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Abstract: Hutchinson–Gilford Progeria Syndrome (HGPS) is an ultra-rare human premature aging
disorder that precipitates death because of cardiac disease. Almost all cases of HGPS are caused
by aberrant splicing of the LMNA gene that results in the production of a mutant Lamin A protein
termed progerin. In our previous study, treatment with Progerinin has been shown to reduce
progerin expression and improve aging phenotypes in vitro and in vivo HGPS models. In this record,
cardiac parameters (stroke volume (SV), ejection fraction (EF), fractional shortening (FS), etc.) were
acquired in LmnaWT/WT and LmnaG609G/WT mice fed with either a vehicle diet or a Progerinin diet by
echocardiography (from 38 weeks to 50 weeks at various ages), and then the cardiac function was
analyzed. We also acquired the tissue samples and blood serum of LmnaWT/WT and LmnaG609G/WT

mice for pathological analysis at the end of echocardiography. From these data, we suggest that
the administration of Progerinin in the HGPS model mouse can restore cardiac function and correct
arterial abnormalities. These observations provide encouraging evidence for the efficacy of Progerinin
for cardiac dysfunction in HGPS.

Keywords: Hutchinson–Gilford Progeria Syndrome (HGPS); progerin; cardiac dysfunction; fibrosis;
LmnaG609G model mouse; Progerinin

1. Introduction

Hutchinson–Gilford Progeria Syndrome (HGPS) is a rare genetic disorder caused
by an autosomal dominant mutation in the LMNA gene resulting in the accumulation of
a truncated Lamin A version called progerin. Accumulation of progerin causes nuclear dys-
function and morphological abnormalities [1–3]. Patients with HGPS develop numerous
clinical features including short stature, alopecia, scleroderma-like skin, low bone mineral
density, lipodystrophy, skeletal dysplasia, and strokes. Premature death usually occurs
in the second decade of age because of cardiovascular complications [4–7]. Transgenic
LmnaG609G knock-in mice display phenotypes characterized by somatic growth, kypho-
sis, mandible hypoplasia, malocclusion, skin and adipose tissue atrophy, cardiovascular
alterations, and shortened life span observed in patients with HGPS [8,9].

Previous studies have demonstrated that progerin strongly binds to wild-type Lamin
A leading to disruption of nuclear architecture and acceleration of premature aging [10].
Pharmacological inhibition of Lamin A-progerin interaction by Progerinin (SLC-D011)
improves cellular phenotypes in HGPS fibroblasts. Furthermore, LmnaG609G progeroid
mouse model has shown the ability of Lamin A-progerin binding inhibitor treatment to
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improve phenotypes [11]. However, the effect of Progerinin on cardiovascular function and
phenotypes has not been sufficiently proven. Given that premature cardiovascular disease
is the cause of death in most of the patients with HGPS, we sought to test the ability of
Progerinin to reduce the cardiovascular alterations seen in transgenic LmnaG609G mice.

2. Materials and Methods
2.1. Mice

All procedures with mice were performed in a facility certified by the Association
for Assessment and Accreditation of Laboratory Animal Care in compliance with animal
policies approved by Ewha Womans University. The mouse work was performed under
the study protocol (approval code: 19-042), as approved by the Institutional Animal Care
and Use Committee. Male heterozygous LmnaG609G mice, provided by Carlos López-Otín
(Universidad de Oviedo, Asturias, Oviedo, Spain), and male wild-type C57BL/6J mice
were housed at the specific pathogen-free facility.

2.2. Progerinin (SLC-D011) Synthesis and Charaterization Data

The synthetic scheme of Progerinin has already been described in our previous
study [11]. In brief, Progerinin was synthesized by removing the hydrogen from the
hydroxy of the decursinol which was isolated from the roots of Angelica gigas Nakai and
by attaching side chains. After synthesis, the unrefined Progerinin was completed as the
final compound by recrystallization. The compound was synthesized in a batch (Batch
No. A05064-013S2; Batch size: 23.5 g, which was the same batch used in our previous
study). The purity of Progerinin was measured by HPLC (≥97.5%). The molecular structure
of Progerinin was investigated using H-NMR Spectroscopy, C-NMR spectroscopy, mass
spectrometry, and X-ray diffractometry [11].

