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Deep learning model to predict 
Epstein–Barr virus associated 
gastric cancer in histology
Yeojin Jeong1,13, Cristina Eunbee Cho2,13, Ji‑Eon Kim3,13, Jonghyun Lee4, Namkug Kim2, 
Woon Yong Jung5, Joohon Sung1, Ju Han Kim6, Yoo Jin Lee7, Jiyoon Jung8, Juyeon Pyo9, 
Jisun Song10, Jihwan Park11, Kyoung Min Moon12* & Sangjeong Ahn6,7*

The detection of Epstein–Barr virus (EBV) in gastric cancer patients is crucial for clinical decision 
making, as it is related with specific treatment responses and prognoses. Despite its importance, the 
limited medical resources preclude universal EBV testing. Herein, we propose a deep learning‑based 
EBV prediction method from H&E‑stained whole‑slide images (WSI). Our model was developed using 
319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI 
(8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet 
consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the 
learned representation by the classifiers using UMAP. We externally validated the model using 60 
additional WSI (7 being EBV positive; HGH dataset). We compared the model’s performance with 
those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists 
yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, 
specificity, precision, and F1‑score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed 
model is expected to contribute to prescreen patients for confirmatory testing, potentially to save 
test‑related cost and labor. 

The Epstein–Barr virus (EBV) is present in approximately 10% of gastric cancer patients  worldwide1, with the 
most prevalent among EBV-attributed  malignancies2,3. The presence of EBV has been recognized as a potential 
biomarker for precision oncology in gastric  cancers4–8. EBV-associated gastric cancers exhibit characteristic 
genetic and epigenetic alteration, which has multipronged effects on their unique  phenotypes9,10. EBV-positive 
gastric cancer has high  immunogenicity11 with overexpression of PD-L1 and PD-L212,13, clinically approved 
biomarkers for immune checkpoint  inhibitors14,15. Deregulated immune response genes in this subtype of tumor 
affect the tumor immune  microenvironment16, leading to a unique spatial arrangement of tumor cells within 
exuberant lymphoid stroma: so-called “lymphoepithelioma-like carcinoma”17. Prominent tumor-infiltrating 
lymphocytes, the characteristic morphologic feature in EBV-positive gastric cancer, can be a surrogate indica-
tor of tumor behavior and  prognosis17–19, associated with a lower frequency of lymph node  metastasis5–8,20,21. 
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With a low risk of lymph node metastasis in this subtype, early gastric cancers associated with EBV have been 
proposed as candidates for local excision regardless of the depth of the submucosal  invasion5–8,20,21. Therefore, 
a revised criteria was proposed for endoscopic resection in patients with EBV-positive early gastric  cancer6,8,21. 
Taken together, the identification of EBV status in gastric cancer, which links to a treatment-relevant phenotype, 
is important to provide effective therapeutic options and  strategies22.

Manual microscopic inspection of H&E histology may be used to predict EBV status in gastric cancer, and 
may therefore have a role in screening EBV status for further confirmatory test. However, morphologic assess-
ment has a disadvantage of low inter- and intra-rater agreement. A paramount diagnostic method for identifying 
a tumor as “EBV-positive” is the presence of EBV-encoded RNA in situ hybridization (EBER-ISH)11,23. However, 
the limitations on medical resources preclude universal testing of EBV status. Therefore, the development of a 
widely accessible and cost-effective tool for the EBV testing is essential.

As an unprecedented breakthrough in artificial intelligence technology, histology-based deep learning 
approaches are expected to identify novel biomarkers for oncology practice with a precision beyond human 
 performance24. Prior studies have proven to facilitate learning of morphologic feature representation, correlating 
to molecular alterations, from digitized whole-slide images (WSI). They have inferred genetic traits including 
EBV status, actionable driving mutation, microsatellite instability, gene signature, and molecular tumor subtypes, 
in various malignant images (Supplementary Table S1 and S2)25–51. These studies shed light on the morphology-
molecular association or “histo-genomics”52,53, which may contribute toward the discovery of cost-effective 
biomarkers and improved therapeutic  options54.

