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Abstract: With growing interest in sustainability and net-zero emissions, there has been a global trend
to integrate wind power into energy grids. However, challenges such as the intermittency of wind
energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore,
this study focuses on creating a wind-power generation-forecasting model using a machine-learning
algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-
power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied
to the model as input data. The short-term forecasting model trained by the same month with the
test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the
forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The
improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this
study potentially contributes to greater integration of wind energy.

Keywords: renewable energy; wind-power forecasting; machine learning; gradient-boosting machine
(GBM)

1. Introduction

With rising concerns about climate change, values such as sustainability and net-zero
emissions have recently emerged as objectives for governments and companies worldwide.
To achieve this goal, various policies have been implemented to increase renewable en-
ergy. South Korea has followed this green trend by enforcing the “2050 Carbon Neutral
Strategy” [1]. The government plans to achieve its objective of decarbonizing the eco-
nomic structure through the energy transition. Domestic and international efforts have
led to notable renewables. Following the IRENA report in 2022, there has been a contin-
uous growth in renewable energy in terms of both capacity and production [2]. Among
renewable-energy sources, wind energy had a 10% increase in capacity and a 12% increase
in production in 2019 compared to 2018.

Jeju Island, which is the largest island in South Korea, has been transforming into a
net-zero island by 2030 through the carbon-free island (CFI) initiative. One of its aims is
to introduce additional renewable-energy equipment to fully meet its power demand by
expanding the power capacity to 4085 MW and electricity production to 9268 GWh [3].

Among renewable resources, wind energy is evaluated as a major contributor to
CO2 emission reduction. By 2050, wind energy has the potential to reduce 6.3 Gt of CO2
emissions, accounting for 27% of energy resources [4]. Another study showed that when
applying various representative concentration pathway (RCP) scenarios, wind power is
expected to mitigate climate change by 2100 by reducing temperatures from 0.3 to 0.8 ◦C [5].

Despite its outcomes and advantages, the intermittent characteristics of wind power
remain an obstacle to the integration of wind power into electrical grids. The inability to
match the electricity demand can lead to severe damage, such as blackouts. Statistics show
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that Jeju Island underwent severalpower failures during the summer of 2021, with the total
number of households that experienced blackouts being 131,589 [6]. To solve this, significant
improvements in the accuracy of wind-power forecasting should be achieved. Recently,
artificial intelligence (AI) and machine learning have been highlighted as advanced weather-
forecasting technologies. It is believed that the application of machine learning to wind-
power forecasting could be advantageous, as it is adaptive to changes or new surroundings
and its accuracy improves with experience.

Variable renewable energy (VRE) forecasting can generally be categorized into different
timescales [7,8]. Accurate short-term forecasting of VRE allows stakeholders to benefit
from better bidding in electricity markets, enhanced unit commitment, and improved
operational planning [9]. In contrast, long-term forecasting can be used for future works
such as planning extreme-weather preparation, appropriate distribution of balancing
reserves, and so on. Therefore, this study intends to contribute to these advantages by
implementing a wind-power forecasting model.