2.3. Chemical Pharmacokinetic (PK) Analysis

PK analysis of Progerinin has already been described in the previous study [11].
Briefly, 10 mg/kg of Progerinin in 10% NMP and 90% PEG400 solution were orally de-
livered. At pre-set time points, the blood concentration of Progerinin was determined by
LC-MS/MS analysis.

2.4. Preparation of Feed Pellets

For oral administration of Progerinin by diet pellets, Progerinin was suspended in
a monoolein-based solution at a concentration of 10 mg/mL. The base solution was made
of monoolein (PeceolTM (code: 3088BFC, Lot/Batch: 174894), Gattefossé, La Défense Cedex,
France) and tricaprylin (LabrafacTM lipophile WL 1349 (code: 3139BFC, Lot/Batch: 171801),
GATTEFOSSE, Lyon, France). The suspensions were heated (50 ◦C) and sonicated continu-
ously to make a clear solution. A powdered diet was mixed with the clear monoolein-based
solution consisting of Progerinin and was made into dough balls. The vehicle-group diet
was made of the clear monoolein-based solution without Progerinin. The dough balls were
stored at 4 ◦C until use.

2.5. Progerinin Treatment

Progerinin was administrated with the same dose as in the previous study [11]. Mice
were orally administrated with Progerinin-dough balls (2 g/day) daily at a concentration
of 50 mg/kg. Control mice were treated with vehicle-dough balls in the same way. Mice
were fed with a vehicle diet or therapeutic Progerinin diet starting from 38 weeks of age
and sacrificed at 50 weeks of age.

2.6. Echocardiography and Cardiac Function Analysis

Mouse-specific ultrasound Vevo2100 system used to analyze and evaluate cardiac
function and myocardial changes in detail using software such as LV analysis, PW Tissue
Doppler Mode, and VEVO strain. Echocardiography was performed after general anes-
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thesia using the inhaled anesthetic agent isoflurane (2–2.5% and 0.5 L/min oxygen) and
removal of the hair coat of the whole chest. While positioning the mouse at an angle to the
right, axis images of the left ventricle from the central thoracic and M-mode ultrasound
images at the papillary muscle level were obtained. Cardiac function was quantified by
analyzing cardiac function parameters. Before feeding and at various time points after
feeding, in vivo cardiac parameters were obtained by the images from echocardiography
and calculated using the following formula: HR (bmp) = total heart beats*60/time; SV (µL)
= EDV − ESV; CO (mL/min) = SV*HR; LV EF (%) = (LVEDV − LVESV)/LVEDD*100%; LV
FS (%) = (LVEDD − LVESD)/LVEDD*100%; DWS (%) = (LVPWs − LVPWd)/LVPWs*100%.

2.7. Western Blot for Tissue Samples

Progerin amounts in heart tissue analysis of wild-type mice, vehicle-treated LmnaG609G/WT

mice, and Progerinin-treated LmnaG609G/WT mice were evaluated by means of Western
blot analysis. Proteins were extracted with RIPA lysis buffer supplemented with protease
inhibitors. Tissues were minimized by a tissue grinder and centrifuged at 15,000 rpm for
15 min at 4 ◦C. Proteins were loaded onto SDS-PAGE gels and transferred to the PVDF
membranes. These membranes were blocked with 3% skimmed milk in TBS-T buffer for 1 h
and incubated with primary antibodies, including mouse monoclonal anti-progerin (1:100;
sc-81611; Santa Cruz Biotechnology, Dallas, TX, USA) and mouse monoclonal anti-beta
actin (1:10,000; 66009-1-Ig; Proteintech, Rosemont, IL, USA) at 4 ◦C overnight. Blots were
then incubated with goat anti-mouse IgG (1:10,000; Thermo Fisher Scientific, Waltham, MA,
USA) secondary antibody and washed with TBS-T washing buffer. Bands were developed
using the Intron ECL detection system and quantified using Image J (version: 2.9.0/1.53t,
National Institute of Health (NIH), Bethesda, MD, USA).

