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Abstract
By applying the formula for essential Whittaker functions established by
Matringe and Miyauchi, we study five integral representations for irreducible
admissible generic representations of GL𝑛 over 𝑝-adic fields. In each case, we
show that the integrals achieve local formal 𝐿-functions defined by Langlands
parameters, when the test vector is associated to the new form. We give the rela-
tion between local periods involving essential Whittaker functions and special
values of formal 𝐿-factors at 𝑠 = 1 for certain distinguished or unitary represen-
tations. The period integrals are also served as standard nonzero distinguished
forms.
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1 INTRODUCTION

Let 𝐹 be a nonarchimedean local field of characteristic zero with the ring of integers  and residue field of cardinality 𝑞.
The essential vector, which is known as the local new form, plays an important role in the theory of automorphic forms.
The history of the essential vector goes back to at least Casselman, where he established a theory of new forms forGL2(𝐹)

[11]. In this paper, by applying the essential Whittaker functions (also called newforms), we study the test vector problem
and the nonvanishing of local periods for five integrals representingRankin–Selbergmodel [7, 13, 60], Flicker–Rallismodel
[1, 2, 15, 60], Jacquet–Shalika model [27, 31, 45], Friedberg–Jacquet model [17, 27, 45, 47, 48], and Bump–Ginzburg model
[10, 36, 37, 58]. The local 𝐿-functions of 𝐺𝐿𝑛(𝐹) that are associated to these integrals include the tensor product 𝐿-factor of
GL𝑛(𝐹) × GL𝑛(𝐹), the Asai 𝐿-factor, the exterior square 𝐿-factor, the Bump–Friedberg 𝐿-factor, and the symmetric square
𝐿-factor.
Let 𝜋 and 𝜎 be irreducible admissible generic representations of GL𝑛(𝐹) and GL𝑚(𝐹). For simplicity, we only illustrate

the first fundamental problem for the Rankin–Selberg integrals of GL𝑛(𝐹) × GL𝑛(𝐹) in this induction. We fix an addi-
tive character 𝜓 of conductor . Given a pair of Whittaker functions 𝑊𝜋 ∈ (𝜋, 𝜓) and 𝑊𝜎 ∈ (𝜎, 𝜓−1) and given a
Schwartz–Bruhat function Φ ∈ (𝐹𝑛), we define the local Rankin–Selberg integral [26];

Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ) = ∫
𝑁𝑛(𝐹)∖GL𝑛(𝐹)

𝑊𝜋(𝑔)𝑊𝜎(𝑔)Φ(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑔, (1.1)
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where 𝑒𝑛 = (0, … , 0, 1) and 𝑁𝑛(𝐹) is the group of unipotent matrices. It is absolute convergent for Re(𝑠) sufficiently large
and the collection of such integrals generates a fractional ideal (𝜋 × 𝜎) = ℂ[𝑞𝑠, 𝑞−𝑠]𝐿(𝑠, 𝜋 × 𝜎) of ℂ(𝑞−𝑠). We choose the
normalized generator of the form 𝐿(𝑠, 𝜋 × 𝜎) = 𝑃(𝑞−𝑠)−1, where 𝑃(𝑋) ∈ ℂ[𝑋] is a polynomial with 𝑃(0) = 1. We define a
map

(𝜋, 𝜓) ⊗(𝜎, 𝜓−1) ⊗ (𝐹𝑛) → ℂ(𝑞−𝑠) by 𝑊𝜋 ⊗ 𝑊𝜎 ⊗ Φ ↦ Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ).

Then, there exists an element in (𝜋 × 𝜎) that transports to 𝐿(𝑠, 𝜋 × 𝜎). It is a priori a finite sum of the form∑
𝑖
Ψ(𝑠,𝑊𝜋,𝑖,𝑊𝜎,𝑖, Φ𝑖). The strong test vector problem is to determine the existence of a triple of pure tensors𝑊𝜋 ∈ (𝜋, 𝜓),

𝑊𝜎 ∈ (𝜎, 𝜓−1), and Φ ∈ (𝐹𝑛), which yields Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ) = 𝐿(𝑠, 𝜋 × 𝜎) (cf. [12, section 1.6-1]). In this scenario,
(𝑊𝜋,𝑊𝜎,Φ) is called a strong test vector.
We write the Godement–Jacquet standard 𝐿-factors for 𝜋 and 𝜎 [23] as

𝐿(𝑠, 𝜋) =

𝑟∏
𝑖=1

(1 − 𝛼𝑖𝑞
−𝑠)−1 and 𝐿(𝑠, 𝜎) =

𝑝∏
𝑗=1

(1 − 𝛽𝑗𝑞
−𝑠)−1,

respectively. We construct unramified standard modules 𝜋𝑢𝑟 and 𝜎𝑢𝑟 attached to the Langlands parameter {𝛼𝑖}
𝑟
𝑖=1

and
{𝛽𝑗}

𝑝
𝑗=1

. We define the formal 𝐿-factor for a pair (𝜋, 𝜎) by

𝑟∏
𝑖=1

𝑝∏
𝑗=1

(1 − 𝛼𝑖𝛽𝑗𝑞
−𝑠)−1,

which coincides with 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) (see Proposition 3.1). In general, 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟)
−1 divides 𝐿(𝑠, 𝜋 × 𝜎)−1 inℂ[𝑞±𝑠] (see

Corollary 3.3). The purpose of this paper is to resolve the test vector problem for various formal 𝐿-factors, especially, in the
case of ramified representations through local means. We call this problem the weak test vector problem and an associated
triple (𝑊𝜋,𝑊𝜎,Φ) a weak test vector. The reader should consult later sections for details about the unexplained notations
in the exact statements below.

Theorem 1.1 (Weak Test Vector Problems).

(i) [Rankin–Selberg 𝐿-factors] Let 𝜋 and 𝜎 be irreducible admissible generic representations of GL𝑛(𝐹). Then, we have

𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) = ∫
𝑁𝑛∖GL𝑛(𝐹)

𝑊◦
𝜋(𝑔)𝑊

◦
𝜎(𝑔)Φ𝑐(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑔.

(ii) [Asai 𝐿-factors] Let 𝜋 be irreducible admissible generic representations of GL𝑛(𝐸) and 𝐸 a quadratic extension of 𝐹.
Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) = ∫
𝑁𝑛∖GL𝑛(𝐹)

𝑊◦
𝜋(𝑔)Φ𝑐(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑔.

(iii) [Symmetric square 𝐿-factors] Let 𝜋 be irreducible admissible generic representations of GL𝑚(𝐹). Then, we have

(𝑠, 𝜋𝑢𝑟, Sym
2) = ∫

𝒵𝑚𝑁𝑚∖GL𝑚(𝐹)

𝑊◦
𝜋(𝑔)𝑊

𝑒◦

𝜃
𝜓
𝑚

(𝑔)𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
(𝑔)𝑑𝑔.

The weak test vector problem has been resolved for formal exterior square 𝐿-factors 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) and formal Bump–

Friedberg 𝐿-factors 𝐿(𝑠1, 𝜋𝑢𝑟)𝐿(𝑠2, 𝜋𝑢𝑟, ∧
2) by Miyauchi and Yamauchi [52]. For different rank cases 𝑛 > 𝑚, Booker,

Krishnamurthy, and Lee [8] work out formal Rankin–Selberg 𝐿-factors 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟). A major shortcoming for treat-
ing Rankin–Selberg integrals of different rank groups is that Schwartz–Bruhat functions 𝑔 ↦ Φ(𝑒𝑚𝑔) defined on GL𝑚(𝐹)

as seen in (1.1) are no longer present, so one is not able to control the last row of the element 𝑔 in the smaller groupGL𝑚(𝐹).
In order to incorporate the absence, they develop a novel approach of unipotent averaging to modify the essential Whit-
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taker function defined on the bigger groupGL𝑛(𝐹). This feature does not happen to our circumstance and our machinery
can be applied uniformly to other GL𝑛(𝐹)-type formal local 𝐿-functions.
The construction of the strong test vector for Rankin–Selberg 𝐿-factors 𝐿(𝑠, 𝜋 × 𝜎) with 𝑛 ≥ 𝑚 is carried out as a main

part of the PhD thesis by Kim [38, Theorem 2.1.1] supervised by Cogdell, when at least one of two representations 𝜋

and 𝜎 is unramified. The strong test vector problem is pursued by Kurinczuk and Matringe [39] for a pair of discrete
series representations 𝜋 and 𝜎, though the space(𝜎, 𝜓−1) is enlarged to the Whittaker model for the standard module
associated to 𝜎. Recently, Humphries [21] completed the case of standard 𝐿-factors 𝐿(𝑠, 𝜋). There has been renowned
work [4] involved in determining an explicit Whittaker function and a characteristic function for local Asai 𝐿-functions
𝐿(𝑠, 𝜋, 𝐴𝑠), but again, the strong test vector is the Paskunas–Stevens’s cut-offWhittaker function relying on the type theory
of Bushnell–Kutzko. Until this moment, it is unclear that pure tensors arising from newforms solve strong test vector
problems even for Rankin–Selberg or Asai 𝐿-factors and what the concrete formulas for strong test vectors would look
like in the general context. Besides general linear groups, adapting newforms as previously discussed, parallel strong test
vector problems have been investigated by Miyauchi [51] for 𝐿-factors of unramified U(2, 1), and by Roberts and Schmidt
[53, Theorem 7.5.4] for 𝐿-factors of GSp(4) attached to irreducible generic admissible representations.
Let 𝐻 be a closed subgroup of GL𝑛(𝐹) and 𝜒 a character of 𝐻. Let Hom𝐻(𝜋, 𝜒) be the space of the linear forms Λ ∶

𝑉 → ℂ𝜒 such that Λ(𝜋(𝑔)𝑣) = 𝜒(𝑔)Λ(𝑣) for 𝑔 ∈ 𝐻 and 𝑣 ∈ 𝑉. We say that 𝜋 is (𝐻, 𝜒)-distinguished if Hom𝐻(𝜋, 𝜒) ≠
0. In particular, if 𝜒 = 𝟏𝐻 is a trivial character of 𝐻, 𝜋 is called 𝐻-distinguished. In order to present what to expect,
we shall attempt to elaborate the second main problem for by-now well known as Flicker–Rallis periods [60, section
3.2], which first appeared in [14, section 3]. Let 𝐸∕𝐹 be a quadratic extension. We specify the cases 𝐺 = GL𝑛(𝐸) and
𝐻 = GL𝑛(𝐹). Let 𝜋 be an irreducible admissible representation of 𝐺. One of important parts for 𝐻-distinguished generic
representations is that an explicit𝐻-invariant linear functional in the spaceHom𝐻(𝜋|𝐻, 𝟏𝐻) can be realized as an integral
over𝑁𝑛(𝐹)∖𝑃𝑛(𝐹) ≃ 𝑁𝑛−1(𝐹)∖GL𝑛−1(𝐹) [2, Theorem 1.1], [1, Corollary 1.2], where 𝑃𝑛(𝐹) denotes the mirabolic subgroup
consisting of invertible matrices whose last row equals to 𝑒𝑛. Up to multiplication by scalars, the one-dimensionality of
the spaceHom𝑃𝑛(𝐹)(𝜋|𝑃𝑛(𝐹), 𝟏𝑃𝑛(𝐹)), as a consequence of [15, Proposition 11] and [46, Proposition 2.3] (cf. [1, Theorem 1.1],
[42, Proposition 1.1]), ensures that such a unique 𝐻-invariant form on the Whittaker model (𝜋, 𝜓𝐸) can be precisely
written down as

Λ𝐹𝑅(𝑊𝜋) = ∫
𝑁𝑛(𝐹)∖𝑃𝑛(𝐹)

𝑊𝜋(𝑝)𝑑𝑝 = ∫
𝑁𝑛−1(𝐹)∖GL𝑛−1(𝐹)

𝑊𝜋

(
𝑔

1

)
𝑑𝑔.

It is known to be convergent under the unitarity assumption [14, p. 306], but even in the nonunitary case, we could make
sense of the above integral when 𝜋 is distinguished with respect to𝐻 [2, Remark 2]. This extension property from 𝑃𝑛(𝐹) to
𝐻-invariant forms was brought to Bernstein’s attention in the framework of Rankin–Selberg periods [7, Proposition 5.3].
The second aim of this paper is to formulate a relation between the values of local period integrals at essentialWhittaker

functions and special values of formal 𝐿-factors, or their ratios to Tate’s 𝐿-factors at 𝑠 = 1, other than the Flicker–Rallis
period. As a byproduct, we provide a nice application to the nonvanishing of local period integrals. In addition, we give a
constructive and purely local proof of the existence of some nonzero invariant functionals, which reflects on Bernstein’s
well-known principle. As before, the reader is advised to consult the following sections for undefined terminologies in the
central result of this paper below.

Theorem 1.2 (Local Periods).

(i) [Rankin–Selberg Periods] Let 𝜋 and 𝜎 be irreducible admissible generic representations of GL𝑛(𝐹) such that 𝜋 ⊗ 𝜎 is
distinguished with respect to GL𝑛(𝐹). Then, we have

∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑊

◦
𝜋∨(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟 × 𝜋∨

𝑢𝑟) if 𝜋 is ramified,
𝐿(1, 𝜋 × 𝜋∨)

𝐿(𝑛, 𝟏𝐹×)
otherwise.

(ii) [Jacquet–Shalika Periods] Let 𝜋 be a irreducible admissible generic representation of GL2𝑛(𝐹), which is distinguished
with respect to (𝑆2𝑛, Θ). Then, we have

∫
𝑁𝑛∖𝑃𝑛

∫𝑛∖𝑛

𝑊◦
𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1, 𝜋, ∧2)

𝐿(𝑛, 𝟏𝐹×)
otherwise.
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Moreover, if 𝜋 is unitary, then the integral realizes the unique Jacquet–Shalika functional in the spaceHom𝑆2𝑛 (𝜋,Θ).
(iii) [Friedberg–Jacquet (Linear) Periods] Let 𝜋 be an irreducible admissible generic representation of GL2𝑛(𝐹), which is

distinguished with respect to𝐻2𝑛. Then, we have

∫
(𝑁2𝑛∩𝐻2𝑛)∖(𝑃2𝑛∩𝐻2𝑛)

𝑊◦
𝜋(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1∕2, 𝜋𝑢𝑟)𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1∕2, 𝜋)𝐿(1, 𝜋, ∧2)

𝐿(𝑛, 𝟏𝐹×)
otherwise.

Moreover, if𝜋 is unitary, then the integral realizes the uniqueFriedberg–Jacquet functional in the spaceHom𝐻2𝑛
(𝜋, 𝟏𝐻2𝑛

).
(iv) [Bump–Ginzburg Periods] Let 𝜋 be an irreducible admissible unitary generic representation ofGL𝑚(𝐹). Then, we have

∫
𝒵𝑚𝑁𝑚∖𝐺𝑚

𝑊◦
𝜋(𝑔)𝑊

𝑒◦

𝜃
𝜓
𝑚

(𝐬(𝑔))𝑓
𝐾1(𝔭

𝑐)

(1)
(𝐬(𝑔))𝑑𝑔 = (1, 𝜋𝑢𝑟, Sym

2).

Moreover, if 𝜋 is 𝜃-distinguished, the integral realizes the unique 𝐺𝑚-invariant trilinear form in the space Hom𝐺𝑚
(𝜋 ⊗

𝜃
𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
).

Our result can be considered as weak test vector problems for period integrals and it is greatly influenced by the work
of Anandavardhanan andMatringe [2] in which the analog expression for Flicker–Rallis period integrals was established.
A similar formalism for Jacquet–Shalika periods appeared in [19], although Grobner only considered unitary representa-
tions as a local component of a cuspidal automorphic representation, which is sufficient to their global applications. The
preprint [19] was built upon generous explanation of N. Matringe [19, Abstract] and we take this occasion to announce
formally and extend his result to more general settings.
The distinction condition is superfluous if our representations𝜋 (and if necessary𝜎) are assumed to beunitary.However,

with the exception of Bump–Ginzburg period cases, we do impose the distinction assumption in nonunitary generic cases.
The main rationale to rule out 𝜃-distinguished representations is that the equality 𝐿(𝑠, 𝜋, Sym2) = (𝑠, 𝜋, Sym2) is solely
available for 𝑛 = 2 [33], where 𝐿(𝑠, 𝜋, Sym2) is defined by the normalized generator of a fractional ideal as explained in [58,
Definition 3.12]. Therefore, we cannot guarantee the holomorphy of Bump–Ginzburg integrals at 𝑠 = 1 (see Remark 6.9).
We hope that we tackle this issue for representations of higher ranked groups in our work in progress. Unlike other period
integrals, a keen readermay notice that our expression for Bump andGinzburg period integrals is taken over general linear
groups, which admits trilinear forms in the same space Hom𝐺𝑚

(𝜋 ⊗ 𝜃
𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

) as the one in [58, Theorem
2.14.(2)]. But we can still manipulate period integrals in such a way that they are integrated over mirabolic subgroups (see
Remark 6.8).
In contrast to Rankin–Selberg and Flicker–Rallis periods, the unitary hypothesis is required for the corresponding

results to execute aforementioned Bernstein’s extension philosophy [7, Proposition 5.3], because we do not have at most
one-dimensionality of larger spaces Hom𝑆2𝑛∩𝑃2𝑛

(𝜋,Θ), Hom𝐻2𝑛∩𝑃2𝑛
(𝜋, 𝟏𝐻2𝑛∩𝑃2𝑛

), and Hom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

)

for nonunitary generic cases. We anticipate that the unitarity assumption is unnecessary. Thankfully, somehow this
stronger uniqueness is only relevant for beautiful applications to the characterization of the occurrence of (exceptional)
poles of local 𝐿-functions in terms of the existence of the unique nonzero invariant form. There has been a flurry of work
on exploring this subject extensively byMatringe for Rankin–Selberg 𝐿-factor [47, Proposition 4.6], Asai 𝐿-factor [42, The-
orem 3.1], and Bump–Friedberg 𝐿-factor [47, Proposition 4.12], by the author for exterior square 𝐿-factor [31, Lemma 3.2],
and by Yamana for symmetric square 𝐿-factor [58, Theorem 3.17]. In practice, the connection between poles of local 𝐿-
function and distinctions has to be proven beforehand to establish inductive relations of 𝐿-factors. Over the course of the
discussion, it is raised by Kaplan [36, Remark 4.18] whether 𝜃-distinguished discrete series will be self-dual or not in the
frame of positive characteristic fields. It is our belief that Bump–Ginzburg periods can be transferred to 𝜃-distinguished
representations and ultimately the distinction sheds some light on Kaplan’s question by detecting (exceptional) poles of
𝐿(𝑠, 𝜋, Sym2). We plan to turn to his observation in the near future.
Our proof takes the chief ingredient from the formula for essential Whittaker functions associated to essential vectors

on the subtorus [24, 25]. The key formulation is constructed independently by Matringe [44, Corollary 3.2] and Miyauchi
[50, Theorem 4.1], which generalizes Shintani’s method for spherical representations. In the spirit of [20], it would be
interesting to find analogous weak test vectors attached to essential Whittaker functions for archimedean GL𝑛-type local
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Zeta integrals [22] (slightly different problems concerning cohomological vectors have been suggested in [12, section 1.6-
2]).
The brief structure of this paper is the following. Section 2 contains preliminaries, including the review of Langlads

parameters, essential vector andWhittaker functions, and the theory of the local standard 𝐿-functions. For the remaining
sections, the first half of each section deals with unitary generic cases and the parallel construction for nongeneric cases
is presented in the second half. The theory of local Rankin–Selberg integrals occupies Section 3. This serves to overview
our methodology that is repeated throughout the paper. In Section 4, we mainly quote crucial results about Flicker–Rallis
period integrals and Asai 𝐿-factors from [2]. We discuss local exterior square 𝐿-functions and their related periods by
Jacquet and Shalika in Sections 5.1 and 5.2 and by Bump and Friedberg in Sections 5.3 and 5.4. Section 6 is devoted to
finding test vectors for the Bump–Ginzburg period and symmetric square 𝐿-factors associated to Langlands parameters.

