, 0, 1, 0, · · · 〉 . (A.9)

In this example, applying Jm+ to two oscillator states in |k + 2〉 would result in the same
|k−1, 1, 0, 0, · · · 〉 which is nothing but |k+1〉. This implies that the orthogonal combination

|k̃+2〉 =
√

3
2k + 1 |k − 2, 2, 0, 0, · · · 〉 −

√
2(k − 1)
2k + 1 |k − 1, 0, 1, 0, · · · 〉 (A.10)

with k ≥ 2 should be annihilated by Jm+ , which can easily be checked. Then, we see that
|k̃+2〉 is the highest weight state of a new irreducible representation D−k+2 (with Nm = k)
which is obtained by applying Jm− successively to |k̃+2〉.
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It is clear to generalize this procedure. If applying Jm− increases the number of oscillator
states which participate in the linear combination, one would get highest weight states of
new irreducible representations by considering the orthogonal linear combinations of the
states. In this way, the matter Hilbert space Hm can be decomposed of negative discrete
series of irreducible representations D−j of SL(2,R).

B Gauge-fixing

In this appendix, we present some details on the gauge-fixing procedure. Though we use the
commutator notation of quantum mechanics, it may be understood as the corresponding
Poisson bracket in the context of classical mechanics. Note that, in the classical setup,
the last terms in J

r/l
2 and J

r/l
3 in (2.15) do not appear. As mentioned in section 2, the

condition |τr − τl| < π will be assumed. Let us begin with

i

[
J̃1,

1
2(τr+τl)

]
= 1 , (B.1)

which allows us to fix the gauge, τr + τl = 0. Upon this gauge choice, we may see that

i

[
J̃2,

1
2(τr−τl)

]
= i
[
J̃2, ±τr/l

]
= cos τr = cos τl . (B.2)

Thus we may set τr = τl = 0 where we used the condition |τr − τl| < π. Now, with
τr = τl = 0, we find

i
[
J̃3, ±χr/l

]
= 1 , (B.3)

which allows us to fix the gauge χr − χl = 0. This completes our gauge-fixing procedure.
Classically, starting with the relevant solutions in [20], one may work out the corresponding
gauge transformations explicitly which lead to the fully gauge-fixed forms of solutions.

C Classical bulk solutions

Here we summarize classical bulk solutions of JT gravity. See [20] for more details. Under
the vanishing boundary condition, the scalar equation (2.5) with m = 0 is solved by

ϕ =
∞∑
n=1

an sinn
(
µ+ π

2

)
cosn(τ − τn). (C.1)

In the main text, we introduced complex coefficients an’s by the relations

an ≡
√
nπ

2 einτn an , a†n ≡
√
nπ

2 e−inτn an . (C.2)

Then, the above solution can be rewritten as (4.1).
Now, let us return to the dilaton field φ. As was shown in [20], the classical solution

of the dilaton φ is obtained in the form of

φ = φ̄L
cos τ
cosµ +

∞∑
m,n=1

amanφm,n , (C.3)
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where the explicit expressions of φm,n’s are given by

φn,n= (−1)nn
8(4n2−1)(2ncos2nµ+sin2nµ+tanµ)cos2n(τ−τn)−n

2

4 (1+µtanµ)

φn,n+1=φn+1,n

= (−1)n+1

16(2n+1)cosµ
[
(n+1)sin2nµ+nsin(n+2)µ

]
cos[(2n+1)τ−(n+1)τn+1−nτn)]

−n(n+1)
8cosµ (tanµ+µ)cos[τ−(n+1)τn+1+nτn],

φm,n= mn

8cosµ

[
cos[n(τ−τn)−m(τ−τm)]

(sin(n−m+1)(µ+π
2 )

(n−m+1)(n−m) −
sin(n−m−1)(µ+π

2 )
(n−m−1)(n−m)

)
+cos[n(τ−τn)+m(τ−τm)]

(sin(n+m+1)(µ+π
2 )

(n+m+1)(n−m) −
sin(n+m−1)(µ+π

2 )
(n+m−1)(n−m)

)]
. (C.4)

The asymptotic behaviors of these solutions as µ→ µ
r/l
c read as

φn,n = −n
2

4 (1 + µ tanµ) +O(cos2 µ) ,

φn,n+1 = φn+1,n = −n(n+ 1)
8 (sinµ+µ secµ) cos[τ−(n+1)τn+1+nτn]+O(cos2 µ) ,

and all the remaining φn,m = O(cos2 µ). This asymptotic form leads to (5.12) and the
expressions for Qr/li in (5.11).
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