In this study, we present a deep learning-based system for automated EBV prediction directly from H&E 
stained WSI. Our model was trained on WSI obtained from the TCGA dataset, where the EBV results were 
derived from RNA sequencing (RNA-seq). However, as EBER-ISH is a more common method to detect EBV 
status in  practice11,23, a dataset labeled with EBER-ISH was used for fine-tuning to mitigate estimation bias and 
ensure robustness. To assess its generalizability, we externally validated our network on a dataset originating 
from a different institution.

Results
Patch‑wise performance on TCGA dataset (internal validation). The baseline framework has two 
sequential binary classifiers: a tumor classifier and an EBV classifier (Fig. 1). The performance of each classifier, 
trained using a different patch size and model, are shown in Table 1. To select the models for baseline frame-
work, we compared the results of the internal validation using patch-wise performance on the hold-out TCGA 
dataset (Supplementary Table S3). As shown in Table 1, the models yielded better performance with a patch size 
of 512 × 512 pixels than with 256 × 256 pixels, while the computation time on larger images was longer than on 
smaller images (Supplementary Table S4).

We embedded the tumor classifier to select representative tumor patches. For the tumor classifier, we 
used ResNet50 because of its high specificity (Table 1). For the EBV classifier, we implemented InceptionV3, 
which yields higher sensitivity, since our aim was to enable our network to be used as a screening tool for EBV 
identification.

The confusion matrix, where the performance of the two classifiers was evaluated, is shown in Supplementary 
Figure S1. The baseline frameworks with different combinations of sequential binary classifiers were internally 
validated on the hold-out TCGA dataset, which was assessed with the 3-class classifier as well (Supplementary 
Fig. S2 and Supplementary Table S5). The results showed that when using the sequential binary classifiers, the 
false positive rate drastically decreased from 0.056 to 0.005 (Supplementary Figure S2 and Supplement table S5) 
and the overall performance was better in the sequential binary classifiers than in the 3-class classifier. The 
sequential binary classifiers with the best performance yielded a macro-negative predictive value (NPV) of 0.99 
and a macro-sensitivity of 0.96.

Representation visualization. To have an insight into the model’s representation, we visualized the 
learned feature space in two dimensions using the hold-out TCGA dataset. The discriminative patches with 
similar features according to the classifiers were clustered closely in distinct regions, which proves the disentan-
gled representation of each model (Fig. 2). Interestingly, several misclassified patches according to the binary 
classifiers are found at the edges of the other side cluster (Fig. 2a,b, arrows), whereas the misclassified patches 
predicted by the 3-class classifier are located far from their own cluster (Fig. 2c, arrows). Based on this result, it 
can be said that the binary classifiers learned the representation more efficiently than the 3-class classifier.

Comparison of the baseline framework before and after fine‑tuning (external validation based 
on slide‑level performance). In comparison with the slide-level performances using WSIs from Hanyang 
University Guri Hospital (Guri, South Korea; denoted by HGH), the performance after fine-tuning using WSIs 
from the International St. Mary’s Hospital (Incheon, South Korea; denoted by ISH) improved as follows: the 
accuracy increased from 0.77 to 0.92, the area under the receiver operating characteristic (AUROC) increased 
from 0.77 to 0.88, and the area under the precision-recall curve (AUPRC) increased from 0.38 to 0.65 (Table 2, 
Fig. 3).

We implemented EBV probability heatmaps to visualize the effect of fine-tuning (Fig. 4a,b) and to identify 
the potential reasons for misclassification (Fig. 4c,d). After fine-tuning, regions with high probabilities of EBV-
positive tumor tissue increased significantly (Fig. 4a,b). Tumors with a low probability for EBV (Fig. 4c) show 
differentiated histology, whereas the characteristic features of lymphoepithelial carcinoma were found with a 
high probability (Fig. 4d).



