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Abstract: A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been fre-
quently used to estimate the activity of antioxidants for more than 60 years. However, the number of
reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently
reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations
(DPPH+) and anions (DPPH−) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)]
to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be
an interaction between DPPH– and Sc3+. In this study, it is demonstrated that the addition of H2O
to the DPPH•–Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm
due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate
DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR)
spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach
a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the
detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+

generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.

Keywords: radical; electron transfer; disproportionation; scandium ion; Lewis acid; comproportionation;
EPR; kinetics; reaction mechanism

1. Introduction

2,2-Diphenyl-1-picrylhydrazyl radical (DPPH•) is a neutral, stable radical that has
been frequently used to estimate the activity of antioxidants for more than 60 years [1–4]. It
is known that the radical-scavenging reactivity of antioxidants is significantly affected by
the reaction environments, such as solvents [5,6], pH [7,8], the presence of metal ions [9–18],
and so on. However, the number of reports about the reactivity of DPPH• in the presence
of metal ions is quite limited. We have demonstrated that the DPPH•-scavenging reactivity
of phenolic compounds, such as a vitamin E model, flavonoids, and hydroquinones, is
significantly enhanced in the presence of redox-inactive metal ions with a moderate Lewis
acidity, such as Mg2+ [10] and Al3+ [9]. The coordination of the metal ion to the one-electron
reduced species of DPPH• (DPPH–) may stabilize the product, resulting in the acceleration
of the electron transfer. On the other hand, DPPH• is known to undergo reversible one-
electron reduction and oxidation to produce DPPH− and the corresponding cation (DPPH+),
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respectively, in organic solvents (Figure 1A) [19–22]. We have also reported that an electron-
transfer disproportionation of DPPH• to produce DPPH+ and DPPH– occurs upon the
addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution
of DPPH• [23]. Since there is no proton sauce in this reaction system, DPPH− does not
undergo protonation to produce DPPH-H. Then, DPPH− may significantly be stabilized by
the strong Lewis acidity of Sc3+ with a formation constant of 2.3 × 103 M–1. Recently, Denzo
et al. have reported the reactivity of DPPH• in the presence of metal cations (Cu2+ and
Zn2+) and acids (HClO4 and HNO3) in MeCN [24]. A strong Brønsted acid, such as HClO4,
is required for the disproportionation of DPPH• to occur. We report herein that the addition
of water to the MeCN solution containing DPPH+, DPPH− and Sc(OTf)3 resulted in the
electron-transfer comproportionation between DPPH+ and DPPH– to regenerate DPPH•,
demonstrating the reversibility of the Sc3+-catalyzed electron-transfer disproportionation
of DPPH•. The reversible redox reactivity of DPPH• in the presence of the redox-inactive
metal ion with strong Lewis acidity shows a unique electron-transfer redox reaction of
radical species in aprotic media.

 

Revised Figure 1 

 

 

Revised Figure 7 

Figure 1. (A) Redox behavior or DPPH•. (B) Sc3+-induced disproportionation of DPPH•.

2. Results and Discussion

When Sc(OTf)3 was added to an MeCN solution of DPPH•, a decrease in the ab-
sorption band of DPPH• at 519 nm was observed, accompanied by an increase in the
absorption band at 380 nm due to the electron-transfer disproportionation [23]. The band
at 380 nm is characteristic of DPPH+. The spectral titration conducted in this study shows
the Sc(OTf)3/DPPH• molar ratio being 1:4 (Figure 2). Thus, two molecules of DPPH– are
suggested to be stabilized by one Sc3+, as shown in Figure 1B, although the [(DPPH)2Sc]+

complex has yet to be detected.
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are concentrations of DPPH• (6.6 × 10–5 M) and Sc(OTf)3 (4.2 × 10–6 M, each), respectively.