2.8. Histology Analysis

Tissue specimens, including the heart and ascending aorta, were fixed in 4% PFA and
embedded in paraffin. Paraffin blocks were sectioned and transferred onto adhesive-coated
slides. After deparaffinization and rehydration, tissue sections were stained with H&E
(hematoxylin and eosin), Verhoeff-Van Gieson, or Masson Trichrome. Immunohistochem-
istry was carried out using primary antibodies including anti-αSMA (1:3000; 14395-1-AP;
Proteintech, Rosemont, IL, USA) and anti-Lamin A/C (1:100; 10298-1-AP; Proteintech, Rose-
mont, IL, USA). The images of the aorta stained with Masson Trichrome were separated
into three different colors (blue, red, and green) by color deconvolution of ImageJ/FIJI to
analyze the composition of collagen (blue) and muscle tissue (red). The number of elastic
fiber breaks was measured in a single aortic ring from different individuals. The percentage
of abnormal nuclei in heart tissue was calculated based on the manual counts carried out
on randomly selected individuals in the same area of each group. Abnormalities of nuclei
were determined based on extruded or engulfed nuclear shape, and irregular contour. For
identifying clear images of nuclei, color deconvolution by ImageJ/FIJI was applied to the
IHC images, which were stained with the anti-Lamin A/C antibody.

2.9. Mouse Cytokine Array

Whole blood samples of mice were collected after sacrifice at 50 weeks of age. The
whole blood was left to clot at room temperature. Serum was collected by removing the clot
following centrifugation at 4 ◦C. Cytokine array was performed using Proteome Profiler
Mouse Cytokine Array Kit (ARY006; R&D systems, Minneapolis, MN, USA) following the
manufacturer’s instructions. The array images were quantified using HLImage++ software
6.2 (Ideal Eyes Systems, Bountiful, UT, USA).

2.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (Version 9.0.0, San Diego,
CA, USA). Data were represented as means ± standard error mean (SEM) or standard
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deviation (SD). The statistical significance was analyzed using a one-way ANOVA followed
by Tukey’s test or a two-way ANOVA Fisher’s LSD test.

3. Results

3.1. Progerinin Improves Cardiac Dysfunction in LmnaG609G/WT Mice

To measure cardiac physiology and architecture in HGPS mice, we examined cardiac
function in 38- to 50-week-old LmnaG609G/WT mice using echocardiography. Progerinin mixed
in LmnaG609G mouse dough or vehicle alone was orally administered at 50 mg/kg/day, which
has been shown previously to be an effective dose to reduce progerin level in the HGPS
mouse model (Supplementary Figure S1). Progerinin intake delayed the reduction in
body weight in LmnaG609G/WT mice compared to the vehicle group (Supplementary Figure
S2). In vivo, cardiac parameters by echocardiography revealed that HGPS mice displayed
systolic and diastolic dysfunction compared to wild-type mice (Table S1). Echocardiography
revealed no significant between-diet differences in heart rate (HR) (Supplementary Figure
S3A). Comparing the stroke volume of LmnaWT/WT mice with LmnaG609G/WT mice before
and after feeding, stroke volume was remarkably reduced in LmnaG609G/WT mice fed with
the control diet (Figure 1A). However, significant improvements were confirmed from
8 weeks (46-week-old) in the Progerinin-fed group. There was no significant difference in
cardiac output between the vehicle group and the Progerinin-fed group (Supplementary
Figure S3B). As the most common measure of cardiac function, ejection fraction (EF) is
the ratio of blood flow that has been released from the left ventricle during the heart cycle
(EF = Cardiac output/Left ventricle volume at diastolic end*100%). The LmnaG609G/WT