2 ESSENTIAL VECTORS

Let 𝐹 be a nonarchimedean local field of characteristic zero,  the ring of integers of 𝐹, 𝔭 a unique prime ideal of , and
𝜛 a fixed choice of a uniformizer of the prime ideal. Let 𝑞 denote the cardinality of its residue field. Let | ⋅ | denote the
standard normalization so that |𝜛| = 𝑞−1. The character of GL𝑛(𝐹) given by 𝑔 ↦ |det(𝑔)| is denoted by 𝜈.
We denote by 𝐹(𝑛) the set of the equivalent classes of all irreducible admissible complex valued representations

of GL𝑛(𝐹) and by 𝐹 the union ∪𝑛𝐹(𝑛). We recall that Δ ∈ 𝐹(𝑛) is called quasi-square integrable if, after twisting
by a character, it is square integrable (also called discrete series). The quasi-square integrable representations of GL𝑛(𝐹)

have been classified by Bernstein and Zelevinsky. According to [59, Theorem 9.3], such a representation Δ is the unique
irreducible quotient of the form

Ind
GL𝑛(𝐹)
Q (𝜌𝜈1−𝓁 ⊗ 𝜌𝜈2−𝓁 ⊗ ⋯ ⊗ 𝜌)

where the induction is a normalized parabolic induction from the standard parabolic subgroup Q attached to the par-
tition (𝑎, 𝑎, … , 𝑎) of 𝑛 = 𝑎𝓁 and 𝜌 ∈ 𝐹(𝑎) is supercuspidal. Briefly Δ is parameterized by 𝜌 and we denote by Δ(𝜌) =

[𝜌𝜈1−𝓁, 𝜌𝜈2−𝓁, … , 𝜌] such a quotient. Further,Δ is square integrable if and only if the supercuspidal representation 𝜌𝜈
−

𝓁−1

2

is unitary. Also [𝜌𝜈1−𝓁, 𝜌𝜈2−𝓁, … , 𝜌] is said to be a segment.
Let P be a standard upper parabolic subgroup of GL𝑛(𝐹) of type (𝑛1, 𝑛2, … , 𝑛𝑡) with 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑡. We write 𝛿P

for the modulus character of P. For each 1 ≤ 𝑖 ≤ 𝑡, let Δ0
𝑖
∈ 𝐹(𝑛𝑖) be a square integrable representation. Let (𝑠1, 𝑠2, … , 𝑠𝑡)

be a sequence of ordered real numbers so that 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑡. The normalized induced representation

Ind
GL𝑛(𝐹)
P (Δ0

1𝜈
𝑠1 ⊗ Δ0

2𝜈
𝑠2 ⊗ ⋯ ⊗ Δ0

𝑡 𝜈
𝑠𝑡 )

is called a standard module ofGL𝑛(𝐹). If 𝜋 ∈ 𝐹(𝑛), it is well known that it is realized as the unique irreducible quotient,
called the Langlands quotient, of some standard module of GL𝑛(𝐹).
We set𝐺𝑛 = GL𝑛(𝐹). Let 𝐵𝑛 be the Borel subgroup of upper triangular matrices in𝐺𝑛, and𝑁𝑛 its unipotent radical. The

maximal torus of 𝐺𝑛 consisting of all diagonal matrices is denoted by 𝐴𝑛. We write 𝑍𝑛 to denote the center consisting of
scalar matrices. We define 𝑃𝑛 the mirabolic subgroup of 𝐺𝑛 given by

𝑃𝑛 =

{(
𝑔𝑛−1 𝑥

1

) ||||| 𝑔𝑛−1 ∈ 𝐺𝑛−1, 𝑥 ∈ 𝐹𝑛−1

}
.

We denote by𝑈𝑛 the unipotent radical of 𝑃𝑛 and we put 𝑃𝑛−1,1 = 𝑍𝑛𝑃𝑛. As a group, 𝑃𝑛 possess a structure of a semidirect
product 𝑃𝑛 = 𝐺𝑛−1 ⋉ 𝑈𝑛.
We fix a nontrivial unramified character 𝜓, so 𝜓() = 1 but 𝜓(𝜛−1) ≠ 1. We let 𝜓 denote by abuse of notation the

character of 𝑁𝑛 defined by

𝜓(𝑛) = 𝜓(

𝑛−1∑
𝑖=1

𝑛𝑖,𝑖+1), 𝑛 = (𝑛𝑖,𝑗) ∈ 𝑁𝑛.
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An admissible representation 𝜋 of 𝐺𝑛 is said to be generic if 𝜋 is (𝑁𝑛, 𝜓)-distinguished, namely,

Hom𝐺𝑛
(𝑉, Ind

𝐺𝑛

𝑁𝑛
(𝜓)) ≃ Hom𝑁𝑛

(𝑉,ℂ𝜓) ≠ 0.

Then, there exist a nonzero linear form called aWhittaker functional 𝜆 ∶ 𝑉 → ℂ𝜓 satisfying 𝜆(𝜋(𝑛)𝑣) = 𝜓(𝑛)𝜆(𝑣) for 𝑛 ∈

𝑁𝑛 and 𝑣 ∈ 𝑉. It is known that for either an irreducible representation [18, TheoremA] or a standardmodule𝜋 [28, section
1.2], the space of such a functional is of dimension 1. Let(𝜋, 𝜓) denote theWhittaker model via the space of functions
(𝑊𝜋)𝑣 on 𝐺𝑛 defined by (𝑊𝜋)𝑣(𝑔) = 𝜆(𝜋(𝑔)𝑣) for 𝑣 ∈ 𝑉.
For a ramified generic representation 𝜋 ∈ 𝐹(𝑛), the unramified standard module 𝜋𝑢𝑟 ∈ 𝐹(𝑝) with 𝑝 < 𝑛 [44,

Definition 1.3] is associated to 𝜋 as follows. Let

𝜋 = Ind
GL𝑛(𝐹)
P (Δ1(𝜌1) ⊗ Δ2(𝜌2) ⊗ ⋯ ⊗ Δ𝑡(𝜌𝑡)) ∈ 𝐹(𝑛)

be a ramified generic representation. If𝔛𝑢𝑟(𝜋) ∶= {𝜌𝑖 ∶ 𝜌𝑖 is an unramified character of 𝐹×}, the subset of {𝜌1, 𝜌2, … , 𝜌𝑝},
is not empty, we denote by 𝛼1, 𝛼2, … , 𝛼𝑝 the ordered (maybe equal) elements of 𝔛𝑢𝑟(𝜋) satisfying Re(𝛼𝑖) ≥ Re(𝛼𝑖+1). We
define 𝜋𝑢𝑟 as the trivial representation 𝟏 when𝔛𝑢𝑟(𝜋) is empty and the unramified standard module

𝜋𝑢𝑟 ∶= Ind
GL𝑝(𝐹)

𝐵𝑝
(𝛼1 ⊗ 𝛼2 ⊗ ⋯ ⊗ 𝛼𝑝)

otherwise. A significance for deploying 𝜋𝑢𝑟 is that the shape of the standard 𝐿-factor for the original representation 𝜋 is
encoded in the standard 𝐿-factor for 𝜋𝑢𝑟 [23].

Theorem 2.1 (Godement and Jacquet). Let 𝜋 ∈ 𝐹(𝑛) be a generic representation. Then,

𝐿(𝑠, 𝜋) = 𝐿(𝑠, 𝜋𝑢𝑟) =

𝑝∏
𝑖=1

(1 − 𝛼𝑖(𝜛)𝑞−𝑠)−1.

We call the set {𝛼𝑖(𝜛)}
𝑝
𝑖=1

the Langlands parameter of𝜋. If𝜋 is unramified, they agree with the usual Satake parameters.
The standard local 𝐿-function 𝐿(𝑠, 𝜋𝑢𝑟) is nothing but employed to define what is called the naive Rankin–Selberg 𝐿-factors
in [8] and the formal exterior square 𝐿-functions in [52].
Let 𝐾𝑛 = GL𝑛() be the maximal compact subgroup of 𝐺𝑛. For each nonnegative integer 𝑐, we define the congruence

subgroup 𝐾1(𝔭
𝑐) of 𝐾𝑛 by

𝐾1(𝔭
𝑐) ∶=

⎧⎪⎨⎪⎩𝑔 ∈ 𝐾𝑛

|||||||| 𝑔 ≡
⎛⎜⎜⎜⎝

∗ ∗
⋮
∗

0⋯0 1

⎞⎟⎟⎟⎠ (mod 𝔭𝑐)

⎫⎪⎬⎪⎭.
We write 𝑉𝐾1(𝔭

𝑐) for 𝐾1(𝔭
𝑐)-fixed vectors in 𝑉. One of the main results of [24, 25] is that there exists a nonnegative 𝑐 such

that 𝑉𝐾1(𝔭
𝑐) ≠ {0}. We denote by 𝑐(𝜋) the smallest integer with this property. The nonnegative integer 𝑐(𝜋) is called the

conductor of 𝜋 where we set 𝑐(𝜋) = 0 if 𝜋 is unramified. Then, 𝑉𝐾1(𝔭
𝑐(𝜋)) is one-dimensional. There is a unique vector 𝑣◦

in the space 𝑉𝐾1(𝔭
𝑐(𝜋)) up to scalar multiplication, called the essential vector or the newform, with the associated essential

Whittaker function 𝑊◦
𝜋 ∶= (𝑊𝜋)𝑣◦ satisfying the condition 𝑊◦

𝜋(𝐼𝑛) = 1. If 𝜋 is unramified, 𝑊◦
𝜋 is what is said to be the

normalized spherical Whitaker function (cf. [8, section 2]). The explicit relation between the essential Whittaker function
𝑊◦

𝜋 and the normalized spherical Whittaker function𝑊◦
𝜋𝑢𝑟

has been independently unveiled by Matringe [44, Corollary
3.2] and Miyauchi [50, Theorem 4.1].

Theorem 2.2 (Matringe and Miyauchi). Let 𝜋 ∈ 𝐹(𝑛) be a ramified generic representation. Let 𝑎 = diag(𝑎1, 𝑎2, … , 𝑎𝑛) be
a torus element and 𝑎′ a truncated element of 𝑎 given by 𝑎′ = diag(𝑎1, 𝑎2, … , 𝑎𝑟) ∈ 𝐴𝑟. Then, we have

𝑊◦
𝜋

(
𝑎

1

)
= 𝑊◦

𝜋𝑢𝑟
(𝑎′)𝜈

𝑛−𝑟

2 (𝑎′)𝟏(𝑎𝑟)
∏

𝑟<𝑘<𝑛

𝟏×(𝑎𝑘).

 15222616, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100392, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



JO 345

Let (𝐹𝑛) be the space of locally constant and compactly supported functions Φ ∶ 𝐹𝑛 → ℂ. We define the test function
Φ𝑐 ∈ (𝐹𝑛) by characteristic functions 𝟏𝑛 for 𝑐 = 0, and 𝟏

(𝔭𝑐)
𝑛−1

×(1+𝔭𝑐)
for 𝑐 > 0. We highlight that the last entry of 𝟏𝑛

may not lie in the unit of the ring of integers for 𝑐 = 0.
For 𝑐 ≥ 0, depending on the choice of representations, we normalize the Haar measure on 𝑁𝑛, 𝐴𝑛, 𝑃𝑛, and 𝐾𝑛 so that

the volumes of 𝑁𝑛 ∩ 𝐾1(𝔭
𝑐), 𝐴𝑛 ∩ 𝐾1(𝔭

𝑐), 𝑃𝑛 ∩ 𝐾1(𝔭
𝑐), and 𝐾1(𝔭

𝑐) are all one, respectively (cf. [52, section 3]). We embed

𝐺𝑛−1 into 𝐺𝑛 via the map 𝑔 ↦

(
𝑔

1

)
. Regarded as subgroups of 𝐺𝑛−1, we normalize the Haar measure on 𝑁𝑛−1, 𝐴𝑛−1,

and 𝐾𝑛−1 so that vol(𝑁𝑛−1 ∩ 𝐾𝑛−1) = vol(𝐴𝑛−1 ∩ 𝐾𝑛−1) = vol(𝐾𝑛−1) = 1 (cf. [2, Proof of Theorem 6.1]).

3 RANKIN–SELBERG 𝑳-FACTORS

We review the definition of local 𝐿-functions attached to pairs, using the formulation of Jacquet, Piatetski–Shapiro, and
Shalika [26]. Let 𝜋 ∈ 𝐹(𝑛) and 𝜎 ∈ 𝐹(𝑚) be generic representations with associated Whittaker models (𝜋, 𝜓) and
(𝜎, 𝜓−1), respectively. Let {𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛} be the standard row basis of 𝐹𝑛. For each pair of Whittaker functions 𝑊𝜋 ∈

(𝜋, 𝜓) and 𝑊𝜎 ∈ (𝜎, 𝜓−1) and in the case 𝑛 = 𝑚 each Schwartz–Bruhat function Φ ∈ (𝐹𝑛), we associate the local
Rankin–Selberg integrals

Ψ(𝑠,𝑊𝜋,𝑊𝜎) = ∫
𝑁𝑚∖𝐺𝑚

𝑊𝜋

(
𝑔

𝐼𝑛−𝑚

)
𝑊𝜎(𝑔)|det(𝑔)|𝑠− 𝑛−𝑚

2 𝑑𝑔

in the case 𝑛 > 𝑚, and in the case 𝑛 = 𝑚

Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ) = ∫
𝑁𝑛∖𝐺𝑛

𝑊𝜋(𝑔)𝑊𝜎(𝑔)Φ(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑔.
These integral converge absolutely for Re(𝑠) ≫ 0. Let (𝜋 × 𝜎) denote the complex linear span of the local integrals
Ψ(𝑠,𝑊𝜋,𝑊𝜎) if 𝑛 > 𝑚 and that of Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ) if 𝑚 = 𝑛. The space (𝜋 × 𝜎) is a ℂ[𝑞±𝑠]-fractional ideal of ℂ(𝑞−𝑠)

containing the constant 1. Since the ring ℂ[𝑞±𝑠] is a principal ideal domain and 1 ∈ (𝜋 × 𝜎), we can take a normalized
generator of the form 𝑃(𝑞−𝑠)−1 with 𝑃(𝑋) ∈ ℂ[𝑋] having 𝑃(0) = 1. The local Rankin–Selberg 𝐿-function attached to 𝜋 is
defined by

𝐿(𝑠, 𝜋 × 𝜎) =
1

𝑃(𝑞−𝑠)
.

In particular, for a pair (𝜋, 𝜎) of spherical representations, the local 𝐿-function 𝐿(𝑠, 𝜋 × 𝜎) coincides with the formal local
𝐿-function 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟).

Proposition 3.1. [26, Proposition 9.4] Let {𝛼𝑖}
𝑟
𝑖=1

and {𝛽𝑗}
𝑝
𝑗=1

denote the Langlands parameter of𝜋 and 𝜎, respectively. Then,
we have

𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) =

𝑟∏
𝑖=1

𝑝∏
𝑗=1

(1 − 𝛼𝑖(𝜛)𝛽𝑗(𝜛)𝑞−𝑠)−1.

3.1 The Rankin–Selberg period

We construct a pair of Whittaker functions associated to newforms and the characteristic function such that the resulting
Rankin–Selberg integral attains the formal tensor product 𝐿-factors.

Theorem 3.2. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be generic representations. We set 𝑐 = max{𝑐(𝜋), 𝑐(𝜎)}. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) = Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐).
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Proof. The computation is almost identical to [44, Corollary 3.3], and hence we only convey the key points. Based
on the symmetry 𝐿(𝑠, 𝜋 × 𝜎) = 𝐿(𝑠, 𝜎 × 𝜋), we may assume that 𝜎 is ramified and 𝑟 ≥ 𝑝. Appealing to the Iwasawa
decomposition,

Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐) = ∫

𝐾𝑛
∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝𝑘)𝑊

◦
𝜎(𝑝𝑘)|det(𝑝)|𝑠−1 ∫

𝐹×

Φ𝑐(𝑒𝑛𝑧𝑝𝑘)(𝜔𝜋𝜔𝜎)(𝑧)|𝑧|𝑛𝑠𝑑×𝑧𝑑𝑝𝑑𝑘.