Upon the addition of H2O to this solution, the absorption band at 519 nm due to
DPPH• increased. The time course changes in the absorbance at 519 nm after the addition
of several amounts of H2O are shown in Figure 3A,B. At all the concentrations of H2O, the
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reaction has completed after 1500 s. Figure 4 shows the overlapped absorption spectra at
1500 s after the addition of varying amounts of H2O. The absorption band at 380 nm due to
DPPH+ decreased, accompanied by an increase in the absorption band at 519 nm due to
DPPH• with clear isosbestic points at 344 and 449 nm.
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Figure 3. (A) Time course change monitored by the Agilent 8453 photodiode array spectrophotometer
in the absorbance at 519 nm after the addition of H2O (closed circles 50 µL (9.3 × 10−1 M), open circles
100 µL (1.9 M), closed triangles 150 µL (2.8 M), open squares 200 µL (3.7 M), closed squares 250 µL
(4.2 M), and open triangles 300 µL (5.6 M)) to the MeCN solution containing DPPH• and Sc(OTf)3

at 298 K. The final concentrations of DPPH• and Sc(OTf)3 are 7.1 × 10−5 M and 2.0 × 10−5 M,
respectively, in 3 mL MeCN–H2O. (B) Time course change monitored by the stopped-flow spec-
trophotometer in the absorbance at 519 nm after addition of H2O (closed triangles 150 µL (2.8 M), open
squares 200 µL (3.7 M), closed squares 250 µL (4.2 M), and open triangles 300 µL (5.6 M)) to the MeCN
solution containing DPPH• and Sc(OTf)3 at 298 K. The final concentrations of DPPH• and Sc(OTf)3 are
7.1 × 10–5 M and 2.0 × 10–5 M, respectively, in 3 mL MeCN–H2O. (C) Plot of [DPPH•] vs. [H2O] at
1500 s after the addition of H2O to the MeCN solution containing DPPH• and Sc(OTf)3. The fi-
nal concentrations of DPPH• and Sc(OTf)3 are 7.1 × 10–5 M and 2.0 × 10–5 M, respectively, in
3 mL MeCN–H2O.
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The regeneration of DPPH• upon the addition of H2O to the DPPH•–Sc(OTf)3 system
in MeCN was also confirmed by the electron paramagnetic resonance (EPR) spectroscopy.
The well-resolved five lines having a g value of 2.0036 were observed in the EPR spectrum of
DPPH• in MeCN (Figure 5A). Upon addition of Sc(OTf)3 to the MeCN solution of DPPH•,
the signal intensity was significantly decreased, as shown in Figure 5B. The addition of
H2O to this reaction system resulted in the regeneration of DPPH•, which was confirmed
by the increase in the EPR signal intensity due to DPPH• (Figure 5C).

Figure 3C shows [DPPH•] vs. [H2O] at 1500 s after the addition of H2O to the
3 mL MeCN solution containing DPPH• (7.1 × 10−5 M) and Sc(OTf)3 (2.0 × 10−5 M). The
[DPPH•] values were calculated using the extinction coefficient (ε) of 1.2 × 104 M−1 cm−1

at 519 nm [2] and increased with increasing [H2O] to reach a constant value. It is suggested
that the complex formation of Sc3+ with H2O may weaken the interaction between DPPH−

and Sc3+, leading to the electron-transfer comproportionation to produce DPPH•. In fact,
a hexaaqua complex, Sc(H2O)6

3+, has been reported for the Sc3+ hydration in aqueous
perchlorate solution [25].

The rise of the absorbance at 519 nm due to DPPH• shown in Figure 3A,B obeyed
pseudo-first-order kinetics. Figure 6 shows a double logarithmic plot of the pseudo-first-
order rate constants (kobs) vs. [H2O]. The slope of this plot (dashed line in Figure 6), except
for the kobs value at 9.3 × 10−1 M H2O, is about three, suggesting that a triaqua complex,
[(DPPH)2Sc(H2O)3]+, may be formed by the addition of H2O to [Sc(DPPH)2]+ as shown
in Figure 7A. Then, the reaction B (Figure 7) occurs to produce two molecules of DPPH•,
DPPH−, and [Sc(H2O)3] as the rate-determining step followed by a rapid reaction between
DPPH− and DPPH+ to produce two molecules of DPPH• (Figure 7C).
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3. Materials and Methods
3.1. Materials

DPPH• was commercially obtained from Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan. Sc(OTf)3 was purchased from Sigma–Aldrich, St. Louis, MO, USA. MeCN (spectral
grade) used as a solvent was commercially obtained from Nacalai Tesque, Inc., Kyoto,
Japan, and used as received. The water used in this study was freshly prepared with a
Milli-Q system (Millipore Direct-Q UV3) (Merck Millipore, Burlington, MA, USA).