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18466  | https://doi.org/10.1038/s41598-022-22731-x

www.nature.com/scientificreports/

Figure 1.  Overview of EBVNet. EBVNet was trained on the TCGA dataset, and fine-tuned on the ISH dataset. EBVNet 
before and after fine-tuning were externally validated on the HGH dataset. Each H&E histology slide was preprocessed by 
discarding non tissue-containing background using Otsu’s thresholding and generating non-overlapping patches. All the 
patches were stain normalized (not shown in the figure). First, the tumor classification model (blue box) receives all the tissue-
containing patches and returns the probability of each patch being a tumor patch. The patches with probabilities of higher 
than 0.5 are assigned as tumor patches, otherwise, they are assigned as normal patches. The tumor-predicted patches are then 
fed into the second classifier (EBV prediction model, purple box), with the resulting probability of being an EBV positive 
tumor patch. The tumor-predicted patches with probabilities higher than 0.1 are assigned as EBV positive tumor patches, 
otherwise, they are assigned as EBV negative patches. Based on the patch-wise classification result, the EBV probability score 
(EPS), which is the ratio of the number of EBV-positive tumor-predicted patches to the number of tumor-predicted patches, 
is calculated for each slide. The slide with calculated EPS higher than 0.2 is assigned as an EBV positive slide, otherwise, it is 
assigned as an EBV negative slide.
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Analysis of false results. We reviewed falsely predicted image patches on the hold-out TCGA test set 
(internal validation) (Fig.  2d–f). False-positive image patches by the tumor classifier include inflammatory 
necrotic tissue, florid granulation tissue, and dense infiltration of inflammatory cells, which could be mistaken 
as poorly-differentiated adenocarcinoma (Fig.  2d). False-negative tumor patches that were EBV positive but 
predicted as EBV negative by the EBV classifier and 3-class classifiers show a lack of lymphoepithelial features 
(Fig. 2e,f).

EBVNet identified one false negative and four false positives on the slide-wise HGH external validation set 
(Supplementary Figs. S3 and S4). The false negative exhibits differentiated histology with well-formed tubules 

Table 1.  Patch-wise model performances in the tumor classifier (upper) and the EBV classifier (lower). Bold 
font: maximum value of specific metrics across different model and patch size. a Negative predictive value.

Model Patch size (pixels) Accuracy NPVa Specificity Sensitivity Precision F1-score

Tumor classifier

InceptionV3
256 × 256 0.98 0.97 0.96 0.98 0.98 0.98

512 × 512 0.98 0.99 0.95 0.99 0.98 0.99

ResNet50
256 × 256 0.98 0.97 0.96 0.99 0.98 0.98

512 × 512 0.98 0.98 0.97 0.99 0.99 0.99

EBV classifier

InceptionV3
256 × 256 0.93 0.99 0.93 0.90 0.56 0.69

512 × 512 0.99 0.99 0.99 0.92 0.92 0.92

ResNet50
256 × 256 0.92 0.97 0.94 0.71 0.54 0.61

512 × 512 0.98 0.99 0.99 0.91 0.86 0.89

Figure 2.  Uniform Manifold Approximation and Projection (UMAP) visualization of neural network latent 
space and examples of false results. All input patches were fed into classification models and the corresponding 
post-convolution dense vectors (1024-length) were generated. All the vectors were mapped into 2-dimensional 
space using UMAP. Each point corresponds to a patch in (a) the tumor classifier, (b) the EBV classifier, and (c) 
the 3-Class classifier, colored by tissue type (tumor vs. normal) and tumor type (EBV positive vs. EBV negative). 
Histology images (d–f) of false predictions (red triangles) of each classifier (a–c), which are located apart 
from their corresponding cluster on UMAP. These points were examined to investigate potential reasons for 
misclassification.
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(Supplementary Fig. S3). Of the four false positives, the algorithm falsely identified prominent lymphoid stroma 
and lymphoepithelial carcinoma (Supplementary Fig. S4A–C), and poorly cohesive carcinoma (Supplementary 
Fig. S4D), as EBV-positive tumors.

Comparison of deep‑learning model to pathologists based on slide‑level performance. The 
performance results of all four pathologists were below the models’ AUROC and AUPRC, with a mean AUROC 
of 0.75 and a mean AUPRC of 0.41 (Supplementary Table  S7). While the NPV and specificity were similar, 
EBVNet exhibited higher sensitivity than the pathologists.