As pointed out in [52, Lemma 2.6], 𝑔 ↦ Φ𝑐(𝑒𝑛𝑔) is the characteristic function on 𝑃𝑛𝐾1(𝔭
𝑐) and this becomes

Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐) = ∫

𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑊

◦
𝜎(𝑝)|det(𝑝)|𝑠−1 ∫

1+𝔭𝑐

Φ𝑐(𝑒𝑛𝑧)(𝜔𝜋𝜔𝜎)(𝑧)|𝑧|𝑛𝑠 𝑑×𝑧𝑑𝑝

= ∫
𝑁𝑛−1∖𝐺𝑛−1

𝑊◦
𝜋

(
𝑔

1

)
𝑊◦

𝜎

(
𝑔

1

) |det(𝑔)|𝑠−1𝑑𝑝.

We exploit Theorem 2.2 aligned with the Iwasawa decomposition 𝐺𝑛−1 = 𝑁𝑛−1𝐴𝑛−1𝐾𝑛−1 to obtain that

Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐) = ∫

𝐴𝑝

𝑊◦
𝜋𝑢𝑟

(
𝑎′

𝐼𝑟−𝑝

)
𝑊◦

𝜎𝑢𝑟
(𝑎′)𝛿−1

𝐵𝑛−1

(
𝑎′

𝐼𝑛−𝑝−1

)
𝜈(𝑝−𝑟)∕2(𝑎′)𝜈𝑛−𝑝(𝑎′)𝟏(𝑎𝑝)|det(𝑎′)|𝑠−1𝑑𝑎′

= ∫
𝐴𝑝

𝑊◦
𝜋𝑢𝑟

(
𝑎′

𝐼𝑟−𝑝

)
𝑊◦

𝜎𝑢𝑟
(𝑎′)𝛿−1

𝐵𝑝
(𝑎′)𝜈(𝑝−𝑟)∕2(𝑎′)𝜈𝑝−(𝑛−1)(𝑎′)𝜈𝑛−𝑝(𝑎′)𝟏(𝑎𝑝)|det(𝑎′)|𝑠−1𝑑𝑎′.

Once more by Iwasawa decomposition we get that

Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐) = ∫

𝐴𝑝

𝑊◦
𝜋𝑢𝑟

(
𝑎′

𝐼𝑟−𝑝

)
𝑊◦

𝜎𝑢𝑟
(𝑎′)𝛿−1

𝐵𝑝
(𝑎′)𝟏(𝑎𝑝)|det(𝑎′)|𝑠− 𝑟−𝑝

2 𝑑𝑎′ =

{
Ψ(𝑠,𝑊◦

𝜋𝑢𝑟
,𝑊◦

𝜎𝑢𝑟
, 𝟏𝑝 ) if 𝑟 = 𝑝,

Ψ(𝑠,𝑊◦
𝜋𝑢𝑟

,𝑊◦
𝜎𝑢𝑟

) if 𝑟 > 𝑝,

whence, applying the standard computation of local Rankin–Selberg 𝐿-functions for unramified representations from [30,
Proposition 2.3] (cf. [44, (3),(4)]), we have

Ψ(𝑠,𝑊◦
𝜋,𝑊

◦
𝜎, Φ𝑐) = 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟)

from which the desired result follows. □

Theorem 3.2 generalizes the result [38, Theorem 2.1.1] for the pair of the ramified representation 𝜋 and unramified rep-
resentation 𝜎 in the viewpoint of the agreement 𝐿(𝑠, 𝜋 × 𝜎) = 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) [44, (5)] (cf. [55, section 7]). In what follows,
we explain the link between 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) and 𝐿(𝑠, 𝜋 × 𝜎).

Corollary 3.3. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be generic representations. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) = 𝑃(𝑞−𝑠)𝐿(𝑠, 𝜋 × 𝜎)

for a polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfying 𝑃(0) = 1.

Proof. The result is an immediate consequence of Theorem 3.2 that 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) is an element of (𝜋 × 𝜎). □

For the rest of this section, we navigate the bilinear form by the means of Rankin–Selbeg periods.

Proposition 3.4. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be unitary generic representations. For any 𝑊𝜋 ∈ (𝜋, 𝜓) and 𝑊𝜎 ∈ (𝜎, 𝜓−1), the
integral

𝐵(𝑊𝜋,𝑊𝜎) ∶= ∫
𝑁𝑛∖𝑃𝑛

𝑊𝜋(𝑝)𝑊𝜎(𝑝)𝑑𝑝

is absolutely convergent and defines a 𝑃𝑛-invariant bilinear form on(𝜋, 𝜓) ×(𝜎, 𝜓−1).
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Proof. A parallel discussion can be found in [42, Lemma 3.1]. Let𝐾◦
𝑛 be a compact open subgroup of𝐾𝑛 such that each𝑊𝜋

and𝑊𝜎 is invariant under 𝐾◦
𝑛. We choose Φ◦ to be a characteristic function of 𝑒𝑛𝐾◦

𝑛. Then, the integral Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ
◦)

reduces a positive multiple of

∫
𝑁𝑛∖𝑃𝑛

𝑊𝜋(𝑝)𝑊𝜎(𝑝)|det(𝑝)|𝑠−1 𝑑𝑝. (3.1)

According to [30, Proposition 3.17], the integral Ψ(𝑠,𝑊𝜋,𝑊𝜎,Φ
◦) converges absolutely in the half plane Re(𝑠) ≥ 1. This

confirms that the integral (3.1) is holomorphic at 𝑠 = 1. □

We embark on proving the nonvanishing of the 𝑃𝑛-bilinear form 𝐵(𝑊𝜋,𝑊𝜎). This is similar to the canonical inner
product considered in [13, appendix A.1].

Theorem 3.5. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be unitary generic representations. Then, we have

∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑊

◦
𝜎(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟 × 𝜎𝑢𝑟) if either 𝜋 or 𝜎 is ramified,
𝐿(1, 𝜋 × 𝜎)

𝐿(𝑛, 𝜔𝜋𝜔𝜎)
if both 𝜋 and 𝜎 are unramified.

Proof. The unramified case is proceeded along the line of the proof of [2, Theorem 6.2]. We assume that 𝜎 is ramified and
𝑟 ≥ 𝑝. Invoking the Iwasawa decomposition 𝐺𝑛−1 = 𝑁𝑛−1𝐴𝑛−1𝐾𝑛−1, we have

𝐵(𝑊◦
𝜋,𝑊

◦
𝜎) = ∫

𝑁𝑛−1∖𝐺𝑛−1

𝑊◦
𝜋

(
𝑔

1

)
𝑊◦

𝜎

(
𝑔

1

)
𝑑𝑔

= ∫
𝐴𝑛−1

∫
𝐾𝑛−1

𝑊◦
𝜋

(
𝑎𝑘

1

)
𝑊◦

𝜎

(
𝑎𝑘

1

)
𝛿−1
𝐵𝑛−1

(𝑎) 𝑑𝑘𝑑𝑎

= ∫
𝐴𝑛−1

𝑊◦
𝜋

(
𝑎

1

)
𝑊◦

𝜎

(
𝑎

1

)
𝛿−1
𝐵𝑛−1

(𝑎)𝑑𝑎.

Chasing the steps of the proof of Theorem 3.2, we arrive at

𝐵(𝑊◦
𝜋,𝑊

◦
𝜎) = ∫

𝐴𝑝

𝑊◦
𝜋𝑢𝑟

(
𝑎′

𝐼𝑟−𝑝

)
𝑊◦

𝜎𝑢𝑟
(𝑎′)𝛿−1

𝐵𝑝
(𝑎′)𝟏(𝑎𝑝)|det(𝑎′)|1− 𝑟−𝑝

2 𝑑𝑎′,

which equates to Ψ(1,𝑊◦
𝜋𝑢𝑟

,𝑊◦
𝜎𝑢𝑟

, 𝟏𝑝 ) if 𝑟 = 𝑝, and Ψ(1,𝑊◦
𝜋𝑢𝑟

,𝑊◦
𝜎𝑢𝑟

) if 𝑟 > 𝑝. The integral is simply a reformulation of
[30, Proposition 2.3] (see [44, (3),(4)]). □

3.2 The self-dual representation

A representation 𝜋 of 𝐺𝑛 is called self-dual, if 𝜋∨ ≃ 𝜋. We will see later in Sections 5.2, 5.4, and 6 that either (𝑆2𝑛, Θ)-
distinguished,𝐻2𝑛-distinguished, or 𝜃-distinguished representation is self-dual.

Proposition 3.6. Let 𝜋 ∈ 𝐹(𝑛) be a generic representation of𝐺𝑛. Then, 𝐿(𝑠, 𝜋 × 𝜋∨) is holomorphic at 𝑠 = 1. In particular,
the bilinear form 𝐵(𝑊𝜋,𝑊𝜋∨) on(𝜋, 𝜓) ×(𝜋∨, 𝜓−1) is well defined.

Proof. For Re(𝑠) ≫ 0, we may decompose our integral as

Ψ(𝑠,𝑊𝜋,𝑊𝜋∨, Φ) = ∫
𝐾𝑛

∫
𝑁𝑛∖𝑃𝑛

𝑊𝜋(𝑝𝑘)𝑊𝜋∨(𝑝𝑘)|det(𝑝)|𝑠−1 ∫
𝐹×

Φ(𝑒𝑛𝑧𝑘)|𝑧|𝑛𝑠𝑑×𝑧𝑑𝑝𝑑𝑘.
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We take 𝐾◦
𝑛 ⊆ 𝐾𝑛 a compact open subgroup, which stabilizes 𝑊𝜋, 𝑊𝜋∨ , and Φ. We write 𝐾𝑛 = ∪

𝑖∶ f inite
𝑘𝑖𝐾

◦
𝑛. The integral

Ψ(𝑠,𝑊𝜋,𝑊𝜋∨, Φ) can be decomposed as a finite sum of the form

Ψ(𝑠,𝑊𝜋,𝑊𝜋∨, Φ) =
∑
𝑖

𝑣 ∫
𝐹×

Φ(𝑒𝑛𝑧𝑘𝑖)|𝑧|𝑛𝑠𝑑×𝑧 ∫
𝑁𝑛∖𝑃𝑛

(𝜋(𝑘𝑖)𝑊𝜋)(𝑝)(𝜋
∨(𝑘𝑖)𝑊𝜋∨)(𝑝)|det(𝑝)|𝑠−1𝑑𝑝

with 𝑣 > 0 a volume term. Bernstein’s Theorem [7, Theorem 6.4], [13, appendix A] guarantees that

∫
𝑁𝑛∖𝑃𝑛

(𝜋(𝑘𝑖)𝑊𝜋)(𝑝)(𝜋
∨(𝑘𝑖)𝑊𝜋∨)(𝑝)|det(𝑝)|𝑠−1𝑑𝑝

are holomorphic at 𝑠 = 1 and we note that Tate integrals

∫
𝐹×

Φ(𝑒𝑛𝑧𝑘𝑖)|𝑧|𝑛𝑠𝑑×𝑧

are absolutely convergent for Re(𝑠) > 0. This amounts to saying that the integralΨ(𝑠,𝑊𝜋,𝑊𝜋∨, Φ) is regular at 𝑠 = 1. □

We say that 𝜋 ⊗ 𝜎 is 𝐺𝑛-distinguished ifHom𝐺𝑛
(𝜋 ⊗ 𝜎, 1𝐺𝑛

) ≠ 0. It is worthwhile to point out that our condition of the
distinction for pairs (𝜋, 𝜎) is equivalent to the condition 𝜎 ≃ 𝜋∨ in [49, section 6.2] (cf. [57, Remark 7.4]). In particular, for
𝜋 ≃ 𝜎,𝜋 is self-dual if𝜋 ⊗ 𝜋 is𝐺𝑛-distinguished. Additionally, any𝐺𝑛-distinguished representation𝜋 ⊗ 𝜎 always satisfies
𝜔𝜋𝜔𝜎 = 𝟏𝐹× . The unitarity hypothesis is redundant once we demand the distinction criterion on the pairs (𝜋, 𝜎).

Theorem 3.7. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be a generic representation such that 𝜋 ⊗ 𝜎 is 𝐺𝑛-distinguished. Then, we have

∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑊

◦
𝜋∨(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟 × 𝜋∨

𝑢𝑟) if 𝜋 is ramified,
𝐿(1, 𝜋 × 𝜋∨)

𝐿(𝑛, 𝟏𝐹×)
otherwise.

Proof. The assumption Hom𝐺𝑛
(𝜋 ⊗ 𝜎, 𝟏𝐺𝑚

) ≠ 0 implies that 𝜋∨ ≅ 𝜎. The result is a special case of Theorem 3.5 once we
identify 𝜎 with 𝜋∨ and then utilize the regularity of 𝐿(𝑠, 𝜋 × 𝜋∨) at 𝑠 = 1, as in Proposition 3.6. □

Although the following result has been known to experts [7], [13], we cannot locate in the form that we need in the
paper. Hence, we include the statement and its proof.

Proposition 3.8. Let 𝜋, 𝜎 ∈ 𝐹(𝑛) be unitary representations. Then,

dimℂHom𝑃𝑛
(𝜋 ⊗ 𝜎, 𝟏𝑃𝑛

) ≤ 1.

The equality holds when 𝜋 and 𝜎 are generic. In particular, if 𝜋 ⊗ 𝜎 is 𝐺𝑛-distinguished, then (𝑊𝜋,𝑊𝜎) ↦ 𝐵(𝑊𝜋,𝑊𝜎) gives
a unique nontrivial 𝐺𝑛-invariant bilinear form belonging to the spaceHom𝐺𝑛

(𝜋 ⊗ 𝜎, 𝟏𝐺𝑛
).

Proof. The proof is a variation on those of [46, Proposition 2.3], [47, Corollary 4.2], [58, Theorem 2.14], and falls out of that
of [26, Proposition 2.10]. Both representations 𝜋|𝑃𝑛

and (𝜎|𝑃𝑛
)∨ carry Bernstein–Zelevinsky filtrations of 𝑃𝑛-submodules

0 ⊆ 𝜋𝑛 ⊆ 𝜋𝑛−1 ⊆ ⋯ ⊆ 𝜋1 ∶= 𝜋|𝑃𝑛
and 0 ⊆ 𝜏𝑛 ⊆ 𝜏𝑛−1 ⊆ ⋯ ⊆ 𝜏1 ∶= (𝜎|𝑃𝑛

)∨

such that 𝜋𝑘∕𝜋𝑘+1 = (Φ+)𝑘−1Ψ+(𝜋
(𝑘)
1 ) and 𝜏𝑘∕𝜏𝑘+1 = (Φ+)𝑘−1Ψ+(𝜏

(𝑘)
1 ). On the one hand, Ψ+ is normalized inflation and

Φ+ is normalized compactly supported induction. On the other hand, Ψ− is the normalized Jacquet functor and Φ−

is the normalized 𝜓-twisted Jacquet functor. For the rigorous definition of the four functors Φ+, Ψ+, Φ−, and Ψ−, the
reader should consult [6, section 3.2]. 𝜋(𝑘)

1 is the so-called Bernstein–Zelevinsky 𝑘𝑡ℎ-derivatives, and for our purpose, it is
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JO 349

convenient to introduce the shifted derivatives 𝜋[𝑘]
1 ∶= 𝜋

(𝑘)
1 ⊗ 𝜈1∕2. We conclude from [26, Proposition 1.4] that

Hom𝑃𝑛
((Φ+)𝑖−1Ψ+(𝜋

(𝑖)
1 ), (Φ+)𝑗−1Ψ+(𝜏

(𝑗)
1 )) = 0

except when 𝑖 = 𝑗. Hence, if Hom𝑃𝑛
(𝜋 ⊗ 𝜎,ℂ) is nonzero, it is clear from [6, Proposition 3.2] that the space must induce

a nonzero space

Hom𝑃𝑛
((Φ+)𝑘−1Ψ+(𝜋

(𝑘)
1 ), (Φ+)𝑘−1Ψ+(𝜏

(𝑘)
1 )) ≃ Hom𝐺𝑛−𝑘

(𝜋
(𝑘)
1 , 𝜏

(𝑘)
1 )

for some 1 ≤ 𝑘 ≤ 𝑛. We put 𝜎1 ∶= 𝜎|𝑃𝑛
. Exchanging the order of functors Ψ− and Φ−, and the duality [6, Proposition 3.4]

gives rise to

𝜏
(𝑘)
1 = Ψ−(Φ−)𝑘−1((𝜎|𝑃𝑛

)∨) ≃ 𝜈−1 ⊗ (Ψ−(Φ−)𝑘−1(𝜎|𝑃𝑛
))∨

from which we deduce the isomorphism:

Hom𝐺𝑛−𝑘
(𝜋

(𝑘)
1 , 𝜏

(𝑘)
1 ) ≃ Hom𝐺𝑛−𝑘

(𝜋
(𝑘)
1 , 𝜈−1 ⊗ (𝜎

(𝑘)
1 )∨) ≃ Hom𝐺𝑛−𝑘

(𝜋
[𝑘]
1 ⊗ 𝜎

[𝑘]
1 , 𝟏𝐺𝑛−𝑘

).

Without loss of generality, we may assume that 𝜋(ℎ)
1 ≠ 0, 𝜎(ℎ)

1 ≠ 0, and 𝜋
(𝑘)
1 = 𝜎

(𝑘)
1 = 0 for all 𝑘 > ℎ. The Bernstein’s cri-

terion in [7, section 7.4] states that 𝜋[ℎ]
1 and 𝜎

[ℎ]
1 are irreducible and unitary, and central characters of the irreducible

subquotients of 𝜋[𝑘]
1 and 𝜎

[𝑘]
1 have real parts greater than zero for all 0 < 𝑘 < ℎ. In this way, we find that

dimℂHom𝑃𝑛
(𝜋 ⊗ 𝜎, 𝟏𝑃𝑛

) ≤ dimℂHom𝐺𝑛−ℎ
(𝜋

[ℎ]
1 ⊗ 𝜎

[ℎ]
1 , 𝟏𝐺𝑛−ℎ

).