Numerous efforts have been made to improve the accuracy of predicting the outputs
of wind power using advanced machine-learning methods. Chen and Folly developed arti-
ficial neural networks (ANNs) and adaptive neuro-fuzzy inference-system (ANFIS) models
for short-term forecasting while building an autoregressive moving average (ARMA) model
specialized in short-term forecasting [7]. Choi and Choi combined bidirectional long short-
term memory (LSTM) and convolution neural network (CNN) methods, proposing a new
hybrid model [10]. Biswas et al. improved the autoregressive integrated moving average
(ARIMA) model by integrating it with algorithms like random forest (RF) or bagging
classification and regression trees (BCART) [11]. Ahmadi et al. revealed that the gradient-
boosting algorithm has the second-best forecasting accuracy, with a minimal gap from
the lowest MAE for 1 h time-interval data [12]. Singh et al. built wind-power forecasting
models of the Yalova wind farm in Turkey using five different machine-learning algorithms:
random forest, k-nearest neighbors (k-NN), gradient-boosting machines (GBM), decision
tree, and extra tree regression [13]. Among the five regression models, GBM demonstrated
the best performance with the lowest error rates. Bankefa et al. utilized the GBM method in
the process of developing a hybrid model to determine variables that are closely related to
wind power and found that wind speed has a huge impact on wind power [14]. Several past
studies have primarily forecasted wind power using machine-learning algorithms such as
ARIMA, LSTM, etc. Contrastively, the GBM algorithm has been yielding remarkable results
in wind-power forecasting. Research utilizing the GBM algorithm has concluded that this
method possesses advantages in terms of sequentially progressing from the errors of the
previous model, leading to better performance over time [12,13]. Further exploration of the
GBM algorithm as a method to forecast wind energy should be held for precise wind-power
output prediction. Therefore, in this study, the GBM algorithm was chosen as a method
to build a short-term wind-power forecasting model. Furthermore, previous wind-power
forecasting models predicted electrical-power outputs by applying the predicted values
of wind speed to the power curve of wind turbines. However, this forecasting method
involves a huge transformation error, and hence the outdated method is now unused by
most ISOs in the U.S. Thus, the following paper uses historical data of electrical-power
outputs in MW that have been collected from the wind farms supervisory control and data
acquisition (SCADA) system and an enhanced forecasting approach that utilizes weather-
forecasting data. By investigating the ideal forecasting results of the GBM algorithm-based
model, the study further aims to utilize the forecasting results to analyze the security of the
power system.

The remainder of this paper is organized into four sections. Section 2 explains the
theoretical background of the gradient-boosting machine algorithm and the implementation
of the GBM model. Section 3 presents the results of the forecasting model and grid-security
analysis. Discussions regarding this research are presented in Section 4.
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2. Methodology
2.1. GBM Algorithm

A gradient-boosting machine (GBM) is a boosting machine-learning algorithm that
combines individual weak learners, or decision trees, to create a strong learner [15]. In
addition, for each iteration, the regression model continues to add a new decision tree to
the previous model to reduce its error rate and enhance its performance. For the forecasting
model, the GBM would build a regression model that could estimate wind power by its
correlation with wind speed.

A gradient-boosting tree represents the sum of the regression trees, as expressed by
the following equation [16]:

Fn(xt) =
n

∑
i=0

fi(xt) (1)

xt Wind speed at each time step t

fi(xt) Weak learners or decision trees (wind-power forecasts)
that were trained by each wind-speed datum

Gradient boosting consists of three main components: a weak learner, a loss function,
and an additive model [13]. The loss function represents the sum of the squared errors
of the actual and forecasted values and is what the model pursues to minimize. A new
additive model is added for each iteration by determining the residuals that minimize the
loss function. The L2 function, which is the most frequently used loss function, and the
gradient of this loss function can be expressed as [16–18]:

L2 =
1
2

L(yt, f (xt)), L(yt, f (xt)) =
N

∑
i=1

(yt − f (xt))
2 (2)

− ∂L(yt, f (xt))

∂ f (xt)
= yt − f (xt) (3)

xt Wind speed at each time step t

yt Measured wind power

f (xt) Forecasted wind power

To summarize, when writing the GBM model in recursive form, the model can be
expressed by the following equation [16]:

Fn+1(xt) = Fn(xt) + α∆n(xt) (4)

α Learning rate

∆n Regression model fitted to the residuals

2.2. Implementation of the Forecasting Model
2.2.1. Input Data and Data Splitting

The input data applied to the model were time-series data with a 15 min interval from
a wind farm located on Jeju Island (Table 1). Because wind has seasonal characteristics, the
implemented short-term forecasting models were trained by the same month and season
of the test set, whereas the long-term forecasting model was trained using the previous
month of the test set (Tables 2–4). Consequently, the training set of the monthly trained
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model had 2304 data points. The seasonally trained model included 6816 data points in its
training set. The model trained by the previous month contained the whole month of June,
which was 2880 data points. Moreover, all three of these forecasting models had the same
test set to contrast results, containing 672 data points.

Table 1. Summary of the input data.