3.2. Spectral Measurements

Typically, a 10 µL aliquot of Sc(OTf)3 (6.1 × 10−3 M) in MeCN was added to a quartz
cuvette (10 mm i.d.) which contained DPPH• in MeCN (2.95, 2.90, 2.85, 2.80, 2.75 or
2.70 mL). This led to an electron-transfer disproportionation of DPPH• to produce DPPH+

and [(DPPH)2Sc]+. After 1 h, water (50, 100, 150, 200, 250, or 300 µL) was added to this
MeCN solution (2.95, 2.90, 2.85, 2.80, 2.75, or 2.70 mL, respectively). The molar concentra-
tions of 50, 100, 150, 200, 250, and 300 µL H2O in 3 mL MeCN–H2O are
9.3 × 10−1, 1.9, 2.8, 3.7, 4.2, 5.6 M, respectively. The final concentrations of DPPH• and
Sc(OTf)3 were 7.1 × 10−5 M and 2.0 × 10−5 M, respectively, in 3 mL MeCN–H2O. UV-
vis spectral changes associated with the reaction were monitored using an Agilent 8453
photodiode array spectrophotometer thermostated with a Peltier temperature control at
298 K (Agilent Technologies, Santa Clara, CA, USA). The regeneration rates of DPPH• were
followed by monitoring the absorbance change at 519 nm due to DPPH• on the Agilent 8453
photodiode array spectrophotometer ([H2O] = 9.3 × 10−1 and 1.9 M) or on a UNISOKU
RSP-1000-02NM stopped-flow spectrophotometer (UNISOKU Co., Ltd., Osaka, Japan),
which was thermostated with a Thermo Scientific NESLAB RTE-7 Circulating Bath (Thermo
Fisher Scientific, Inc., Waltham, MA, USA) at 298 K ([H2O] = 2.8, 3.7, 4.2, and 5.6 M). The
kobs values were obtained by a least-square curve fit using an Apple MacBook Pro personal
computer (Apple Inc., Cupertino, CA, USA). The first-order plots of ln(A∞–A) vs. time (A
and A∞ are the absorbance at the reaction time and the final absorbance, respectively) were
linear until three or more half-lives, with a correlation coefficient ρ > 0.999. In each case, it
was confirmed that the kobs values derived from at least three independent measurements
agreed within experimental error of ±5%. In all cases, solutions were normally equilibrated
with air.

3.3. EPR Measurements

The EPR spectra of DPPH• (7.1 × 10−5 M) in the presence or absence of Sc(OTf)3
(2.0 × 10−5 M) and/or H2O (5.6 M) in MeCN were taken using an LLC-04B ESR sample tube
(LABOTEC Co., Ltd., Tokyo, Japan) on a JEOL X-band spectrometer (JES-RE1X) (JEOL Ltd.,
Tokyo, Japan) at room temperature under the following conditions: microwave frequency
9.43 GHz, microwave power 8 mW, center field 338 mT, sweep width 15 mT, sweep rate
3 mT min−1, modulation frequency 100 kHz, modulation amplitude 0.2 mT, and time
constant 0.1 s. EPR data acquisition was controlled by the WIN-RAD ESR Sata Analyzer
System (Radical Research, Inc., Tokyo, Japan). The g values were calibrated with an Mn2+

marker. In all cases, solutions were normally equilibrated with air.
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4. Conclusions

The addition of H2O to the MeCN solution containing DPPH+ and [(DPPH)2Sc]+

resulted in the regeneration of DPPH•. It is suggested that the complex formation of Sc3+

with H2O may weaken the interaction between DPPH− and Sc3+, leading to the electron-
transfer comproportionation to produce DPPH•. The detailed mechanism of regeneration
of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which
the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to
[(DPPH)2Sc]+ is the rate-determining step.
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