Now our proof is completed by induction on the rank 𝑛 − ℎ of 𝐺𝑛−ℎ.
To prove the uniqueness of the bilinear form, we substitute Hom𝐺𝑛

(𝜋 ⊗ 𝜎, 𝟏𝐺𝑛
) by Hom𝐺𝑛

(𝜋 ⊗ 𝜋∨, 𝟏𝐺𝑛
) as in The-

orem 3.7. The injection Hom𝐺𝑛
(𝜋 ⊗ 𝜋∨, 𝟏𝐺𝑛

) ↪ Hom𝑃𝑛
(𝜋 ⊗ 𝜋∨, 𝟏𝑃𝑛

) is interpreted as the isomorphism in view of 0 ≠
Hom𝐺𝑛

(𝜋 ⊗ 𝜎, 𝟏𝐺𝑛
) ≃ Hom𝐺𝑛

(𝜋 ⊗ 𝜋∨, 𝟏𝐺𝑛
) ≃ Hom𝑃𝑛

(𝜋 ⊗ 𝜋∨, 𝟏𝑃𝑛
). □

We do not claim the originality of the second assertion in Proposition 3.8 as it is a special case of Bernstein’s Theorem
[7, Theorem A].

4 ASAI 𝑳-FACTORS

We overview the theory of Asai 𝐿-factors in the appendix to [16]. Let 𝐸 be a quadratic extension of 𝐹. Thanks to [2, Lemma
4.2.], we take 𝜓𝐸 to be a nontrivial unramified additive character of 𝐸 that is trivial on 𝐹. Let 𝜋 ∈ 𝐸(𝑛) be a generic
representation with an associated Whittaker model (𝜋, 𝜓𝐸). For each Whittaker function 𝑊𝜋 ∈ (𝜋, 𝜓𝐸) and each
Schwartz–Bruhat function Φ ∈ 𝑆(𝐹𝑛), we define a local Flicker integral by

𝐼(𝑠,𝑊𝜋,Φ) = ∫
𝑁𝑛∖GL𝑛(𝐹)

𝑊𝜋(𝑔)Φ(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑔,
which is absolutely convergent when the real part of 𝑠 is sufficiently large enough. Each 𝐼(𝑠,𝑊𝜋,Φ) is a rational function
of 𝑞−𝑠 and hence extendsmeromorphically to all ofℂ. These integrals 𝐼(𝑠,𝑊𝜋,Φ) span a fractional ideal (𝜋, 𝐴𝑠) ofℂ[𝑞±𝑠]

generated by a normalized generator of the form 𝑃(𝑞−𝑠)−1 where the polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfies 𝑃(0) = 1. The local
Asai 𝐿-function attached to 𝜋 is defined by such a unique normalized generator;

𝐿(𝑠, 𝜋, 𝐴𝑠) =
1

𝑃(𝑞−𝑠)
.

In particular, for a spherical representation 𝜋, the local 𝐿-function 𝐿(𝑠, 𝜋, 𝐴𝑠) is equal to the formal local 𝐿-function
𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠).
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Proposition 4.1. [41, Theorem 4.26] Let {𝛼𝑖}
𝑟
𝑖=1

denote the Langlands parameter of 𝜋. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) =

𝑟∏
𝑘=1

(1 − 𝛼𝑘(𝜛𝐹)𝑞
−𝑠
𝐹 )−1

∏
1≤𝑖<𝑗≤𝑟

(1 − 𝛼𝑖(𝜛𝐸)𝛼𝑗(𝜛𝐸)𝑞
−𝑠
𝐸 )−1.

4.1 The Flicker–Rallis period

We are now going to produce an essential Whittaker function and the characteristic function so that the resulting Flicker
integral accomplishes the formal Asai 𝐿-factors.

Theorem 4.2. Let 𝜋 ∈ 𝐸(𝑛) be a generic representation. We set 𝑐 = 𝑐(𝜋). Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) = 𝐼(𝑠,𝑊◦
𝜋, Φ𝑐).

Proof. Having in hand [52, Lemma 2.6] that 𝑔 ↦ Φ𝑐(𝑒𝑛𝑔) is the characteristic function on 𝑃𝑛𝐾1(𝔭
𝑐), the partial Iwasawa

decomposition 𝐺𝑛 = 𝑁𝑛𝑃𝑛𝐾𝑛 implies that

𝐼(𝑠,𝑊◦
𝜋, Φ𝑐) = ∫

𝐾1(𝔭𝑐)
∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝𝑘)|det(𝑝)|𝑠−1 ∫

𝐹×

Φ𝑐(𝑒𝑛𝑧𝑝𝑘)𝜔𝜋(𝑧)|𝑧|𝑛𝑠𝑑×𝑧𝑑𝑝𝑑𝑘

= ∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)|det(𝑝)|𝑠−1 ∫

1+𝔭𝑐

Φ𝑐(𝑒𝑛𝑧)𝜔𝜋(𝑧)|𝑧|𝑛𝑠𝑑×𝑧𝑑𝑝

= ∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)|det(𝑝)|𝑠−1𝑑𝑝.

Repeating the procedure of the proof of [2, Theorem 6.1], the integral becomes

𝐼(𝑠,𝑊◦
𝜋, Φ𝑐) = ∫

𝐴𝑟

𝑊◦
𝜋𝑢𝑟

(𝑎)𝛿−1
𝐵𝑟

(𝑎)𝟏(𝑎𝑟)|det(𝑎)|𝑠𝑑𝑎 = 𝐼(𝑠,𝑊◦
𝜋𝑢𝑟

, 𝟏𝑟 ).

Our expected result is an immediate consequence of the computation by [14, Proposition 3] for 𝐸∕𝐹 the unramified
extension and by [4, Proposition 9.5] for 𝐸∕𝐹 the ramified extension. □

In general, 𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) is not the same as 𝐿(𝑠, 𝜋, 𝐴𝑠).

Corollary 4.3. Let 𝜋 ∈ 𝐸(𝑛) be a generic representation. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) = 𝑃(𝑞−𝑠)𝐿(𝑠, 𝜋, 𝐴𝑠)

for a polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfying 𝑃(0) = 1.

Proof. The result immediately follows from Theorem 4.2 that 𝐿(𝑠, 𝜋𝑢𝑟, 𝐴𝑠) is an element of (𝜋, 𝐴𝑠). □

We nowwish to begin summarizing the main result on the 𝑃𝑛(𝐹)-invariant form and the Flicker–Rallis integral periods
from [2, Theorem 1.1, Theorem 6.2].

Theorem 4.4 (Anandavardhanan and Matringe). Let 𝜋 ∈ 𝐸(𝑛) be a unitary generic representation.

∫
𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, 𝐴𝑠) if 𝜋 is ramified,
𝐿(1, 𝜋, 𝐴𝑠)

𝐿(𝑛, 𝜔𝜋|𝐹×)
if 𝜋 is unramified.
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4.2 The Galois self-conjugate dual representation

A representation 𝜋 of GL𝑛(𝐸) is called 𝐺𝑛-distinguished if Hom𝐺𝑛
(𝜋|𝐺𝑛

, 𝟏𝐺𝑛
) ≠ 0. We denote by 𝜎𝐸∕𝐹 ∶ 𝑥 ↦ 𝑥, 𝑥 ∈ 𝐸 the

nontrivial associated Galois action. The conjugation 𝜎𝐸∕𝐹 extends naturally to an automorphism of GL𝑛(𝐸), which we
also denote by 𝜎𝐸∕𝐹 . Then, we denote by 𝜋𝜎𝐸∕𝐹 the representation 𝜋𝜎𝐸∕𝐹 (𝑔) = 𝜋(𝜎𝐸∕𝐹(𝑔)) for 𝑔 ∈ GL𝑛(𝐸) and 𝜋 ∈ 𝐸(𝑛).
We say that a representation 𝜋 of GL𝑛(𝐸) is the Galois self-conjugate dual representation if 𝜋𝜎𝐸∕𝐹 ≃ 𝜋∨. In [15, Proposi-
tion 12], Flicker proved that if 𝜋 ∈ 𝐸(𝑛) is 𝐺𝑛-distinguished, then it is Galois self-conjugate dual. A kind of converse
can be established for discrete series representations by the work of Anandavardhanan and Rajan [3, Theorem 4] and
Kable [35, Theorem 6]. We refer the reader to [43, Theorem 5.2] for the complete classification of𝐺𝑛-distinguished generic
representations, in terms of inducing discrete series representations.

Theorem 4.5 (Anandavardhanan and Matringe). Let 𝜋 ∈ 𝐸(𝑛) be a generic representation, which is distinguished with
respect to 𝐺𝑛. Then, we have

Λ𝐹𝑅(𝑊◦
𝜋) ∶= ∫

𝑁𝑛∖𝑃𝑛

𝑊◦
𝜋(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, 𝐴𝑠) if 𝜋 is ramified,
𝐿(1, 𝜋, 𝐴𝑠)

𝐿(𝑛, 𝟏𝐹×)
if 𝜋 is unramified.

As illustrated in Section 1, the nontrivial linear functional Λ𝐹𝑅 yields nonzero 𝑃𝑛-invariant forms on(𝜋, 𝜓𝐸), which
in turn can be uniquely extended to 𝐺𝑛-invariant forms on(𝜋, 𝜓𝐸).

Proposition 4.6. [1, Theorem 1.1], [46, Proposition 2.3]. Let 𝜋 ∈ 𝐸(𝑛) be a unitary representation. Then,

dimℂHom𝑃𝑛
(𝜋|𝑃𝑛

, 𝟏𝑃𝑛
) ≤ 1.

The equality holds when 𝜋 is generic. In particular, if 𝜋 is 𝐺𝑛-distinguished, then𝑊𝜋 ↦ Λ𝐹𝑅(𝑊𝜋) gives a unique nontrivial
𝐺𝑛-invariant bilinear form belonging toHom𝐺𝑛

(𝜋|𝐺𝑛
, 𝟏𝐺𝑛

).

Once more, the unitarity assumption on the second statement can be dropped, appealing to Ok’s Theorem [46,
Proposition 2.3] coupled with [15, Proposition 11].

5 THE EXTERIOR SQUARE 𝑳-FACTORS

5.1 The Jacquet–Shalika period

We give a short discussion on the theory of local exterior square 𝐿-functions due to Jacquet and Shalika [29], [31, sections
2.2, 2.4]. Let 𝜎𝑚 be the permutation matrix given by

𝜎2𝑛 =

(
1 2 ⋯ 𝑛 | 𝑛 + 1 𝑛 + 2 ⋯ 2𝑛

1 3 ⋯ 2𝑛 − 1 | 2 4 ⋯ 2𝑛

)
when𝑚 = 2𝑛 is even, and by

𝜎2𝑛+1 =

(
1 2 ⋯ 𝑛 | 𝑛 + 1 𝑛 + 2 ⋯ 2𝑛 2𝑛 + 1

1 3 ⋯ 2𝑛 − 1 | 2 4 ⋯ 2𝑛 2𝑛 + 1

)
when 𝑚 = 2𝑛 + 1 is odd. We let 𝑛 be the 𝑛 × 𝑛 matrices, 𝑛 the subspace of upper triangular matrices of 𝑛. For a
Whittaker function𝑊𝜋 ∈ (𝜋, 𝜓) and in the even case𝑚 = 2𝑛 in each Schwartz–Bruhat function Φ ∈ (𝐹𝑛), we define
local Jacquet–Shalika integrals

𝐽(𝑠,𝑊𝜋) ∶= ∫
𝑁𝑛∖𝐺𝑛

∫𝑛∖𝑛

𝑊𝜋

⎛⎜⎜⎝𝜎2𝑛+1

⎛⎜⎜⎝
𝐼𝑛 𝑋

𝐼𝑛
1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑔

𝑔

1

⎞⎟⎟⎠
⎞⎟⎟⎠𝜓−1(Tr(𝑋))|det(𝑔)|𝑠−1𝑑𝑋𝑑𝑔 (5.1)
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in the odd case𝑚 = 2𝑛 + 1 and in the even case𝑚 = 2𝑛,

𝐽(𝑠,𝑊𝜋,Φ) ∶= ∫
𝑁𝑛∖𝐺𝑛

∫𝑛∖𝑛

𝑊𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑔

𝑔

))
𝜓−1(Tr(𝑋))Φ(𝑒𝑛𝑔)|det(𝑔)|𝑠𝑑𝑋𝑑𝑔, (5.2)

all integrals being convergent for Re(𝑠) ≫ 0. Let  (𝜋, ∧2) denote the complex linear span of the local Jacquet–Shalika
integrals 𝐽(𝑠,𝑊𝜋) if𝑚 = 2𝑛 + 1 is odd and that of 𝐽(𝑠,𝑊𝜋,Φ) if𝑚 = 2𝑛 is even. The space  (𝜋, ∧2) is a ℂ[𝑞±𝑠]-fractional
ideal ofℂ(𝑞−𝑠) containing the constant 1. This ideal (𝜋, ∧2) is principal, and has a unique generator of the form 𝑃(𝑞−𝑠)−1,
where 𝑃(𝑋) is a polynomial in ℂ[𝑋] with 𝑃(0) = 1. The local exterior square 𝐿-function attached to 𝜋 is defined by the
unique normalized generator,

𝐿(𝑠, 𝜋, ∧2) = 𝑃(𝑞−𝑠)−1.

In particular, for a spherical representation 𝜋, the local 𝐿-function 𝐿(𝑠, 𝜋, ∧2) agrees with the formal local 𝐿-function
𝐿(𝑠, 𝜋𝑢𝑟, ∧

2).

Proposition 5.1. [31, Theorem 5.7] Let {𝛼𝑖}
𝑟
𝑖=1

denote the Langlands parameter of 𝜋. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) =

∏
1≤𝑖<𝑗≤𝑟

(1 − 𝛼𝑖(𝜛)𝛼𝑗(𝜛)𝑞−𝑠)−1.

We take the Haar measure on the quotient space 𝑛∖𝑛 so that the volume of 𝑛∖(𝑛 +𝑛()) is one. The test
vector problem for exterior square 𝐿-factors has been carried out in Theorem 3.1 and Theorem 4.1 of [52].

Theorem 5.2 (Miyauchi and Yamauchi). Let 𝜋 ∈ 𝐹(𝑚) be a generic representation. We set 𝑐 = 𝑐(𝜋).

(a) When𝑚 = 2𝑛 is even, we have 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) = 𝐽(𝑠,𝑊◦

𝜋, Φ𝑐).
(b) When𝑚 = 2𝑛 + 1 is odd, we obtain 𝐿(𝑠, 𝜋𝑢𝑟, ∧

2) = 𝐽(𝑠,𝑊◦
𝜋).

In general, 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) does not match with 𝐿(𝑠, 𝜋, ∧2).

Corollary 5.3. Let 𝜋 ∈ 𝐹(𝑚) be a generic representation. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) = 𝑃(𝑞−𝑠)𝐿(𝑠, 𝜋, ∧2)

for a polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfying 𝑃(0) = 1.

Proof. We only need to observe from Theorem 5.2 that 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) belongs to the ℂ[𝑞±𝑠]-fractional ideal  (𝜋, ∧2) of

ℂ(𝑞−𝑠). □

We concern with the following integrals, of which the convergence will be elaborated shortly after;

Λ𝐽𝑆(𝑊𝜋) ∶= ∫
𝑁𝑛∖𝑃𝑛

∫𝑛∖𝑛

𝑊𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑝

if𝑚 = 2𝑛 is even, and

Λ𝐽𝑆(𝑊𝜋) ∶= ∫
𝑁𝑛∖𝐺𝑛

∫𝑛∖𝑛

𝑊𝜋

⎛⎜⎜⎝𝜎2𝑛+1

⎛⎜⎜⎝
𝐼𝑛 𝑋

𝐼𝑛
1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑔

𝑔

1

⎞⎟⎟⎠
⎞⎟⎟⎠𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑔

if𝑚 = 2𝑛 + 1 is odd. We define the Shalika subgroup 𝑆2𝑛 of 𝐺2𝑛 by

𝑆2𝑛 =

{(
𝐼𝑛 𝑍

𝐼𝑛

)(
𝑔

𝑔

) ||||| 𝑍 ∈ 𝑛, 𝑔 ∈ 𝐺𝑛

}
.
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Let Θ be a Shalika character of 𝑆2𝑛 given by

Θ

((
𝐼𝑛 𝑍

𝐼𝑛

)(
𝑔

𝑔

))
= 𝜓(Tr(𝑍)).

Proposition 5.4. Let 𝜋 ∈ 𝐹(𝑚) be a unitary generic representation. For any𝑊𝜋 ∈ (𝜋, 𝜓), the integrals Λ𝐽𝑆(𝑊𝜋) con-
verge absolutely. In particular, for 𝑚 = 2𝑛 even, 𝑊𝜋 ↦ Λ𝐽𝑆(𝑊𝜋) defines a (𝑃2𝑛 ∩ 𝑆2𝑛, Θ)-invariant linear functional on
(𝜋, 𝜓).