mice displayed overt left ventricle systolic dysfunction, with a significantly lower ejection
fraction and fractional shortening (FS) than LmnaWT/WT mice. However, the Progerinin-fed
LmnaG609G/WT group showed improvement in systolic function after 8 weeks (Figure 1B,C).
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Figure 1. Analysis of cardiac function in HGPS model mice by therapeutic drug, Progerinin. Cardiac
parameters of stroke volume (SV; (A)); ejection fraction (EF; (B)); fractional shortening (FS; (C)); and
diastolic wall strain (DWS; (D)) measured at 38, 42, 46, 48, and 50 weeks of age in the vehicle and
Progerinin-treated wild-type mice and LmnaG609G/+ mice (LmnaWT/WT Vehicle: n = 5; LmnaWT/WT

Treated: n = 6; LmnaG609G/WT Vehicle: n = 8; LmnaG609G/WT Treated: n = 7). Statistical analysis was
performed using two-way ANOVA followed by Fisher’s LSD test. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, and ns: not significant.
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We next analyzed the function of left ventricle relaxation. The LmnaG609G/WT mice showed
a reduced level of left ventricular posterior wall thickness at end-systole (LVPWs) and end-
diastole (LVPWd). Comparing the LVPWs and LVPWd between the vehicle group and the
Progerinin-fed group, LmnaG609G/WT mice showed no outstanding difference. Diastolic wall
strain (DWS) has recently been used as a left ventricle function marker, indicating the relaxation
of the left ventricle (DWS = [LVPWs − LVPWd]/LVPWs × 100 (%)). Although the difference
in DWS between LmnaWT/WT mice and LmnaG609G/WT mice in the vehicle group was not
significant, it showed a declining trend. Comparing the DWS between the vehicle group
and the Progerinin-fed group, LmnaG609G/WT mice showed remarkable differences in long-
term feeding, even though the DWS variation between mice is large (Figure 1D). These
results demonstrate the effective improvement of cardiac function of HGPS mice by the
long-term treatment of Progerinin.

3.2. Progerinin Reduces Histological Aortic Defects in LmnaG609G/WT Mice

Next, we performed microscopy studies in the aorta and heart to investigate the
histological alteration. Arterial sections obtained after necropsy were analyzed by Masson
Trichrome (MT) staining which is used in histology to differentiate collagen and muscle
fibers on tissue sections. To simplify the complex staining and overlapping stains, images
of aortic lesions were separated by using ‘color deconvolution’ of ImageJ/FIJI. MT staining
in the aorta revealed significantly higher collagen decomposition (blue) in HGPS mice,
accompanied by loss of muscle tissue (red). However, treatment with Progerinin reduced
aortic fibrosis by restoring the composition of collagen and muscle tissue as in wild-
type mice (Figures 2A and S4). To visualize elastic fibers in the aorta, the sections from
the three groups were stained with Verhoeff-Van Gieson’s stain. Verhoeff-Van Gieson
staining in the aorta of LmnaG609G/WT mice and showed an increased number of elastin
fiber breaks. However, Progerinin intake decreased the number of elastin fiber breaks
(Figures 2B,C and S5). Loss of smooth muscle cells is a hallmark of HGPS vessels. We also
observed a lack of vascular smooth muscle cells (VSMCs) by α-smooth muscle actin staining
in the aorta in LmnaG609G/WT mice. However, compared with the vehicle LmnaG609G/WT

mouse group, the composition of smooth muscle cells was remarkably restored in the
Progerinin-fed group (Supplementary Figure S6).