Max Mean Min STD

Wind speed (m/s) 17.52 4.8820 0.48 2.4914
Wind power (MW) 69.6412 22.8395 0 13.9475

Table 2. Training set and test set of the GBM model trained by month.

Month Training Set Test Set

July 07. 01–07. 24 07. 25–07. 31

Table 3. Training set and test set of the GBM model trained by season.

Season Training Set Test Set

Summer
06. 01–06. 23
07. 01–07. 24
08. 01–08. 24

07. 25–07. 31

Table 4. Training set and test set of the GBM model trained by the previous month.

Previous Month Training Set Test Set

June 06. 01–06. 30 07. 25–07. 31

2.2.2. Hyperparameters

Tuning the hyperparameters can affect the performance of GBM models. The hyperpa-
rameters include the following [19].

• n.trees: number of trees;
• shrinkage: learning rate of the model;
• interaction.depth: maximum number for indicating the depth of individual trees;
• n. minobsinnode: represents the minimal number of observations in the terminal

nodes of the trees;
• bag.fraction: fraction of the training-set data chosen randomly for individual trees to

form the next tree;
• train.fraction: fraction of data employed to fit the GBM, while the rest check the loss

function’s out-of-sample forecasts;
• cv.folds: number of cross-validations. Because the GBM model only included wind

speed as a variable to predict wind power, the value of cv.folds was fixed at 1.

Because manually inputting the values of these hyperparameters would have taken
a long time, a combination of optimal hyperparameters was searched for with the grid-
search process, which combines several cases for each value to determine the lowest
RMSE value (Table 5).
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Table 5. Hyperparameters of the GBM model.

GBM Model n.trees shrinkage interaction.depth n.minobsinnode bag.
fraction

GBM model trained by
month 226 0.1 1 5 0.65

GBM model trained by
season 67 0.1 1 15 0.65

GBM model trained by
the previous month 13 0.3 3 15 0.65

The entire process of implementing the GBM-based forecasting model can be summa-
rized by the algorithm and flow charts below (Algorithm 1 and Figure 1).
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Algorithm 1: Wind-power forecasting based on GBM algorithm

Input: 15 min interval data of Jeju Island
Data: wind speed (m/s) and wind power (MW)
1 Divide the training set and test set from the input data
2 for the test data do
3 select the last week (7 days) of the month
4 for the test data do
5 select the rest of the days of the month and seasons the test data are included
6 for each forecasting model

7
search for the optimal combination of the hyperparameters through the grid-search

process
8 repeat for every forecasting model with different training datasets
9 until all the hyperparameter combinations in the grid are searched for
10 Insert the hyperparameters and train the GBM model
11 repeat for every forecasting model with different training datasets
12 until all the forecasting-model forecasting results
13 Evaluate the performance of the forecasting model by calculating the NMAE(%) value

end

3. Results and Analysis
3.1. Results
3.1.1. Forecasting Results of the GBM Model

The following line graphs depict the forecasting results of the GBM (Figures 2–4). The
black lines with circles are the measured data of wind power, whereas the blue lines with
an x mark represent the forecasted wind power.
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3.1.2. Analysis of Forecasting Results

The forecasting results of the GBM model were evaluated using performance metrics
such as NMAE, MAE, and RMSE. The research emphazes NMAE since it is the standard
metric used by the KPX (Korea Power Exchange) for calculating error rates to assess the
“Incentives for Forecasting Accuracy of Renewable Generation” [20].

NMAE =
1
n
×∑n

i=1
|αi − βi|

(Installed Capacity)
× 100 (%) (5)

n Number of data

αi Measured output

βi Forecasted output
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MAE =
1
n
×∑n

i=1|αi − βi| (6)

n Number of data

αi Measured output

βi Forecasted output

RMSE =

√
1
n ∑n

i=1(αi − βi)
2 (7)

n Number of data

αi Measured output

βi Forecasted output

The forecasting model that only included data from July had an NMAE value of
5.1507%, an MAE value of 3.0904 MW, and an RMSE value of 4.1116 MW (Table 6). In
contrast, the forecasting model that trained data for the whole summer had an NMAE
value of 5.1933%, an MAE value of 3.1160 MW, and an RMSE value of 4.1657 MW. For
long-term forecasting of one month ahead, the NMAE value turned out to be 6.9334%,
whereas the MAE value was 4.1601 MW and the RMSE value was 5.4348 MW.