Proof. The odd case can be extracted from [29, section 9.3, Proposition 3]. Pertaining to even cases, we choose𝐾◦
𝑛, a compact

open subgroup of 𝐾𝑛 such that𝑊𝜋 is invariant under
(
𝐾◦

𝑛

𝐾◦
𝑛

)
. We take Φ◦ to be a characteristic function 𝑒𝑛𝐾

◦
𝑛. By the

partial Iwasawa decomposition 𝐺𝑛 = 𝑍𝑛𝑁𝑛𝐾𝑛, the integral 𝐽(𝑠,𝑊𝜋,Φ
◦) is written as

𝐽(𝑠,𝑊𝜋,Φ
◦) =∫

𝐾◦
𝑛
∫
𝑁𝑛∖𝑃𝑛

∫𝑛∖𝑛

𝑊𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝𝑘

𝑝𝑘

))
𝜓−1(Tr(𝑋))|det(𝑝)|𝑠−1 ∫

𝐹×

Φ◦(𝑒𝑛𝑧𝑘)|𝑧|𝑛𝑠𝑑×𝑧𝑑𝑋𝑑𝑝𝑑𝑘.

By the right 𝐾◦
𝑛 invariance of integrands, the integral 𝐽(𝑠,𝑊𝜋,Φ

◦) is converted to

𝐽(𝑠,𝑊𝜋,Φ
◦) = 𝑣 ∫

𝑁𝑛∖𝑃𝑛
∫𝑛∖𝑛

𝑊𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))|det(𝑝)|𝑠−1𝑑𝑋𝑑𝑝

with 𝑣 > 0, a volume term. Ref. [29, section 7.1, Proposition 1] assures that the above integral is holomorphic at 𝑠 = 1. □

Let us now pay our attention to the nonvanishing of Jacquet–Shalika functional Λ𝐽𝑆(𝑊𝜋).

Theorem 5.5. Let 𝜋 ∈ 𝐹(𝑚) be a unitary generic representation.

(a) Suppose that𝑚 = 2𝑛 is even. Then, we have

∫
𝑁𝑛∖𝑃𝑛

∫𝑛∖𝑛

𝑊◦
𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1, 𝜋, ∧2)

𝐿(𝑛, 𝜔𝜋)
otherwise.

(b) Suppose that𝑚 = 2𝑛 + 1 is odd. Then, we obtain

∫
𝑁𝑛∖𝐺𝑛

∫𝑛∖𝑛

𝑊◦
𝜋

⎛⎜⎜⎝𝜎2𝑛+1

⎛⎜⎜⎝
𝐼𝑛 𝑋

𝐼𝑛
1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑔

𝑔

1

⎞⎟⎟⎠
⎞⎟⎟⎠𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑔 = 𝐿(1, 𝜋𝑢𝑟, ∧

2).

Proof. Evaluating the equality in Theorem 5.2-(b) at 𝑠 = 1 demonstrates the second statement. The first assertion is a
consequence of the proof of [32, Lemma 3.4], addressed in [19, section 3.2]. For the sake of completeness, we provide an
alternative straightforward approach. The unramified case is almost identical to the proof of [2, Theorem 6.2], hence we
omit the complete details. Mimicking the essential point made in the proof of Proposition 5.4, the integral 𝐽(𝑠,𝑊◦

𝜋, Φ𝑐)

turns out to be

𝐽(𝑠,𝑊◦
𝜋, Φ𝑐) = ∫

𝑁𝑛∖𝑃𝑛
∫𝑛∖𝑛

𝑊◦
𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))|det(𝑝)|𝑠−1𝑑𝑋𝑑𝑝,

which is equivalent to 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2) as outlined in 5.2-(a). The result that we search for then follows from Proposition 5.4,

plugging in 1 for 𝑠. □
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As opposed to Theorems 3.5 and 4.4, the right-hand side of (a) and (b) in Theorem 5.5 takes different shapes, depending
on the presence of Schwartz–Bruhat functions in Jacquet–Shalika integrals (5.1) and (5.2).

5.2 The 𝑺𝟐𝒏-distinguished representation

For this section, we restrict ourselves to the case for 𝑚 = 2𝑛 even. We say that a representation 𝜋 of 𝐺2𝑛 is (𝑆2𝑛, Θ)-
distinguished, ifHom𝑆2𝑛 (𝜋,Θ) ≠ 0. The central character𝜔𝜋 of the (𝑆2𝑛, Θ)-distinguished representation𝜋 is always trivial.
For our convenience, we introduce an auxiliary symmetric square 𝐿-factors (𝑠, 𝜋, Sym2). It is proven in [31, section

5.2] that 𝐿(𝑠, 𝜋, ∧2)−1 divides 𝐿(𝑠, 𝜋 × 𝜋)−1 in ℂ[𝑞±𝑠]. Hence, we can find a polynomial 𝑄(𝑋) ∈ ℂ[𝑋] satisfying 𝑄(0) = 1

and 𝐿(𝑠, 𝜋 × 𝜋)−1 = 𝑄(𝑞−𝑠)𝐿(𝑠, 𝜋, ∧2)−1. We define (𝑠, 𝜋, Sym2) by

(𝑠, 𝜋, Sym2) ∶=
1

𝑄(𝑞−𝑠)
. (5.3)

Proposition 5.6. Let 𝜋 ∈ 𝐹(2𝑛) be a generic representation, which is (𝑆2𝑛, Θ)-distinguished. Then, the (𝑃2𝑛 ∩ 𝑆2𝑛, Θ)-
invariant linear functional Λ𝐽𝑆(𝑊𝜋) is well defined in that 𝐿(𝑠, 𝜋, ∧2) is holomorphic at 𝑠 = 1.

Proof. It is shown in [27, Proposition 6.1] that if an irreducible representation 𝜋 of 𝐺2𝑛 is 𝑆2𝑛-distinguished, 𝜋 is self-dual.
In the aspect of (5.3), the local Rankin–Selberg 𝐿-function enjoys a factorization 𝐿(𝑠, 𝜋 × 𝜋) = (𝑠, 𝜋, Sym2)𝐿(𝑠, 𝜋, ∧2).
As a result, 𝐿(𝑠, 𝜋, ∧2) is holomorphic at 𝑠 = 1 as soon as 𝐿(𝑠, 𝜋 × 𝜋) is so. However, this will be the case, according to
Proposition 3.6. □

Asmentioned earlier, we can ease the unitarity restriction in Theorem 5.5 if we assume that 𝜋 is (𝑆2𝑛, Θ)-distinguished.

Theorem 5.7. Let 𝜋 ∈ 𝐹(2𝑛) be a generic representation, which is distinguished with respect to (𝑆2𝑛, Θ). Then, we have

∫
𝑁𝑛∖𝑃𝑛

∫𝑛∖𝑛

𝑊◦
𝜋

(
𝜎2𝑛

(
𝐼𝑛 𝑋

𝐼𝑛

)(
𝑝

𝑝

))
𝜓−1(Tr(𝑋))𝑑𝑋𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1, 𝜋, ∧2)

𝐿(𝑛, 𝟏𝐹×)
otherwise.

We record the straightforward consequence from the proof of [31, Proposition 3.4] that is built on [47].

Proposition 5.8. Let 𝜋 ∈ 𝐹(2𝑛) be a unitary representation. Then,

dimℂHom𝑃2𝑛∩𝑆2𝑛 (𝜋,Θ) ≤ 1.

The equality holds when 𝜋 is generic. In particular, if 𝜋 is (𝑆2𝑛, Θ)-distinguished, then 𝑊𝜋 ↦ Λ𝐽𝑆(𝑊𝜋) gives a unique
nontrivial 𝑆2𝑛-quasi-invariant linear functional belonging to the spaceHom𝑃2𝑛∩𝑆2𝑛 (𝜋,Θ).

Proof. Thanks to [45, Proposition 4.3], the space Hom𝑃2𝑛∩𝑆2𝑛 (𝜋,Θ) embeds as the subspace of Hom𝑃2𝑛∩𝑀2𝑛
(𝜋, 𝟏).

Conjugating by 𝑤2𝑛 provides the isomorphism

Hom𝑃2𝑛∩𝑀2𝑛
(𝜋, 𝟏𝑃2𝑛∩𝑀2𝑛

) ≃ Hom𝑃2𝑛∩𝐻2𝑛
(𝜋, 𝟏𝑃2𝑛∩𝐻2𝑛

).

We kindly refer the reader to Section 5.3 for the exact definitions of 𝑤2𝑛 and 𝐻2𝑛. It is evident from the proof of [47,
Corollary 4.2] that the latter space Hom𝑃2𝑛∩𝐻2𝑛

(𝜋, 𝟏𝑃2𝑛∩𝐻2𝑛
) has dimension at most one (cf. Proposition 5.16). Keeping in

mind the assumption Hom𝑆2𝑛 (𝜋,Θ) ≠ 0, the inclusion Hom𝑆2𝑛 (𝜋,Θ) ⊆ Hom𝑃2𝑛∩𝑆2𝑛 (𝜋,Θ) induces the isomorphism

Hom𝑃2𝑛∩𝑆2𝑛 (𝜋,Θ) ≃ Hom𝑆2𝑛 (𝜋,Θ),

which we utilize to construct a nontrivial 𝑆2𝑛-quasi-invariant linear functional, from Theorem 5.7. □
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5.3 The Friedberg–Jacquet (linear) period

We briefly remind the reader of the integral representation introduced by Bump and Friedberg [9, 52]. We define the
embedding 𝐽 ∶ 𝐺𝑛 × 𝐺𝑛 → 𝐺𝑚 by

𝐽(𝑔, 𝑔′)𝑘,𝑙 =

⎧⎪⎨⎪⎩
𝑔𝑖,𝑗 if 𝑘 = 2𝑖 − 1, 𝑙 = 2𝑗 − 1,
𝑔′
𝑖,𝑗

if 𝑘 = 2𝑖, 𝑙 = 2𝑗,
0 otherwise,

for𝑚 = 2𝑛 even and 𝐽 ∶ 𝐺𝑛+1 × 𝐺𝑛 → 𝐺𝑚 by

𝐽(𝑔, 𝑔′)𝑘,𝑙 =

⎧⎪⎨⎪⎩
𝑔𝑖,𝑗 if 𝑘 = 2𝑖 − 1, 𝑙 = 2𝑗 − 1,
𝑔′
𝑖,𝑗

if 𝑘 = 2𝑖, 𝑙 = 2𝑗,
0 otherwise,

for 𝑚 = 2𝑛 + 1 odd. As for the purpose of holding onto coherent terminology with Matringe [47, 48], the reader should
perceive that the role of 𝑔 and 𝑔′ in [9, 52] is swapped for even cases. The test vector problem for Bump–Friedberg exterior
square 𝐿-factor has been settled in [52, Theorem 5.1].

Theorem 5.9 (Miyauchi and Yamauchi). Let 𝜋 ∈ 𝐹(𝑚) be a generic representation. We set 𝑐 = 𝑐(𝜋).

(a) Suppose that𝑚 = 2𝑛 is even. Then, we have

𝐿(𝑠1, 𝜋𝑢𝑟)𝐿(𝑠2, 𝜋𝑢𝑟, ∧
2) = ∫

𝑁𝑛∖𝐺𝑛
∫
𝑁𝑛∖𝐺𝑛

𝑊◦
𝜋(𝐽(𝑔, 𝑔

′))Φ𝑐(𝑒𝑛𝑔
′)|det(𝑔)|𝑠1−1∕2|det(𝑔′)|1∕2+𝑠2−𝑠1𝑑𝑔𝑑𝑔′. (5.4)

(b) Suppose that𝑚 = 2𝑛 + 1 is odd. Then, we obtain

𝐿(𝑠1, 𝜋𝑢𝑟)𝐿(𝑠2, 𝜋𝑢𝑟, ∧
2) = ∫

𝑁𝑛∖𝐺𝑛
∫
𝑁𝑛+1∖𝐺𝑛+1

𝑊◦
𝜋(𝐽(𝑔, 𝑔

′))Φ𝑐(𝑒𝑛+1𝑔)|det(𝑔)|𝑠1 |det(𝑔′)|𝑠2−𝑠1𝑑𝑔𝑑𝑔′. (5.5)

To be more compatible with the standard language, we retain notations from Matringe [47, 48]. For 𝑚 = 2𝑛 even, we
denote by 𝑀2𝑛 the standard Levi of 𝐺2𝑛 associated with the partition (𝑛, 𝑛) of 2𝑛. Let 𝑤2𝑛 = 𝜎2𝑛 and then we set 𝐻2𝑛 =

𝑤2𝑛𝑀2𝑛𝑤
−1
2𝑛 . Let 𝑤2𝑛+1 = 𝑤2𝑛+2|𝐺2𝑚+1

so that

𝑤2𝑛+1 =

(
1 2 ⋯ 𝑛 + 1 | 𝑛 + 2 𝑛 + 3 ⋯ 2𝑛 2𝑛 + 1

1 3 ⋯ 2𝑛 + 1 | 2 4 ⋯ 2𝑛 − 2 2𝑛

)
.

In the odd case, 𝑤2𝑛+1 ≠ 𝜎2𝑛+1 and we let𝑀2𝑛+1 denote the standard Levi associated to the partition (𝑛 + 1, 𝑛) of 2𝑛 + 1.
We set𝐻2𝑛+1 = 𝑤2𝑛+1𝑀2𝑛+1𝑤

−1
2𝑛+1. We note that𝐻𝑚 is compatible in the sense that𝐻𝑚 ∩ 𝐺𝑚−1 = 𝐻𝑚−1 andwe can easily

see that 𝐽(𝑔, 𝑔′) = 𝑤𝑚diag(𝑔, 𝑔′)𝑤−1
𝑚 for diag(𝑔, 𝑔′) ∈ 𝑀𝑚. If 𝛼 is a real number, we denote by 𝜒𝛼 the character

𝜒𝛼 ∶ 𝐽(𝑔, 𝑔′) ↦
|||| det(𝑔)det(𝑔′)

||||
𝛼

of𝐻𝑚. We denote by 𝜒𝑚 and 𝜇𝑚 characters of𝐻𝑚;

𝜒𝑚(𝐽(𝑔, 𝑔′)) =

⎧⎪⎨⎪⎩
𝟏𝐇𝐦

for𝑚 = 2𝑛,|||| det(𝑔)det(𝑔′)

|||| for𝑚 = 2𝑛 + 1,
𝜇𝑚(𝐽(𝑔, 𝑔′)) =

⎧⎪⎨⎪⎩
|||| det(𝑔)det(𝑔′)

|||| for𝑚 = 2𝑛.

𝟏𝐻𝑚
for𝑚 = 2𝑛 + 1.
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We now turn toward the case for 𝑠1 = 𝑠 and 𝑠2 = 2𝑠. By taking all these accounts, primary Bump–Friedberg integrals (5.4)
and (5.5) can be unified as one single integral (𝑠, 𝜒−1∕2,𝑊𝜋,Φ) of the form;

(𝑠, 𝜒−1∕2,𝑊𝜋,Φ) = ∫
(𝑁𝑚∩𝐻𝑚)∖𝐻𝑚

𝑊𝜋(ℎ)𝜒−1∕2(ℎ)𝜒
1∕2
𝑚 (ℎ)Φ(𝑙𝑚(ℎ))|det(ℎ)|𝑠𝑑ℎ

=

⎧⎪⎪⎨⎪⎪⎩
∫
𝑁𝑛∖𝐺𝑛

∫
𝑁𝑛∖𝐺𝑛

𝑊𝜋(𝐽(𝑔, 𝑔
′))Φ(𝑒𝑛𝑔

′)
|||| det(𝑔)det(𝑔′)

||||
−

1

2 |det(𝑔𝑔′)|𝑠𝑑𝑔𝑑𝑔′ for𝑚 = 2𝑛,

∫
𝑁𝑛∖𝐺𝑛

∫
𝑁𝑛+1∖𝐺𝑛+1

𝑊𝜋(𝐽(𝑔, 𝑔
′))Φ(𝑒𝑛+1𝑔)|det(𝑔𝑔′)|𝑠𝑑𝑔𝑑𝑔′ for𝑚 = 2𝑛 + 1,

where 𝑊𝜋 ∈ (𝜋, 𝜓), Φ ∈ (𝐹[(𝑚+1)∕2]), and 𝑙𝑚(𝐽(𝑔, 𝑔′)) is 𝑒𝑛𝑔
′ for 𝑚 = 2𝑛 even and 𝑒𝑛+1𝑔 for 𝑚 = 2𝑛 + 1 odd. The

integral(𝑠, 𝜒−1∕2,𝑊𝜋,Φ) converges absolutely for 𝑠 of real part large enough. The ℂ-vector space generated by the local
Bump–Friedberg integrals

⟨(𝑠, 𝜒−1∕2,𝑊𝜋,Φ) | 𝑊𝜋 ∈ (𝜋, 𝜓), Φ ∈ (𝐹[(𝑚+1)∕2])⟩
is in fact a ℂ[𝑞±𝑠]-fractional ideal (𝜋, 𝜒−1∕2, ∧

2) of ℂ(𝑞−𝑠). The ideal (𝜋, 𝜒−1∕2, ∧
2) is principal, and has a unique gen-

erator of the form 𝑃(𝑞−𝑠)−1, where 𝑃(𝑋) is a polynomial in ℂ[𝑋] with 𝑃(0) = 1. The local Bump–Friedberg 𝐿-function
associated to 𝜋 is defined by the unique normalized generator,

𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2) =
1

𝑃(𝑞−𝑠)
.

The formal local 𝐿-function 𝐿(𝑠, 𝜋𝑢𝑟)(2𝑠, 𝜋𝑢𝑟, ∧
2) does not always agree with 𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2).

Corollary 5.10. Let 𝜋 ∈ 𝐹(𝑚) be a generic representation. Then, we have

𝐿(𝑠, 𝜋𝑢𝑟)(2𝑠, 𝜋𝑢𝑟, ∧
2) = 𝑃(𝑞−𝑠)𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2)

for a polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfying 𝑃(0) = 1.

Proof. We only need to check from Theorem 5.9 that 𝐿(𝑠, 𝜋𝑢𝑟)(2𝑠, 𝜋𝑢𝑟, ∧
2), which is the same as (𝑠, 𝜒−1∕2,𝑊

◦
𝜋, Φ𝑐), in

turn belongs to the ℂ[𝑞±𝑠]—fractional ideal (𝜋, 𝜒−1∕2, ∧
2) of ℂ(𝑞−𝑠). □

The following integral,

Λ𝐹𝐽(𝑊𝜋) ∶= ∫
(𝑁𝑚∩𝐻𝑚)∖(𝑃𝑚∩𝐻𝑚)

𝑊𝜋(𝑝)𝜒−1∕2(𝑝)𝜇
1∕2
𝑚 (𝑝)𝑑𝑝,

makes sense at least formally. The following proposition gives a meaning to this integral.