3.3. Progerinin Reduces Nuclear Deformation and Progerin Expression in Heart Tissue of
LmnaG609G/WT Mice

Nuclear deformation is a hallmark of HGPS [5,12,13]. Consistent with these find-
ings, immunochemistry studies demonstrated severely deformed nuclei in heart tissues
in LmnaG609G/WT mice. However, deformed nuclear shapes in heart tissues were restored
following the oral administration of Progerinin (Figures 3A and S7A). To identify abnormal
nuclei clearly, images of heart lesions were digitally separated by ImageJ/FIJI. Quantifi-
cation of abnormal nuclei in heart tissue also shows that Progerinin prevents nuclear
deformation in LmnaG609G/WT mice (Supplementary Figure S7B).
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Figure 2. Improvement of aortic fibrosis and elastic fiber breaks by Progerinin in LmnaG609G/WT mice.
(A) Masson’s trichrome staining of the aorta of wild-type mice and LmnaG609G/WT mice. Images
of aortic lesions were digitally separated into three stains (red, blue, and green) by using ‘color
deconvolution’ of ImageJ/FIJI. The blue indicates collagen decomposition, and the red indicates
muscle tissue. Progerinin restored the composition of collagen and muscle tissue in LmnaG609G/WT

mice. The scale bar represents 100 µm. Images of Verhoeff-Van Gieson staining (B) and the number
of elastic fiber breaks (C) in the aorta of wild-type mice and LmnaG609G/WT mice (LmnaWT/WT: n = 11;
LmnaG609G/WT Vehicle: n = 11; LmnaG609G/WT Treated: n = 11). The scale bar represents 25 µm.
Statistical analysis was performed using one-way ANOVA followed by Tukey’s test, * p < 0.05,
*** p < 0.001.



Cells 2023, 12, 1232 7 of 13

Cells 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

3.3. Progerinin Reduces Nuclear Deformation and Progerin Expression in Heart Tissue of 

LmnaG609G/WT Mice 

Nuclear deformation is a hallmark of HGPS [5,12,13]. Consistent with these findings, 

immunochemistry studies demonstrated severely deformed nuclei in heart tissues in 

LmnaG609G/WT mice. However, deformed nuclear shapes in heart tissues were restored fol-

lowing the oral administration of Progerinin (Figures 3A and S7A). To identify abnormal 

nuclei clearly, images of heart lesions were digitally separated by ImageJ/FIJI. Quantifica-

tion of abnormal nuclei in heart tissue also shows that Progerinin prevents nuclear defor-

mation in LmnaG609G/WT mice (Supplementary Figure S7B). 

 

Figure 3. Nuclear deformation in heart tissue is prevented by Progerinin intake. (A) Immunohisto-

chemistry (IHC) of heart tissue samples stained with an anti-lamin A/C antibody (LmnaWT/WT: n = 8; 

LmnaG609G/WT Vehicle: n = 8; LmnaG609G/WT Treated: n = 8). Images of heart lesions were separated by 

color deconvolution. The scale bar represents 10 µm. (B) Western blot analysis of progerin in the 

heart tissues of wild-type mice and LmnaG609G/WT mice. (C) Quantitative analysis of progerin expres-

sion in the heart tissues. Progerinin intake reduces the levels of progerin expression in LmnaG609G/WT 

mice (LmnaWT/WT: n = 5; LmnaG609G/WT Vehicle: n = 5; LmnaG609G/WT Treated: n = 5). Statistical analysis 

was performed using one-way ANOVA followed by Tukey’s test, ** p < 0.01, *** p < 0.001. 

Figure 3. Nuclear deformation in heart tissue is prevented by Progerinin intake. (A) Immunohisto-
chemistry (IHC) of heart tissue samples stained with an anti-lamin A/C antibody (LmnaWT/WT: n = 8;
LmnaG609G/WT Vehicle: n = 8; LmnaG609G/WT Treated: n = 8). Images of heart lesions were separated by
color deconvolution. The scale bar represents 10 µm. (B) Western blot analysis of progerin in the heart
tissues of wild-type mice and LmnaG609G/WT mice. (C) Quantitative analysis of progerin expression in
the heart tissues. Progerinin intake reduces the levels of progerin expression in LmnaG609G/WT mice
(LmnaWT/WT: n = 5; LmnaG609G/WT Vehicle: n = 5; LmnaG609G/WT Treated: n = 5). Statistical analysis
was performed using one-way ANOVA followed by Tukey’s test, ** p < 0.01, *** p < 0.001.