Table 6. Performance evaluation of the GBM model.

Training Set NMAE
(%)

MAE
(MW) RMSE (MW)

Model trained
by month 07. 01–07. 24 5.1507% 3.0904 4.1116

Model trained
by season

06. 01–06. 23
07. 01–07. 24
08. 01–08. 24

5.1933% 3.1160 4.1657

Model trained
by the

previous month
06. 01–06. 30 6.9334% 4.1601 5.4348

A comparison was also made with the LSTM algorithm, which is one of the most
frequent methods for predicting wind power. An identical test set was selected for both
algorithms, 25 July and 25–26 July (Table 7). The GBM model trained by month had an
NMAE value of 5.5354% for 25 July and 5.8716% for 25–26 July, demonstrating a better
performance than the LSTM model, where each of its NMAE values were 7.5667% and
10.2290%, respectively. For the seasonally trained GBM model, the NMAE value was
4.7157% for 25 July and 5.4958% for 25–26 July. This is significantly lower than the NMAE
of the LSTM model, where the values were 13.6782% and 11.6396%, respectively. Likewise,
for both models trained by month and season, the GBM model also showed a better
performance when comparing MAE and RMSE values.
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Table 7. Comparison of the GBM model with the LSTM model.

Training Set Test Set
NMAE (%) MAE (MW) RMSE (MW)

LSTM GBM LSTM GBM LSTM GBM

Model trained
by month

07. 01–07. 24 07. 25 7.5667 5.5354 4.5400 3.3212 5.2518 4.1587
07. 01–07. 24 07. 25–07. 26 10.2290 5.8716 6.1374 3.5230 7.9060 4.4570

Model trained
by season

06. 01–06. 23
07. 01–07. 24
08. 01–08. 24

07. 25 13.6782 4.7157 8.2069 2.8294 9.4568 3.6257

06. 01–06. 23
07. 01–07. 24
08. 01–08. 24

07. 25–07. 26 11.6396 5.4958 6.9837 3.2975 8.8772 4.2343

3.2. Grid-Security Analysis
3.2.1. Application to Jeju’s Power System

The forecasting results were applied to Jeju’s power system using PSS/E to conduct
grid-security analysis. Cases for analysis were selected by standards based on the “General
Terms and Conditions for Electricity Supply” provided by the Korea Electric Power Corpo-
ration (KEPCO). Unlike other regions in Korea, the on-peak period of Jeju Island ranges
from 16:00 to 22:00 and does not vary by season [21].

Four cases during on-peak periods were chosen for the analysis because on-peak
periods have the highest risk of instability in the power system (Table 8). The criterion for
line fault was selected as 150% of loading, whereas the range of voltage limits varied from
0.95 to 1.05 p.u.

Table 8. Cases in conducting the grid-security analysis.

Case Applied Data Period of Data Forecasted Wind
Power (MW)

Case
#1

Maximum wind-power forecast of
the monthly trained model

during on-peak
26 July 2021 18:30 42.1144

Case
#2

Maximum wind-power forecast of
the seasonally trained model

during on-peak

26 July 2021 16:00
26 July 2021 16:15
26 July 2021 16:30
26 July 2021 16:45

36.4871

Case
#3

Average wind power of
the monthly trained model

during -peak

On-peak period
of the test set 25.596

Case
#4

Average wind power of
the seasonally trained model

during on-peak

On-peak period
of the test set 23.8444

3.2.2. Results of Grid-Security Analysis

The following table illustrates the results of the grid-security analysis (Table 9).

Table 9. Results of grid-security analysis.

Performance Case #1 Case #2 Case #3 Case #4

Low-voltage range violations 0 0 0 0
High-voltage range violations 148 0 0 0

Flow violations 1 1 1 1
Non-converged contingencies 0 0 0 0

Load-flow calculations showed that all four cases reached tolerance within 20 iterations,
leading to zero non-converged contingencies. Cases that applied average wind power off-
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peak from the forecasting models showed one flow violation in the system. In contrast, Case
#1, which estimated the highest wind-power forecast (42.1144 MW) among all the cases,
showed 148 high-voltage range violations and one flow violation. However, the maximum
wind-power forecast of the seasonally trained model during off-peak showed the same
results as the other two cases that demonstrated average wind power during off-peak.