Proposition 5.11. Let 𝜋 ∈ 𝐹(𝑚) be a unitary generic representation. For any𝑊𝜋 ∈ (𝜋, 𝜓), the integral

∫
(𝑁𝑚∩𝐻𝑚)∖(𝑃𝑚∩𝐻𝑚)

𝑊𝜋(𝑝)𝜒−1∕2(𝑝)𝜇
1∕2
𝑚 (𝑝)|det(𝑝)|𝑠−1∕2𝑑𝑝

converges absolutely for the closed right half-plane Re(𝑠) ≥ 1∕2. In particular, for 𝑚 = 2𝑛 even, 𝑊𝜋 ↦ Λ𝐹𝐽(𝑊𝜋) defines a
𝑃2𝑛 ∩ 𝐻2𝑛-invariant linear functional on(𝜋, 𝜓).

Proof. It is a consequence of [47, Proposition 4.7] and Bernstein’s criterion [7, section 7.3] for the exponent of central
characters that can be taken verbatim from the proof of Proposition 3.8. □
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We now take up the issue of the nonvanishing of the Friedberg–Jacquet linear functional on the Whittaker model
(𝜋, 𝜓).

Theorem 5.12. Let 𝜋 ∈ 𝐹(𝑚) be a unitary generic representation. Then, we have

∫
(𝑁𝑚∩𝐻𝑚)∖(𝑃𝑚∩𝐻𝑚)

𝑊◦
𝜋(𝑝)𝜒−1∕2(𝑝)𝜇

1∕2
𝑚 (𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1∕2, 𝜋𝑢𝑟)𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1∕2, 𝜋)𝐿(1, 𝜋, ∧2)

𝐿(𝑚∕2, 𝜔𝜋)
otherwise.

Proof. We deal with the case 𝑚 = 2𝑛 even and 𝜋 ramified. Exploiting the partial Iwasawa decomposition 𝐺𝑛−1 =

𝑁𝑛−1𝐴𝑛−1𝐾𝑛−1, we obtain

Λ𝐹𝐽(𝑊◦
𝜋) = ∫

𝐴𝑛−1
∫
𝐴𝑛

𝑊◦
𝜋

(
𝐽

(
𝑎,

(
𝑎′

1

)))
𝛿−1
𝐵𝑛

(𝑎)𝛿−1
𝐵𝑛−1

(𝑎′)𝑑𝑎𝑑𝑎′.

We first deal with the case 𝑟 even. In virtue of Theorem 2.2, we insert the expression of𝑊◦
𝜋 into the above integral

Λ𝐹𝐽(𝑊◦
𝜋) =∫

𝐴𝑟∕2
∫
𝐴𝑟∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿−1
𝐵𝑛

(
𝑏

𝐼𝑛−𝑟∕2

)
𝛿−1
𝐵𝑛−1

(
𝑏′

𝐼𝑛−𝑟∕2−1

)
𝜈

𝑚−𝑟

2 (𝑏𝑏′)𝟏(𝑏′
𝑟∕2

)𝑑𝑏𝑑𝑏′

=∫
𝐴𝑟∕2

∫
𝐴𝑟∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿−1
𝐵𝑟∕2

(𝑏)𝛿−1
𝐵𝑟∕2

(𝑏′)𝜈
𝑚−𝑟

2 (𝑏𝑏′)𝜈𝑟∕2−𝑛(𝑏)𝜈𝑟∕2−(𝑛−1)(𝑏′)𝟏(𝑏′
𝑟∕2

)𝑑𝑏𝑑𝑏′.

But we have the identity 𝛿−1
𝐵𝑟∕2

(𝑏)𝛿−1
𝐵𝑟∕2

(𝑏′)𝜈
−

1

2 (𝑏)𝜈
1

2 (𝑏′) = 𝛿
−

1

2

𝐵𝑟
(𝐽(𝑏, 𝑏′)), which gives rise to

Λ𝐹𝐽(𝑊◦
𝜋) = ∫

𝐴𝑟∕2
∫
𝐴𝑟∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿
−

1

2

𝐵𝑟
(𝐽(𝑏, 𝑏′))𝟏(𝑏′

𝑟∕2
)|det(𝑏𝑏′)| 12 𝑑𝑏𝑑𝑏′. (5.6)

Provided that 𝑟 is odd, Theorem 2.2 leads us to the integral of the form

Λ𝐹𝐽(𝑊◦
𝜋)

= ∫
𝐴(𝑟+1)∕2

∫
𝐴(𝑟−1)∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿−1
𝐵𝑛

(
𝑏

𝐼𝑛−(𝑟+1)∕2

)
𝛿−1
𝐵𝑛−1

(
𝑏′

𝐼𝑛−(𝑟−1)∕2−1

)
𝜈

𝑚−𝑟

2 (𝑏𝑏′)𝟏(𝑏(𝑟+1)∕2)𝑑𝑏
′𝑑𝑏

= ∫
𝐴(𝑟+1)∕2

∫
𝐴(𝑟−1)∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿−1
𝐵(𝑟+1)∕2

(𝑏)𝛿−1
𝐵(𝑟−1)∕2

(𝑏′)𝜈(𝑟+1)∕2−𝑛(𝑏)𝜈(𝑟−1)∕2−(𝑛−1)(𝑏′)𝜈
𝑚−𝑟

2 (𝑏𝑏′)𝟏(𝑏(𝑟+1)∕2)𝑑𝑏
′𝑑𝑏.

Using the relation 𝛿−1
𝐵(𝑟+1)∕2

(𝑏)𝛿−1
𝐵(𝑟−1)∕2

(𝑏′) = 𝛿
−

1

2

𝐵𝑟
(𝐽(𝑏, 𝑏′)), we see that

Λ𝐹𝐽(𝑊◦
𝜋) = ∫

𝐴(𝑟+1)∕2
∫
𝐴(𝑟−1)∕2

𝑊◦
𝜋𝑢𝑟

(𝐽(𝑏, 𝑏′))𝛿
−

1

2

𝐵𝑟
(𝐽(𝑏, 𝑏′))𝟏(𝑏(𝑟+1)∕2)|det(𝑏𝑏′)| 12 𝑑𝑏′𝑑𝑏. (5.7)

Further, (5.6) combined with (5.7) yields that the integral Λ𝐹𝐽(𝑊◦
𝜋) is in accord with the expression for

(1∕2, 𝜒−1∕2,𝑊
◦
𝜋𝑢𝑟

, 𝟏𝑟 ). It is easy from [9, section 3], [52, Theorem 5.1] to verify that the integral(1∕2, 𝜒−1∕2,𝑊
◦
𝜋𝑢𝑟

, 𝟏𝑟 )

is nothing else but 𝐿(1∕2, 𝜋𝑢𝑟)𝐿(1, 𝜋𝑢𝑟, ∧
2) that we search for. A similar process applies to the 𝑚 = 2𝑛 + 1 odd case. The

unramified case proceeds as in the proof of [2, Theorem 6.2], hence we omit the complete details. □

 15222616, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100392, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



358 JO

5.4 The𝑯𝟐𝒏-distinguished representation

For this section, we only concentrate on the case for 𝑚 = 2𝑛 even. We say that Δ = [𝜌𝜈1−𝓁, 𝜌𝜈2−𝓁, … , 𝜌] precedes Δ′ =

[𝜌′𝜈1−𝓁′
, 𝜌′𝜈2−𝓁′

, … , 𝜌′] if 𝜌′ = 𝜌𝜈𝑖 for some max{1, 𝓁′ − 𝓁 + 1} ≤ 𝑖 ≤ 𝓁′, which we denote by Δ ≺ Δ′. We say that Δ and
Δ′ are linked if either Δ ≺ Δ′ or Δ′ ≺ Δ, and nonlinked otherwise. According to [59, Theorem 9.7], 𝜋 ∈ 𝐹(𝑛) is a generic
representation if and only if there exist unlinked segments Δ1, Δ2, … , Δ𝑡 such that 𝜋 ≃ Ind

𝐺𝑛

P (Δ1 ⊗ Δ2 ⊗ ⋯ ⊗ Δ𝑡) with
the induction being a normalized parabolic induction. We embark on the following characterization of poles [49, Lemma
2.3], which is a consequence of [26, Proposition 8.2].

Lemma 5.13. Let Δ,Δ′ ∈ 𝐹 be quasi-square integrable representations. Then, 𝐿(𝑠, Δ × Δ′) has a pole at 𝑠 = 1 if and only
if Δ ≺ Δ′∨.

We recall from Section 5.3 that𝐻2𝑛 = 𝑤2𝑛𝑀2𝑛𝑤
−1
2𝑛 , where𝑀2𝑛 is the standard Levi subgroup associated with the parti-

tion (𝑛, 𝑛) and𝑤2𝑛 = 𝜎2𝑛. We say that a representation 𝜋 of 𝐺2𝑛 is𝐻2𝑛-distinguished, ifHom𝐻2𝑛
(𝜋, 𝟏) ≠ 0. As commented

earlier, the unitarity hypothesis in Theorem 5.12 can be removed if we assume that 𝜋 is 𝐻2𝑛-distinguished. The central
character 𝜔𝜋 of the𝐻2𝑛-distinguished representation 𝜋 is always trivial.

Proposition 5.14. Let 𝜋 ∈ 𝐹(2𝑛) be a generic representation, which is 𝐻2𝑛-distinguished. Then, the 𝑃2𝑛 ∩ 𝐻2𝑛-invariant
linear functional𝑊𝜋 ↦ Λ𝐹𝐽(𝑊𝜋) is well defined, in that, 𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2) is holomorphic at 𝑠 = 1∕2.

Proof. The main result of [31] together with [47, 48] tells us that

𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2) = 𝐿(𝑠, 𝜋)𝐿(2𝑠, 𝜋, ∧2).

The multiplicative relation of the Bump–Friedberg 𝐿-factors has been achieved by Matringe [47, Theorem 5.1],

𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2) =

𝑡∏
𝑘=1

𝐿(𝑠, Δ𝑘)

𝑡∏
𝑘=1

𝐿(2𝑠, Δ𝑘, ∧
2)

∏
1≤𝑖<𝑗≤𝑡

𝐿(2𝑠, Δ𝑖 × Δ𝑗).

Indeed, if 𝐿𝐵𝐹(𝑠, 𝜋, 𝜒−1∕2) admits a pole at 𝑠 = 1∕2, then either 𝐿(𝑠, Δ𝑘) or 𝐿(2𝑠, Δ𝑘, ∧
2) has a pole at 𝑠 = 1∕2 for some 𝑘,

or 𝐿(𝑠, Δ𝑖 × Δ𝑗) has a pole at 𝑠 = 1 for some (𝑖, 𝑗).
We first suppose that 𝐿(𝑠, Δ𝑖 × Δ𝑗) has a pole at 𝑠 = 1. Then, by Lemma 5.13, we have Δ𝑖 ≺ Δ∨

𝑗
, but by our assumption

that 𝜋 is 𝐻2𝑛-distinguished, we know from [27, Theorem 1.1] (cf. see the paragraph after [47, Definition 2.1]) that 𝜋 is
self-dual. As a result, Δ∨

𝑗
is Δ𝑙 for some 𝑙 ≠ 𝑖, which contradicts the fact that Δ𝑖s are unlinked. In the spirit of Proposi-

tion 5.6, we can exclude the case when 𝐿(2𝑠, Δ𝑘, ∧
2) has a pole at 𝑠 = 1∕2. We observe from Theorem 2.1 that 𝐿(𝑠, Δ𝑘) ≡ 1

unless Δ𝑘 is an unramified character of 𝐹×. This would in turn imply that 𝐿(𝑠, Δ𝑘) is holomorphic at 𝑠 = 1∕2 except
Δ𝑘 = [𝜈1∕2−𝓁, 𝜈3∕2−𝓁, … , 𝜈−1∕2], 𝓁 ≥ 1. Although this might be the case, we still reach the exactly same contradiction,
because Δ∨

𝑘
= [𝜈1∕2, … , 𝜈𝓁−3∕2, 𝜈𝓁−1∕2] is Δ𝑙′ for some 𝑙′ ≠ 𝑘, which makes Δ𝑖s linked. □

It is worthwhile noting that for 𝑠 = 1∕2 and𝑚 = 2𝑛 even, the integral

∫
(𝑁𝑚∩𝐻𝑚)∖(𝑃𝑚∩𝐻𝑚)

𝑊𝜋(𝑝)𝜒−1∕2(𝑝)𝜇
1∕2
𝑚 (𝑝)|det(𝑝)|𝑠−1∕2𝑑𝑝 = ∫

(𝑁2𝑛∩𝐻2𝑛)∖(𝑃2𝑛∩𝐻2𝑛)

𝑊𝜋(𝑝)𝑑𝑝

corresponds to what is introduced as the nontrivial𝐻2𝑛-linear functional (up to conjugation) in [40, Proposition 3.1].

Theorem 5.15. Let 𝜋 ∈ 𝐹(2𝑛) be a generic representation, which is distinguished with respect to𝐻2𝑛. Then, we have

∫
(𝑁2𝑛∩𝐻2𝑛)∖(𝑃2𝑛∩𝐻2𝑛)

𝑊◦
𝜋(𝑝)𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1∕2, 𝜋𝑢𝑟)𝐿(1, 𝜋𝑢𝑟, ∧

2) if 𝜋 is ramified,
𝐿(1∕2, 𝜋)𝐿(1, 𝜋, ∧2)

𝐿(𝑛, 𝟏𝐹×)
otherwise.
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The proof of [47, Corollary 4.2] implicitly contains the following assertion.

Proposition 5.16. Let 𝜋 ∈ 𝐹(2𝑛) be a unitary representation. Then,

dimℂHom𝑃2𝑛∩𝐻2𝑛
(𝜋, 𝟏𝑃2𝑛∩𝐻2𝑛

) ≤ 1.

The equality holds when 𝜋 is generic. In particular, if 𝜋 is𝐻2𝑛-distinguished, then𝑊𝜋 ↦ Λ𝐵𝐹(𝑊𝜋) gives a unique nontrivial
𝐻2𝑛-invariant linear functional in the spaceHom𝐻2𝑛

(𝜋, 𝟏𝐻2𝑛
).

Proof. As alluded in the course of the proof of Proposition 5.8, on account of the assumption Hom𝑃2𝑛∩𝐻2𝑛
(𝜋, 𝟏) ≠ 0, the

embedding Hom𝐻2𝑛
(𝜋, 𝟏𝐻2𝑛

) ↪ Hom𝑃2𝑛∩𝐻2𝑛
(𝜋, 𝟏𝑃2𝑛∩𝐻2𝑛

) induces an isomorphism

Hom𝑃2𝑛∩𝐻2𝑛
(𝜋, 𝟏𝑃2𝑛∩𝐻2𝑛

) ≃ Hom𝐻2𝑛
(𝜋, 𝟏𝐻2𝑛

),

fromwhich a nontrivial 𝑃2𝑛 ∩ 𝐻2𝑛-invariant linear functional in Theorem 5.15 can be deemed the𝐻2𝑛-invariant form. □

6 THE BUMP–GINZBURG PERIOD

From this section onward, we declare that the characteristic of residue field of 𝐹 is odd. We do not strive for maximal
generality, so sometimes the hypothesis might not be necessary but which holds in all our applications. For the reader,
who seeks for an expository description of symmetric square 𝐿-factors, we reiterate the crucial points from [54, 58]. Banks,
Levy, and Sepanski [5, section 3] gave an explicit illustration of a 2-cocycle,

𝜎𝑚 ∶ 𝐺𝑚 × 𝐺𝑚 → {±1},

and the 2-cocycles {𝜎𝑚}∞𝑚=1 satisfy a block compatibility formula on all standard Levi subgroups; if𝑚 = 𝑚1 + 𝑚2 + ⋯ +

𝑚𝑡 and 𝑔𝑖, 𝑔
′
𝑖
∈ 𝐺𝑚𝑖

for all 𝑖 = 1, 2, … , 𝑡, then

𝜎𝑚

((
𝑔1

⋱
𝑔𝑡

)
,

(
𝑔′
1

⋱
𝑔′
𝑡

))
=

𝑡∏
𝑘=1

𝜎𝑚𝑘
(𝑔𝑘, 𝑔

′
𝑘
)

∏
1≤𝑖<𝑗≤𝑡

(det(𝑔𝑖), det(𝑔
′
𝑗
)),

where (−,−) stands for the Hilbert symbol for 𝐹 (we apologize the double use of 𝜎𝑚 but we hope that the reader can
separate them by context). The 2-cocycle 𝜎1 is trivial on 𝐺1 and the 2-cocycle 𝜎2 is well known as the Kubota 2-cocycle on
𝐺2. We denote the central extension of 𝐺𝑚 associated to 𝜎𝑚 by 𝜎𝑚𝐺𝑚. As a set, the twofold cover 𝜎𝑚𝐺𝑚 is incarnated as
𝐺𝑚 × {±1} and the group law is defined by

(𝑔, 𝜉) ⋅ (𝑔′, 𝜉′) = (𝑔𝑔′, 𝜎𝑚(𝑔, 𝑔′)𝜉𝜉′) for 𝜉, 𝜉′ ∈ {±1} and 𝑔, 𝑔′ ∈ 𝐺𝑚.

It is known that the maximal compact open subgroup 𝐾𝑚 splits in 𝜎𝑚𝐺𝑚 and hence we can find a continuous map 𝑠𝑚 ∶

𝐺𝑚 → {±1} such that

𝜎𝑚(𝑘, 𝑘′) = 𝑠𝑚(𝑘)𝑠𝑚(𝑘′)𝑠𝑚(𝑘𝑘′) for 𝑘, 𝑘′ ∈ 𝐾𝑚.