Next, in vivo, Progerinin activity was judged by Western blots of progerin. The graph
reveals a decrease in progerin protein in the heart tissues of LmnaG609G/WT mice by more
than 50% after treatment with Progerinin (Figure 3B). This result supports that cardiac
dysfunction and histological aberration were restored by the reduction in progerin levels
after treatment with Progerinin.

3.4. Progerinin Reverses the Levels of Cytokines in Serum of LmnaG609G/WT Mice

After 3-month treatments, we analyzed 40 different proteins in blood serum by mouse
cytokine array kit to explore Progerinin’s potential impact on the levels of cytokines and
chemokines which are related to cardiovascular function. We randomly selected three
different mice from each group of LmnaWT/WT, LmnaG609G/WT vehicle, and LmnaG609G/WT
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treated mice. Two of 40 cytokines were significantly altered in LmnaG609G/WT mice compared
to the wild-type model, including IL-1ra (IL-1 receptor antagonist) and TIMP-1 (Tissue
inhibitor of matrix metalloproteinase-1) (Supplementary Figure S8). A low level of IL-1ra
in LmnaG609G/WT mice was significantly upregulated after the Progerinin intake (Figure 4A).
Conversely, TIMP-1 was a high level of cytokines in LmnaG609G/WT mice and was signifi-
cantly down-regulated by Progerinin intake (Figure 4B). IL-1ra counter-regulates IL-1β,
a key cytokine in the development of cardiovascular diseases [14,15]. Circulating IL-1ra
expression is decreased in aged C57BL/6 mice [16]. Expression of IL-1ra was strongly
reduced in blood serum from LmnaG609G/WT mice compared to wild-type mice of the same
age (Figure 4A). However, IL-1α and IL-1β levels were not detectable. TIMP-1 is con-
sistently upregulated in myocardial fibrosis and is used as a marker of fibrosis [17,18].
Expression of TIMP-1 was significantly increased in LmnaG609G/WT mice. After a 3-month
Progerinin intake, elevated serum TIMP-1 level was markedly reduced (Figure 4B). Col-
lectively, these data support that the Progerinin-mediated pharmacological inhibition of
progerin ameliorates myocardial fibrosis and dysfunction in the HGPS mouse model.
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Figure 4. Analysis of cytokines in blood serum by Progerinin treatment. The expression level of IL-1ra
protein (A) and TIMP-1 (B) from blood serum of wild-type mice and LmnaG609G/+ mice. Samples
of blood serum were collected from 3 different mice of each group (LmnaWT/WT; LmnaG609G/WT

Vehicle; and LmnaG609G/WT Treated). Statistical analysis was performed by ordinary one-way ANOVA
(ANOVA summary p < 0.05).

4. Discussion

We have shown the efficiency of Progerinin on classical HGPS patient-derived fi-
broblasts and LmnaG609G mice: Progerinin leads to progerin degradation by interrupting
Lamin A-progerin interaction and rejuvenates the aging phenotypes of HGPS fibroblasts,
which are the increased-senescence and the decreased-proliferation. Oral administra-
tion of Progerinin to HGPS model mice improved progeroid phenotypes including life
span expansion and reduced progerin expression levels in several organs including the
lungs, liver, and kidneys [11]. We, therefore, hypothesized that Progerinin could also have
a beneficial impact on cardiac function and phenotypes of LmnaG609G/WT mice.

Premature cardiovascular disease is a major cause of death in HGPS patients [19,20].
It is known that progerin causes extensive atherosclerosis and cardiac electrophysiological
alterations that invariably result in premature aging and death [20–25]. The LmnaG609G

knock-in mouse model has histological signs of cardiovascular alterations [9,26]. The
progeroid signs were more evident and severe in LmnaG609G/G609G than in LmnaG609G/WT

mice [9]. However, in this study, all experiments were performed by using LmnaG609G/WT