4. Discussion

The following section underlines the key results of this paper. Considering that wind
has a seasonal element, two types of GBM forecasting models were selected: One model
had a training set including data from July, which was the same month as the test set. The
other model selected its training set from the summer season, or June to August, involving
data from the same season as the test set. In comparison, long-term forecasting was also
performed, where the test set was a month ahead of the training set.

The monthly trained model showed slightly better accuracy in forecasts, achieving
5.1507% in NMAE, whereas the seasonally trained model showed an NMAE value of
5.1933%. Despite the advantage of possessing more training data, the input data from
summer included more data points that had sufficient wind speed but had wind power
converging to zero, hindering the accuracy of forecasting. The long-term forecasting model
of the GBM algorithm had an NMAE value of 6.9334%, showing a less accurate result
compared to short-term forecasting. It could be seen that a wide gap between the period of
the training set and the test set may have decreased the accuracy in forecasting. To solve
the inaccuracy of future inputs in the forecasting results, the GBM method’s deterministic
forecasting results should be expanded to a probabilistic forecasting model. In addition,
Figures 2–4 which all depict the results of the GBM forecasting model, show that the
model requires further advancement in precisely forecasting the peaks. This phenomenon
may happen because the peaks in measured wind-power data represent high rarity, thus
making it complicated for the GBM model to forecast the peaks precisely. Since the GBM
method focuses on minimizing squared errors when building multiple regression trees, the
total aggregation of these regression trees would be more effective in predicting data that
closely resemble the general data contained in the training set. Hence, this threshold could
be relieved by including data from the past years, enlarging the variety of the training
set. Another approach for future improvements would involve calculating the average of
various GBM models with a different set of training data.

Grid-security analysis concerning low-voltage range violations, high-voltage range
violations, flow violations, and non-converged contingencies was performed to inspect
whether the forecasted wind-power outputs have the possibility of disturbing the stability
of the grid. Cases for performing the grid-security analysis include the following: the
maximum and average wind power of the monthly and seasonally trained model. These
cases were all selected from the on-peak periods, where the stability of the power system
was the most vulnerable. From Table 9, only the case with the highest wind-power value
resulted in 148 high-voltage range violations, whereas high-voltage range violations did
not occur in the other three cases. It can be concluded that a bottom line for which the
wind-power value causes high-voltage range violations existed between wind power in
Cases #1 and #3.

5. Conclusions

Ongoing issues regarding climate change have attracted the attention of policymakers
to increase the penetration of renewables all over the world. Although there is a global
trend of expanding wind power, the intermittency of wind energy remains a significant
issue for the integration of wind power into existing grids.

Therefore, this study focused on building a GBM-based wind-power forecasting model
and analyzed the security of the grid when applying forecasting results. The monthly
trained model achieved an NMAE of 5.1507%, showing the best accuracy in forecasting,
along with the seasonally trained model with an NMAE of 5.1933% and the long-term
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forecasting model with an NMAE of 6.9334%. The GBM model also proved its outstanding
performance compared to the LSTM algorithm, where the NMAE value for forecasting
two days by both models trained by month and season was lower than the LSTM by
approximately 5%.

Grid-security analysis of the selected four cases showed that only the case with the
highest wind-power value resulted in 148 high-voltage range violations, whereas the other
performances remained the same as the others. This indicates that further investigation
would be able to discover the critical point where a certain amount of wind power results
in high-voltage range violations.

Future research should expand the periods of the test set for various months and
seasons of wind-power forecasting. To improve accuracy, a data-preprocessing step should
be added to handle outliers in the input data and avoid the risk of high errors. Additional
wind-turbine data, such as cut-in speed and wind-power data from previous years, as
a control group, may help distinguish outliers. Moreover, the grid-search process for
searching for the optimal hyperparameters should be continued to reduce the error rates of
the model.
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