For the global application, we need to use a different 2-cocycle 𝜏𝑚, which satisfies 𝜏𝑚(𝑘, 𝑘′) = 1 for 𝑘, 𝑘′ ∈ 𝐾𝑚. Then, we
define the 2-cocycle 𝜏𝑚 by

𝜏𝑚(𝑔, 𝑔′) = 𝜎𝑚(𝑔, 𝑔′)𝑠𝑚(𝑔)𝑠𝑚(𝑔′)𝑠𝑚(𝑔𝑔′)

for 𝑔, 𝑔′ ∈ 𝐺𝑚. The choice of 𝑠𝑚 and 𝜏𝑚 is not unique. We shall fix 𝑠𝑚 consistent with the ones in [54, 58], which all
stem from what is called the canonical lift of Kazhdan and Patterson. We define the metaplectic cover of 𝐺𝑚 to be 𝐺𝑚 =
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360 JO

𝐺𝑚 ⋊ {±1}, which sits in the central extension of 𝐺𝑚 associated to 𝜏𝑚

1 ⟶ {±1} ⟶ 𝐺𝑚 ⟶ 𝐺𝑚 ⟶ 1

and the group law is given by

(𝑔, 𝜉) ⋅ (𝑔′, 𝜉′) = (𝑔𝑔′, 𝜏𝑚(𝑔, 𝑔′)𝜉𝜉′) for 𝜉, 𝜉′ ∈ {±1} and 𝑔, 𝑔′ ∈ 𝐺𝑚.

We define the canonical projection 𝑝𝑚 ∶ 𝐺𝑚 → 𝐺𝑚 by 𝑝𝑚((𝑔, 𝜉)) = 𝑔 for 𝑔 ∈ 𝐺𝑚 and 𝜉 ∈ {±1}. For any subgroup𝐻 of𝐺𝑚,
we write �̃� for its preimage 𝑝−1

𝑚 (𝐻). We define a set-theoretic section 𝐬 ∶ 𝐺𝑚 → 𝐺𝑚 by 𝐬(𝑔) = (𝑔, 𝑠𝑚(𝑔)) for 𝑔 ∈ 𝐺𝑚. Any
element can be uniquely written in the form 𝜉𝐬(𝑔) for 𝑔 ∈ 𝐺𝑚 and 𝜉 ∈ {±1} and it is worthwhile noting that

𝐬(𝑔)𝐬(𝑔′) = 𝐬(𝑔𝑔′)𝜎𝑚(𝑔, 𝑔′)

for 𝑔, 𝑔′ ∈ 𝐺𝑚. We define another set-theoretic section 𝜅 ∶ 𝐺𝑚 → 𝐺𝑚 by 𝜅(𝑔) = (𝑔, 1) for 𝑔 ∈ 𝐺𝑚. For a subgroup𝐻 ≤ 𝐺𝑚,
whenever the cocycle 𝜎𝑚 is trivial on𝐻 × 𝐻, the section 𝐬 splits 𝐻, and we denote by𝐻∗ the image 𝐬(𝐻).
Let 𝜋 be an admissible representation of a subgroup �̃� ≤ 𝐺𝑚. The representation 𝜋 is said to be genuine if 𝜋(𝜉𝐬(ℎ))𝑣 =

𝜉𝜋(𝐬(ℎ))𝑣 for all ℎ ∈ 𝐻, 𝜉 ∈ {±1}, and 𝑣 ∈ 𝑉, that is, each element in 𝜉 ∈ �̃� acts as a multiplication by 𝜉. On the other
hand, any representation𝜋 of𝐻 can be pulled back to a nongenuine representation of �̃� by composing itwith the canonical
projection 𝑝𝑚 ∶ 𝐺𝑚 → 𝐺𝑚. In particular, for an upper parabolic subgroup P, we view the modulus character 𝛿P as an
character on P̃ in this way.
Let 𝐴e

𝑚 be the subgroup of 𝐴𝑚 consisting of diagonal matrices diag(𝑎1, 𝑎2, … , 𝑎𝑚) such that{
𝑎1𝑎

−1
2 , 𝑎3𝑎

−1
4 , … , 𝑎𝑚−1𝑎

−1
𝑚 are squares, if𝑚 = 2𝑛 is even,

𝑎2𝑎
−1
3 , 𝑎4𝑎

−1
5 , … , 𝑎𝑚−1𝑎

−1
𝑚 are squares, if𝑚 = 2𝑛 + 1 is odd.

We put𝒵𝑚 = 𝑍
𝑒(𝑚)
𝑚 , where 𝑒(𝑚) = 1 or 2 accordingly as𝑚 is odd or even. We remark that �̃�𝑚 is the center of 𝐺𝑚. We set

𝜇𝜓(𝑎) = 𝛾(𝜓𝑎)∕𝛾(𝜓) for 𝑎 ∈ 𝐹×, where 𝜓𝑎(𝑥) = 𝜓(𝑎𝑥) and 𝛾(𝜓) is the Weil representation associated to 𝜓. We recall that

𝜇𝜓(𝑎𝑏) = 𝜇𝜓(𝑎)𝜇𝜓(𝑏)(𝑎, 𝑏), 𝜇𝜓(𝑎𝑏
2) = 𝜇𝜓(𝑎) for 𝑎, 𝑏 ∈ 𝐹×.

These properties allow us to define a genuine character 𝜔𝜓 of 𝐴e
𝑚 by

𝜔𝜓(𝜉𝐬(𝑎)) =

{
𝜉𝜇−1

𝜓
(𝑎𝑚)𝜇−1

𝜓
(𝑎𝑚−2)⋯𝜇−1

𝜓
(𝑎2), if𝑚 = 2𝑛 is even,

𝜉𝜇−1
𝜓

(𝑎𝑚)𝜇−1
𝜓

(𝑎𝑚−2)⋯𝜇−1
𝜓

(𝑎3), if𝑚 = 2𝑛 + 1 is odd.

The exceptional representation 𝜃
𝜓
𝑚 of Kazhdan and Patterson is defined to be the unique irreducible quotient of the induced

representation Ind
𝐺𝑚

𝑇e
𝑚𝑁∗

𝑚
(𝜔𝜓 ⊗ 𝛿

1∕4
𝐵𝑚

) [54, section 2.1], where the induction is normalized in order that Ind𝐺𝑚

𝑇e
𝑚𝑁∗

𝑚
(𝜔𝜓 ⊗ 𝛿

1∕4
𝐵𝑚

)

is unitarizable provided that 𝜔𝜓 ⊗ 𝛿
1∕4
𝐵𝑚

. The representation 𝜃
𝜓
𝑚 is isomorphic to the unique irreducible subrepresentation

of Ind𝐺𝑚

𝑇e
𝑚𝑁∗

𝑚
(𝜔𝜓 ⊗ 𝛿

−1∕4
𝐵𝑚

) [58, section 1E].

For each character 𝜚 of 𝐹×, we define a genuine character 𝜁𝜓
𝜚 of �̃�𝑚 by

𝜁
𝜓
𝜚

(
𝜉𝐬

(
𝑧 ⋱ 𝑧

))
= 𝜉𝜚(𝑧)𝜇𝑛

𝜓
(𝑧)

for 𝜉 ∈ {±1} and 𝑧 ∈ 𝐹×𝑒(𝑚) with𝑚 = 2𝑛 even or𝑚 = 2𝑛 + 1 odd. We extend 𝜃
𝜓
𝑚−1 to the representation 𝜃

𝜓
𝑚−1 ⊠ 𝜁

𝜓
𝜚 of the

semidirect product (𝐺𝑚−1 × �̃�𝑚) ⋉ 𝑈𝑚 by letting 𝐺𝑚−1 × �̃�𝑚 act by 𝜃
𝜓
𝑚−1 ⊠ 𝜁

𝜓
𝜚 and letting 𝑈∗

𝑚 act trivially. We consider
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the normalized induced representation

𝐼𝜓(𝑠, 𝜚) = Ind
𝐺𝑚

𝑃𝑚�̃�𝑚
(𝜃

𝜓
𝑚−1 ⊠ 𝜁

𝜓
𝜚 ) ⊗ 𝛿

𝑠∕4
𝑃𝑛−1,1

.

We present the involution 𝑔 ↦ 𝜄𝑔 of 𝐺𝑚 defined by 𝜄𝑔 = 𝑤𝑚
𝑡𝑔−1𝑤𝑚, where

𝑤𝑚 ∶=

(
1⋰1

)
is the long Weyl element. Kable and Yamana [58, Proposition 1.3] extend the automorphism of 𝐺𝑚 to a lift 𝑔 ↦ 𝜄𝑔 of 𝐺𝑚

satisfying

𝜄𝐬(𝑎) = 𝐬(𝜄𝑎)
∏
𝑖>𝑗

(𝑎𝑖, 𝑎𝑗),
𝜄𝑧 = 𝑧−1, 𝜄(𝜄𝑔) = 𝑔, 𝜄𝐬(𝑛) = 𝐬(𝜄𝑛)

for all 𝑎 = diag(𝑎1, 𝑎2, … , 𝑎𝑚) ∈ 𝐴𝑚, 𝑧 ∈ �̃�𝑚, 𝑔 ∈ 𝐺𝑚, and 𝑛 ∈ 𝑁𝑚. Furthermore, if ℎ ∶ 𝐾𝑚 → 𝐺𝑚 is a homomorphism,
then ℎ is compatible with the involution 𝜄, that is to say, ℎ(𝜄𝑘) = 𝜄ℎ(𝑘) for all 𝑘 ∈ 𝐾𝑚. We define the normalized operator
𝑁(𝑠, 𝜚, 𝜓) ∶ 𝐼𝜓(𝑠, 𝜚) ⟶ 𝐼𝜓−1(−𝑠, 𝜚−1) by

𝑁(𝑠, 𝜚, 𝜓)(𝑔) ∶= 𝛾(𝑠, 𝜚−2, 𝜓)[𝑀(𝑠, 𝜚)𝑓(𝑠)](
𝜄𝑔),

where the unnormalized intertwining operator is given for Re(𝑠) ≫ 0 by the integral

[𝑀(𝑠, 𝜚)𝑓(𝑠)](𝑔) ∶= ∫
𝐹𝑚−1

𝑓(𝑠)

(
𝐬

(
𝐼𝑚−1

1

)
𝐬

(
1 𝑥

𝐼𝑚−1

)
𝑔

)
𝑑𝑥

and by meromorphic continuation otherwise for 𝑓(𝑠) ∈ 𝐼𝜓(𝑠, 𝜚).
A 𝐾𝑚-finite function 𝑓 ∶ ℂ × 𝐺𝑚 → ℂ is called a section if the mapping 𝑔 ↦ 𝑓(𝑠, 𝑔) belongs to 𝐼𝜓(𝑠, 𝜚) for all 𝑠. A sec-

tion 𝑓(𝑠) ∈ 𝐼𝜓(𝑠, 𝜚) is said to be a standard (flat) section if its restriction to𝐾𝑚 is independent of 𝑠. We denote by𝑉𝑠𝑡𝑑(𝑠, 𝜚, 𝜓)

the space of standard sections. The space of holomorphic sections is defined by 𝑉ℎ𝑜𝑙(𝑠, 𝜚, 𝜓) ∶= ℂ[𝑞±𝑠∕4] ⊗ 𝑉𝑠𝑡𝑑(𝑠, 𝜚, 𝜓).
The elements of 𝑉𝑟𝑎𝑡(𝑠, 𝜚, 𝜓) ∶= ℂ(𝑞−𝑠∕4) ⊗ 𝑉𝑠𝑡𝑑(𝑠, 𝜚, 𝜓) are said to be rational sections. The space of good sections
𝑉𝑔𝑜𝑜𝑑(2𝑠 − 1, 𝜚, 𝜓) in the sense of Piatetski–Shapiro and Rallis is defined to consist of the following:

(i) 𝑉ℎ𝑜𝑙(2𝑠 − 1, 𝜚, 𝜓),
(ii) 𝑁(1 − 2𝑠, 𝜚−1, 𝜓−1)[𝑉ℎ𝑜𝑙(1 − 2𝑠, 𝜚−1, 𝜓−1)].

The normalized operator stabilizes the good section in the sense of

𝑁(2𝑠 − 1, 𝜚, 𝜓)[𝑉𝑔𝑜𝑜𝑑(2𝑠 − 1, 𝜚, 𝜓)] ⊆ 𝑉𝑔𝑜𝑜𝑑(1 − 2𝑠, 𝜚−1, 𝜓−1)

(cf. [58, Lemma 3.5]), so this is indeed a good family of sections for normalized intertwining operator. The normalized
𝜅(𝐾1(𝔭

𝑐))-invariant section (a test function) 𝑓𝐾1(𝔭
𝑐)

(2𝑠−1)
is given in the following fashion (cf. [37, proof of Lemma 2.2]):

(i) When 𝜋 is ramified (𝑐 > 0),

𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
(𝑔) =

⎧⎪⎨⎪⎩
𝜁
𝜓

𝜔−1
𝜋

(𝑧)𝛿

2𝑠+1

4

𝑃𝑚−1,1
(𝑝)𝜃

𝜓
𝑚−1(𝑝) if 𝑔 = 𝑧𝑝𝑘, 𝑧 ∈ �̃�𝑚, 𝑝 ∈ 𝑃𝑚, 𝑘 ∈ 𝜅(𝐾1(𝔭

𝑐)),

0 if 𝑔 ∉ �̃�𝑚𝑃𝑚𝜅(𝐾1(𝔭
𝑐)).
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(ii) When 𝜋 is unramified (𝑐 = 0),

𝑓
𝐾𝑚

(2𝑠−1)
(𝑔) =

⎧⎪⎨⎪⎩
𝐿(𝑚𝑠, 𝜔2

𝜋)𝜁
𝜓

𝜔−1
𝜋

(𝑧)𝛿

2𝑠+1

4

𝑃𝑚−1,1
(𝑝)𝜃

𝜓
𝑚−1(𝑝) if 𝑔 = 𝑧𝑝𝑘, 𝑧 ∈ �̃�𝑚, 𝑝 ∈ 𝑃𝑚, 𝑘 ∈ 𝜅(𝐾𝑚),

0 if 𝑔 ∉ �̃�𝑚𝑃𝑚𝜅(𝐾𝑚).

The following lemma is briefly mentioned in the study of unramified calculation [58, section 3H]. We take this occasion
to refine this matter thoroughly.

Lemma 6.1. 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
is a good section.

Proof. The unitary hypothesis on 𝜔𝜋 does not regulate the generality. An arbitrary character 𝜔𝜋 is of the form 𝜔◦
𝜋𝜈

𝑡,

where 𝑡 ∈ ℝ and 𝜔◦
𝜋 is a unitary character. Since 𝐼𝜓(2𝑠 − 1 +

4𝑡

𝑚
, 𝜔◦

𝜋
−1

) ⊗ 𝜈
−

𝑡

𝑚 ≃ 𝐼𝜓(2𝑠 − 1, 𝜔◦
𝜋
−1

𝜈−𝑡), we enforce that 𝜔𝜋

is unitary at the compensation of shifting 𝑠 and twisting 𝜋 by unramified character. With 𝜋 unramified, we have

𝐿(𝑚𝑠, 𝜔2
𝜋)𝑁(2𝑠 − 1, 𝜔−1

𝜋 , 𝜓)𝑓
𝐾𝑚

2𝑠−1 = 𝐿(𝑚 − 𝑚𝑠, 𝜔−2
𝜋 )𝑓

𝐾𝑚

1−2𝑠.

In particular, 𝐿(𝑚𝑠, 𝜔2
𝜋)𝑓

𝐾𝑚

2𝑠−1 is a good section (cf. [56, Proposition 3.1.(5)]), because 𝐿(𝑚𝑠, 𝜔2
𝜋)𝑓

𝐾𝑚

2𝑠−1 is holomorphic for
Re(𝑠) > 0 and 𝐿(𝑚 − 𝑚𝑠, 𝜔−2

𝜋 )𝑓
𝐾𝑚

1−2𝑠 is holomorphic for Re(𝑠) < 1∕2. We apply [58, Proposition 3.11.(4)] to arrive at the
conclusion. When 𝜋 is ramified, 𝑓𝐾1(𝔭

𝑐)

(2𝑠−1)
is just a standard section. □

We define the degenerate character of 𝑁𝑚 by

∙ 𝜓𝐞(𝑛) = 𝜓(𝑛1,2 + 𝑛3,4 + ⋯ + 𝑛𝑚−1,𝑚) ∙ 𝜓𝐨(𝑛) = 𝜓(𝑛2,3 + 𝑛4,5 + ⋯ + 𝑛𝑚−2,𝑚−1)

when𝑚 = 2𝑛 is even. When𝑚 = 2𝑛 + 1 is odd, we define the degenerate character of 𝑁𝑚 by

∙ 𝜓𝐞(𝑛) = 𝜓(𝑛2,3 + 𝑛4,5 + ⋯ + 𝑛𝑚−1,𝑚) ∙ 𝜓𝐨(𝑛) = 𝜓(𝑛1,2 + 𝑛3,4 + ⋯ + 𝑛𝑚−2,𝑚−1).

The unique 𝜓−1
𝐞 -semi-Whittaker functional corresponds to a 𝐺𝑚-intertwining embedding 𝜆 ∶ 𝑉

𝜃
𝜓
𝑚

→ Ind
𝐺𝑚

𝑁∗
𝑚
(𝜓−1

𝐞 )

satisfying

𝜆
[
𝜃
𝜓
𝑚(𝜉𝐬(𝑛)𝑔)𝑣

]
= 𝜉𝜓−1

𝐞 (𝑛)𝜆(𝜃
𝜓
𝑚(𝑔)𝑣)

for 𝑛 ∈ 𝑁𝑚, 𝑔 ∈ 𝐺𝑚, 𝜉 ∈ {±1}, and 𝑣 ∈ 𝑉
𝜃
𝜓
𝑚
[54, Proposition 2.5]. Then, we obtain the semi-Whittaker modele(𝜃

𝜓
𝑚, 𝜓−1

𝐞 )

by setting (𝑊e

𝜃
𝜓
𝑚

)𝑣(𝑔) ∶= 𝜆(𝜃
𝜓
𝑚(𝑔)𝑣) for 𝑣 ∈ 𝑉

𝜃
𝜓
𝑚
. For convenience, we will suppress the subscript 𝑣.