Cells 2023, 12, 1232 9 of 13

mice because of the difficulty in producing enough homozygous individuals at the same
time. Here, we provide a relevant analysis of echocardiographic abnormalities and histolog-
ical changes in LmnaG609G/WT mice and show the efficacy of Progerinin that the changes are
restored by its treatment. Investigation of HGPS cardiac dysfunction with the LmnaG609G

model reveals a reduction in stroke volume, cardiac output, and diastolic function of the
left ventricle. The echocardiographic evaluation showed overall reduced systolic function
in LmnaG609G/WT mice compared to LmnaWT/WT mice. The small body size of LmnaG609G/WT

mice can reduce systolic functions because the change in body weight is related to systolic
blood pressure [27,28]. Although Progerinin shows no significant increase in weight gain,
it helps maintain body weight longer and improves systolic function in LmnaG609G/WT mice.
In addition, in the case of humans, there are several ways to evaluate the relaxation function
of the left ventricle system [29,30]. However, in the case of mice, it is difficult to measure
the relaxation function of the left ventricular system because the heart is smaller than
a human heart, and the heart rate is very high [31,32]. However, changes in DWS calculated
by LVPWs and LVPWd measurements are meaningful in mice in evaluating the diastolic
function of the left ventricle. By the long-term treatment of Progerinin, the key cardiac
function indicators such as stroke volume, ejection fraction, and fractional shortening are
improved without showing side effects.

Myocardial fibrosis is essential to cardiac remodeling, leading to heart failure and
premature death. Excessive deposition of the extracellular matrix such as collagen induces
myocardial fibrosis [33,34]. The elastic fibers, made of elastin and fibrillin-containing
microfibrils, have an important role in providing elasticity and resilience to the tissues.
Histologically, aging phenotypes in elastic fibers are characterized by thinning and frag-
mentation of elastic structures [35]. In our previous study, we showed that myocardial
fibrosis was increased in the heart of LmnaG609G/WT mice compared to wild-type mice. How-
ever, fibrosis in heart tissue was reduced by treatment with Progerinin in LmnaG609G/WT

mice [11]. Here, we show a significant increase in collagen composition and elastic fiber
breaks in the aorta of LmnaG609G/WT mice. Interestingly, Progerinin improves aortic fibrosis
and loss of elastic fiber integrity to similar levels as wild-type mice. The reduction in
smooth muscle cells in vessels is associated with aging and HGPS [23,24,36,37]. HGPS
patients who had died of myocardial infarction had severe depletion of vascular smooth
muscle cells (VSMCs) in the aortic media. The patients’ VSMCs were replaced by collagen
fibrils increasing arterial fibrosis [26]. The LmnaG609G model, used in our study, also shows
prominent VSMC depletion. We observed a significant loss of α-smooth muscle actin in
the aorta of LmnaG609G/WT mice at 50 weeks of age and these phenotypes were recovered
by Progerinin treatment (Supplementary Figure S6). These histological observations rein-
force the findings that LmnaG609G/WT mice have progressive cardiac defects compared to
wild-type mice.

Several strategies have been developed to treat HGPS, targeting the abnormal splicing
of progerin, its farnesylation, clearance, or downstream signals [7,38–41]. Progerinin targets
the progerin protein directly, and it inhibits the pathological interaction between Lamin
A and progerin. Finally, the interruption of the binding between the two proteins makes
the progerin level clear in human fibroblasts and several organs of LmnaG609G mice [11].
However, in heart tissue, the progerin level and its clearance by Progerinin treatment
have not been examined yet. Therefore, it was evaluated whether Progerinin could reduce
the levels of progerin and confirmed that its oral administration to LmnaG609G/WT mice
efficiently reduces the level of progerin in the heart tissue (Figure 3B,C). This suggests that
a significant improvement in cardiac dysfunction and histological alterations might be
mediated by the clearance of progerin in heart tissues.