For 𝑊𝜋 ∈ (𝜋, 𝜓), 𝑊e

𝜃
𝜓
𝑚

∈ e(𝜃
𝜓
𝑚, 𝜓−1

𝐞 ), and 𝑓(2𝑠−1) ∈ 𝑉𝑔𝑜𝑜𝑑(2𝑠 − 1, 𝜔−1
𝜋 , 𝜓), we define the local Bump–Ginzburg

integral by

𝑍(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(2𝑠−1)) = ∫
𝒵𝑚𝑁𝑚∖𝐺𝑚

𝑊𝜋(𝑔)𝑊
e

𝜃
𝜓
𝑚

(𝐬(𝑔))𝑓(2𝑠−1)(𝐬(𝑔))𝑑𝑔.

The integral converges absolutely for Re(𝑠) ≫ 0. It is noteworthy that the actual choice of the section 𝐬 above does not
matter, because𝑊e

𝜃
𝜓
𝑚

and 𝑓(2𝑠−1) are both genuine. Hence, we omit it from the notation most of time. Let (𝜋, Sym2) be

the subspace ofℂ(𝑞−𝑠∕2) spanned by local integrals 𝑍(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(2𝑠−1)), where𝑊𝜋 ∈ (𝜋, 𝜓),𝑊e

𝜃
𝜓
𝑚

∈ e(𝜃
𝜓
𝑚, 𝜓−1

𝐞 ), and

𝑓(2𝑠−1) ∈ 𝑉𝑔𝑜𝑜𝑑(2𝑠 − 1, 𝜔−1
𝜋 , 𝜓). Each 𝑍(𝑊𝜋,𝑊

e

𝜃
𝜓
𝑚

, 𝑓(2𝑠−1)) is a rational function of 𝑞−𝑠∕2 and hence admits a meromorphic

continuation to all of ℂ. The space (𝜋, Sym2) is a ℂ[𝑞±𝑠∕2]-ideal containing 1. There exists a normalized generator of
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the form 𝑃(𝑞−𝑠∕2)−1 with 𝑃(𝑋) ∈ ℂ[𝑋] and 𝑃(0) = 1 so that (𝜋, Sym2) =
⟨
𝑃(𝑞−𝑠∕2)−1

⟩
. We define the local symmetric

square 𝐿-functions by

𝐿(𝑠, 𝜋, Sym2) =
1

𝑃(𝑞−𝑠∕2)
.

As in [58, p. 244], we expect that 𝑃(𝑞−𝑠∕2) is a polynomial of 𝑞−𝑠.
Let {𝛼𝑖}

𝑟
𝑖=1

denote the Langlands parameter of 𝜋. Combining Proposition 3.1 with Proposition 5.1, the formal symmetric
square 𝐿-factor can be paraphrased as

(𝑠, 𝜋𝑢𝑟, Sym
2) =

∏
1≤𝑖≤𝑗≤𝑟

(1 − 𝛼𝑖(𝜛)𝛼𝑗(𝜛)𝑞−𝑠)−1.

Remark 6.2. At this moment, the equality (𝑠, 𝜋𝑢𝑟, Sym
2) = 𝐿(𝑠, 𝜋𝑢𝑟, Sym

2) is not known but for 𝐺2 [33]. To get around
this, we obtain the “formal symmetric square 𝐿-factor” (𝑠, 𝜋𝑢𝑟, Sym

2), which is enough at least for describing the main
result of our interest.

When𝑚 = 2𝑛 is even, we take the Haar measure on 𝑍2
𝑚 so that we assign the volume of 𝑍2

𝑚 ∩ 𝐾1(𝔭
𝑐) to 1. The goal is to

determine the triple of test vectors, which gives rise to the formal 𝐿-factors (𝑠, 𝜋𝑢𝑟, Sym
2).

Theorem 6.3. Let 𝜋 ∈ 𝐹(𝑚) be a generic representation. We set 𝑐 = 𝑐(𝜋). Then, we have

(𝑠, 𝜋𝑢𝑟, Sym
2) = 𝑍(𝑊◦

𝜋,𝑊
e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
). (6.1)

Proof. Although the proof presented seems to be well known, for lack of a precise reference apart from unramified cases
[58, section 3H], we provide all the detailed accounts. Since the integrand is left𝑁𝑚-invariant and right 𝐾1(𝔭

𝑐)-invariant,
we have

𝑍(𝑊◦
𝜋,𝑊

e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
) = ∫

𝑁𝑚∖𝑃𝑚

𝑊◦
𝜋(𝑝)𝑊

e◦

𝜃
𝜓
𝑚

(𝑝)𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
(𝑝)|det(𝑝)|−1 𝑑𝑝

= ∫
𝑁𝑚−1∖𝐺𝑚−1

𝑊◦
𝜋

(
𝑔

1

)
𝑊e◦

𝜃
𝜓
𝑚

(
𝑔

1

)
𝜃
𝜓
𝑚−1(𝑔)|det(𝑔)| 2𝑠+1

4
−1

𝑑𝑔,

(6.2)

taking into account the support of 𝑓𝐾1(𝔭
𝑐)

(2𝑠−1)
inside 𝒵𝑚𝑃𝑚𝐾1(𝔭

𝑐). In the aspect of Iwasawa decomposition, this can be
expressed as

𝑍(𝑊◦
𝜋,𝑊

e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
) = ∫

𝐴𝑚−1

𝑊◦
𝜋

(
𝑎

1

)
𝑊e◦

𝜃
𝜓
𝑚

(
𝑎

1

)
𝜃
𝜓
𝑚−1(𝑎)𝛿

−1
𝐵𝑚−1

(𝑎)|det(𝑎)| 2𝑠+1

4
−1

𝑑𝑎.

In view of Theorem 2.2 coupled with [10, p. 170], we may infer that

𝑍(𝑊◦
𝜋,𝑊

e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
)

= ∫
𝐴𝑟

𝑊◦
𝜋𝑢𝑟

(𝑎′)𝜈
𝑚−𝑟

2 (𝑎′)𝟏(𝑎𝑟)𝛿

1

4

𝐵𝑚

(
𝑎′

𝐼𝑚−𝑟

)
𝛿

1

4
−1

𝐵𝑚−1

(
𝑎′

𝐼𝑚−𝑟−1

) |det(𝑎′)| 2𝑠+1

4
−1

𝑑𝑎′

= ∫
𝐴𝑟

𝑊◦
𝜋𝑢𝑟

(𝑎′)𝜈
𝑚−𝑟

2 (𝑎′)𝟏(𝑎𝑟)𝛿

1

4

𝐵𝑟
(𝑎′)𝜈

𝑚−𝑟

4 (𝑎′)𝛿

1

4

𝐵𝑟−1
(𝑎′′)𝜈

𝑚−𝑟

4 (𝑎′)𝜈
−

𝑟

4 (𝑎𝑟)𝛿
−1
𝐵𝑟

(𝑎′)𝜈𝑟−(𝑚−1)(𝑎′)|det(𝑎′)| 2𝑠+1

4
−1

𝑑𝑎′,

where 𝑎′ = (𝑎′′, 𝑎𝑟). For each 𝜆 = (𝜆1, … , 𝜆𝑟) ∈ ℤ𝑟, we write 𝑎′
𝜆
= diag(𝜛𝜆1 , … ,𝜛𝜆𝑟 ) = (𝑎′′

𝜆
, 𝑎𝑟). We call 𝜆 even if all com-

ponents of 𝜆𝑖 are even and we let 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑟) denote the Langlands parameter of 𝜋. Then, the integral is equal
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to

𝑍(𝑊◦
𝜋,𝑊

e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
) =

∑
even 𝜆∈ℤ𝑟

𝜆1≥⋯≥𝜆𝑟≥0

𝛿
1∕2
𝐵𝑟

(𝑎′
𝜆
)𝑠𝜆(𝛼)𝛿

1∕4
𝐵𝑟

(𝑎′
𝜆
)𝛿

1∕4
𝐵𝑟−1

(𝑎′′
𝜆
)𝜈

−
𝑟

4 (𝑎𝑟)𝛿
−1
𝐵𝑟

(𝑎′)|det(𝑎′
𝜆
)| 2𝑠+1

4 ,

where we use Shintani formula and 𝑠𝜆 denotes the Schur polynomial defined in [8, Lemma 3.1]. Observing that 𝛿𝐵𝑟
=

𝛿𝐵𝑟−1
𝛿𝑃𝑟−1,1

, this clearly justifies that

𝑍(𝑊◦
𝜋,𝑊

e◦

𝜃
𝜓
𝑚

, 𝑓
𝐾1(𝔭

𝑐)

(2𝑠−1)
) =

∑
even 𝜆∈ℤ𝑟

𝜆1≥⋯≥𝜆𝑟≥0

|det(𝑎′
𝜆
)| 𝑠

2 𝑠𝜆(𝛼).

The remaining part of the proof continues as in [10, Theorem 4.1], [54, Proposition 3.16], and [37, Proposition 3.4]. □

The equality of (𝑠, 𝜋𝑢𝑟, Sym
2) and 𝐿(𝑠, 𝜋, Sym2) fails in general.

Corollary 6.4. We have

(𝑠, 𝜋𝑢𝑟, Sym
2) = 𝑃(𝑞−𝑠∕2)𝐿(𝑠, 𝜋, Sym2)

for a polynomial 𝑃(𝑋) ∈ ℂ[𝑋] satisfying 𝑃(0) = 1.

Let us now turn our attention to 𝐺𝑚-invariant trilinear forms and Bump–Ginzburg period integrals.

Proposition 6.5. [58, Theorem 2.14.(2)] Let𝜋 ∈ 𝐹(𝑚) be a unitary generic representation. For any𝑊𝜋 ∈ (𝜋, 𝜓),𝑊e

𝜃
𝜓
𝑚

∈

e(𝜃
𝜓
𝑚, 𝜓−1

𝐞 ), and 𝑓(1) ∈ 𝑉𝑔𝑜𝑜𝑑(1, 𝜔
−1
𝜋 , 𝜓), the integral

𝑇(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) ∶= ∫
𝒵𝑚𝑁𝑚∖𝐺𝑚

𝑊𝜋(𝑔)𝑊
e

𝜃
𝜓
𝑚

(𝑔)𝑓(1)(𝑔)𝑑𝑔

converges absolutely and defines a 𝐺𝑚-trilinear functional on the space(𝜋, 𝜓) ⊗e(𝜃
𝜓
𝑚, 𝜓−1

𝐞 ) ⊗ 𝑉𝑔𝑜𝑜𝑑(1, 𝜔
−1
𝜋 , 𝜓).

The 𝐺𝑚-trilinear form 𝑇(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) is not actually vanished.

Theorem 6.6. Let 𝜋 ∈ 𝐹(𝑚) be a unitary generic representation. We set 𝑐 = 𝑐(𝜋). Then, we have

∫
𝒵𝑚𝑁𝑚∖𝐺𝑚

𝑊◦
𝜋(𝑔)𝑊

e◦

𝜃
𝜓
𝑚

(𝑔)𝑓
𝐾1(𝔭

𝑐)

(1)
(𝑔)𝑑𝑔 = (1, 𝜋𝑢𝑟, Sym

2).

Proof. With help of the identity 𝐿(𝑠, 𝜋𝑢𝑟 × 𝜋𝑢𝑟) = 𝐿(𝑠, 𝜋𝑢𝑟, ∧
2)(𝑠, 𝜋𝑢𝑟, Sym

2) along with [30, Proposition 3.17],
(𝑠, 𝜋𝑢𝑟, Sym

2) does not afford any poles at 𝑠 = 1. This can be achieved by evaluating at 𝑠 = 1 on the both sides of (6.1). □

We say that a representation 𝜋 of 𝐺𝑚 is 𝜃-distinguished, if Hom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
) ≠ 0.

Proposition 6.7. Let 𝜋 ∈ 𝐹(𝑚) be a unitary representation. Then,

dimℂHom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

) ≤ 1.

The equality holds when 𝜋 is generic. In particular, if 𝜋 is 𝜃-distinguished, then (𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) ↦ 𝑇(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) gives a

nontrivial trilinear form belonging toHom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
).
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Proof. The first assertion is simply a statement from [58, Theorem 3.8.(5)]. In light of Theorem 6.6, the injection map (see
[58, (2.3)])

Hom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
) ↪ Hom𝐺𝑚

(𝜋 ⊗ 𝜃
𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

)

becomes the isomorphism

Hom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
) ≃ Hom𝐺𝑚

(𝜋 ⊗ 𝜃
𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

).

Afterwards, (𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) ↦ 𝑇(𝑊𝜋,𝑊
e

𝜃
𝜓
𝑚

, 𝑓(1)) gives a nontrivial 𝐺𝑚-invariant trilinear form in the space Hom𝐺𝑚
(𝜋 ⊗

𝜃
𝜓
𝑚 ⊗ 𝜃

𝜓−1

𝑚 , 𝟏𝐺𝑚
). □

We close this section with two remarks, which were shortly mentioned in Section 1.

Remark 6.8. In principle, the Frobenius reciprocity (cf. [58, Proof of Theorem 2.14]) demonstrates the isomorphism of the
space

Hom𝐺𝑚
(𝜋 ⊗ 𝜃

𝜓
𝑚 ⊗ 𝐼𝜓(1, 𝜔

−1
𝜋 ), 𝟏𝐺𝑚

) ≃ Hom𝑃𝑚
(𝜋|𝑃𝑚

⊗ 𝜃
𝜓
𝑚|𝑃𝑚

⊗ Ψ+(𝜃
𝜓
𝑚−1) ⊗ 𝜈−3∕4, 𝟏𝐺𝑚

).

Knowing that 𝜃𝜓
𝑚 affords Kirillov model 𝜃𝜓

𝑚|𝑃𝑚
≃ e(𝜃

𝜓
𝑚, 𝜓−1

𝐞 )|𝑃𝑚
[34, Theorem 4.3], this isomorphism can be phrased in

terms of integral representations. Performing the same steps repeatedly as in (6.2), the integration over𝐾𝑛 can be absorbed
to get

∫
𝑁𝑚∖𝑃𝑚

𝑊◦
𝜋(𝑝)𝑊

e◦

𝜃
𝜓
𝑚

(𝑝)𝑓
𝐾1(𝔭

𝑐)

(1)
(𝑝)|det(𝑝)|−1𝑑𝑝 =

⎧⎪⎨⎪⎩
(1, 𝜋𝑢𝑟, Sym

2) if 𝜋 is ramified,
(1, 𝜋, Sym2)

𝐿(𝑚, 𝜔2
𝜋)

if 𝜋 is unramified,
(6.3)

which is easily seen to be equal to

∫
𝑁𝑚−1∖𝐺𝑚−1

𝑊◦
𝜋

(
𝑔

1

)
𝑊e◦

𝜃
𝜓
𝑚

(
𝑔

1

)
(𝜃

𝜓
𝑚−1 ⊗ 𝜈1∕2)(𝑔)𝜈−3∕4(𝑔)𝑑𝑔.

The last integral is evidently an element of Hom𝑃𝑚
(𝜋|𝑃𝑚

⊗ 𝜃
𝜓
𝑚|𝑃𝑚

⊗ Ψ+(𝜃
𝜓
𝑚−1) ⊗ 𝜈−3∕4, 𝟏𝐺𝑚

) and the expression (6.3) is
parallel to what we have gone through before: Theorems 3.5, 4.4, 5.5, and 5.12.

Remark 6.9. Let 𝜋 ∈ 𝐹(𝑚) be a generic representation, which is 𝜃-distinguished. By [36, Corollary 4.19], it follows that
𝜋 is self-dual. Owing to Proposition 3.6, we find that 𝐿(𝑠, 𝜋 × 𝜋) is holomorphic at 𝑠 = 1. At this point, we fail to formulate
the agreement (𝑠, 𝜋, Sym2) = 𝐿(𝑠, 𝜋, Sym2), which implies the identity

𝐿(𝑠, 𝜋 × 𝜋) = 𝐿(𝑠, 𝜋, ∧2)𝐿(𝑠, 𝜋, Sym2)

with (𝑠, 𝜋, Sym2) appearing in (5.3). Nevertheless, the statement has been recently confirmed for 𝑚 = 2 [33]. Taking it
for granted, it can be seen that 𝐿(𝑠, 𝜋, Sym2) is holomorphic at 𝑠 = 1. Evaluating at 𝑠 = 1, both sides of (6.1) read

∫
𝒵𝑚𝑁𝑚∖𝐺𝑚

𝑊◦
𝜋(𝑔)𝑊

e◦

𝜃
𝜓
𝑚

(𝑔)𝑓
𝐾1(𝔭

𝑐)

(1)
(𝑔)𝑑𝑔 = 𝐿(1, 𝜋𝑢𝑟, Sym

2).
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Any 𝜃-distinguished representation always satisfies 𝜔2
𝜋 = 𝟏𝐹× [36, section 4]. With this said, (6.3) is reshaped as follows:

∫
𝑁𝑚∖𝑃𝑚

𝑊◦
𝜋(𝑝)𝑊

e◦

𝜃
𝜓
𝑚

(𝑝)𝑓
𝐾1(𝔭

𝑐)

(1)
(𝑝)|det(𝑝)|−1𝑑𝑝 =

⎧⎪⎨⎪⎩
𝐿(1, 𝜋𝑢𝑟, Sym

2) if 𝜋 is ramified,
𝐿(1, 𝜋, Sym2)

𝐿(𝑚, 𝟏𝐹×)
otherwise.
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