Interestingly, Progerinin could also reduce the level of TIMP-1 and induce the level
of IL-1ra in the blood serum of LmnaG609G/WT mice (Figure 4). TIMP-1 is consistently
upregulated in myocardial fibrosis and is used as a marker of fibrosis [17,42,43]. Myocar-
dial fibrosis, overaccumulation of the extracellular matrix fibrillar collagens, is one of
the main features of various cardiomyopathies and accommodates cardiac systolic and
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diastolic performance [33,34,43]. Therefore, we suggest that the alteration of TIMP-1 lev-
els may be related to cardiac dysfunction and excess collagen content in the aortic wall
in HGPS mice. On the other hand, IL-1ra, a natural regulator of interleukin 1 (IL-1) cy-
tokines, is mechanistically linked to cardiovascular risk. IL-1ra blocks signals of IL-1β,
a potent proinflammatory cytokine that is implicated in the development of chronic in-
flammatory disorders such as type 2 diabetes, rheumatoid arthritis, and cardiovascular
diseases [14,44,45]. However, the relationship between IL-1ra and cardiovascular defects
remains incompletely understood [46]. In our present study, we observed that the reduction
in IL-1ra levels in LmnaG609G/WT mice is recovered by Progerinin intake, although we could
not detect other IL-1 cytokines (Supplementary Figure S7). It might be suggested from our
results that low levels of IL-1ra in HGPS model mice could be related to cardiac dysfunction.
Progerinin may have a favorable impact on the IL-1 system and cardiovascular events.

In this report, we have provided evidence that Progerinin intake has therapeutic
potential for HGPS-related cardiovascular dysfunction and histological defects by targeting
progerin suggesting that the cardiovascular disease of HGPS patients can be improved.
Several studies show that other therapeutic approaches also improve cardiac phenotypes
in progeria model mice [47–50]. Especially, lonafarnib, the only drug currently in the
market approved for HGPS treatment, improves arterial structure, and left ventricular
diastolic function [51]. Like lonafarnib, Progerinin also shows favorable effects on cardiac
function and phenotypes. However, in our previous study, we showed that treatment with
Progerinin is more non-toxic and effective than lonafarnib [11]. Along with the previous
study, the present findings may imply that Progerinin treatments could be better at reducing
the risk of premature death in HGPS.

5. Conclusions

The evaluation of in vivo cardiac parameters by echocardiography reveals that Progerinin
diet-fed LmnaG609G/WT mice have significant improvement in the key cardiac function
including stroke volume, ejection fraction, and fractional shortening compared with vehicle
diet-fed LmnaG609G/WT mice. Moreover, cardiovascular phenotypes of LmnaG609G/WT mice
are ameliorated by Progerinin intake. These results demonstrate that Progerinin has
a possibility of therapeutic strategy on the cardiovascular system in HGPS patients.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/cells12091232/s1, Figure S1: Experimental protocol of
echocardiography. Timeline of the administration of Progerinin to mice and the experimental
protocols. Echocardiography was performed at 5 time points from 38 weeks to 50 weeks of age;
Figure S2: Percentage change in body weight of experimental mouse groups over the 12-week treat-
ment period; Figure S3: Cardiac parameters of heart rate (HR; (A)); and cardiac output (CO; (B))
measured at 38, 42, 46, 48, and 50 weeks of age in vehicle and progerinin-treated mice; Figure S4:
Aortic fibrosis in wild type mice and LmnaG609G/WT mice; Figure S5: Analysis of elastic fiber of aorta in
wild type mice and LmnaG609G/WT mice; Figure S6: Composition of smooth muscle cells in wild type
mice and LmnaG609G/WT mice; Figure S7: Abnormal nuclei in heart tissue are restored by Progerinin
administration; Figure S8: Examples of Mouse Cytokine Antibody Array blots probed with the
isolated blood serum samples; Table S1: Analysis of cardiac parameters (heart rate (HR; bmp); stroke
volume (SV; µL); ejection fraction (EF; %); fractional shortening (FS; %); cardiac output (CO; ml/min);
left ventricular posterior wall thickness at end systole (LVPWs; mm); left ventricular posterior wall
thickness at end diastole (LVPWd; mm); and diastolic wall strain (DWS; %)) by echocardiography.
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