Discussion
In this study, we present EBVNet, a deep learning model to predict EBV status directly from histological images. 
Our model achieved higher performance than the network without fine-tuning, and outperformed experienced 
pathologists on a reader study. Our study also validated the feasibility of fine-tuning for domain adaptation and 
model generalizability.

Until now, seven studies on EBV status prediction via a deep learning approach using digitalized WSIs have 
been published (Supplementary Table S1)25–31. Of these, the most similar to our pipeline are those proposed by 
Zhang et al. and Zheng et al.28,29; in these two previous studies, a two-step approach utilizing a tumor classifier 
and an EBV classifier was implemented. Most studies have trained EBV classifiers using tumor patches gener-
ated from tumor annotation,  with28,29 or  without25–27 training tumor classifiers—a tumor annotation-based 
approach. Other studies have trained the model without using tumor or normal patches—an annotation-free 
training  approach30,31. The latter is called weakly supervised learning where only a slide-level label (weak label) 
per image was available for model  development30,31. Of the studies with weakly supervised learning, Muti et al. 
reported a comparable performance with an AUROC of 0.859 on the external dataset. However, the results of 
these previous studies elucidate that supervised learning approaches, where the model was trained on tumor 
patches, outperformed the weakly supervised approach with an AUROC of 0.94129.

Most histology-based deep learning studies implemented patch-based workflow due to hardware memory 
constraints. Patch selection techniques that take meaningful representative images for network training are para-
mount for higher network  performance55. In the current study, we assumed that normal patches cannot provide 
any information about the genetic trait of the tumor. Therefore, we only used tumor patches based on the tumor 

Table 2.  Slide-wise performance on the external dataset of the HGH cohort. a Negative predictive value. b The 
area under the receiver-operating characteristics curve. c The area under the precision-recall curve.

Accuracy NPVa Specificity Sensitivity Precision F1-score AUROCb AUPRCc

Before trans-
fer learning 0.77 0.95 0.77 0.71 0.29 0.29 0.77 0.38

After transfer 
learning 0.92 0.98 0.92 0.86 0.60 0.71 0.88 0.65

Performance 
gain (value, 
%)

 + 0.15 (19.48)  + 0.03 (3.16)  + 0.15 (19.48)  + 0.15 (21.13)  + 0.31 
(106.90)

 + 0.42 
(144.83)

 + 0.11 
(14.29)

 + 0.27 
(71.05)

Figure 3.  Performance of the models. The area under the receiver operating characteristic (AUROC) curve (a) 
and area under the precision-recall curve (AUPRC) (b) of slide-level EBV status inference using the original 
classifiers solely trained with TCGA dataset (blue) and re-weighted classifiers fine-tuned with ISH dataset 
(green).
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annotation dataset when training the EBV classifier, similar to previous  studies25–29. The tumor classifier in our 
proposed framework may have been useful in selecting representative patches (tumor patches) and in remov-
ing noise images of normal patches. We elucidated that the implementation of this patch selection network in 
sequential binary classifiers led to better performance than with a 3-class classifier.

However, training a discriminative model with supervision using tumor annotation has two drawbacks. First, 
annotation is a laborious, time-consuming, and expensive task, requiring domain knowledge and expertise. 
Second, detection of biomarkers using a model trained on annotated data is restricted to the detection of tumor 
regions that are already known. In contrast, unsupervised or weakly supervised learning allows the identification 
of novel biomarkers that are biologically relevant to the target of the  model56,57. In the recent study by Brock-
moeller et al., the model was trained on slide-level labels using tumor and non-tumor regions, and the image 
biomarker in the normal area, not in the tumor area, was first identified to predict lymph node  metastasis56.

The increasing growth of deep learning owes plenty to “open data mentality”, with researchers sharing their 
datasets and code. Nevertheless, there is a lack of annotation data in histology-based deep learning, as the anno-
tation of WSI is expensive and time-consuming. We would like to support further open-source development 
by sharing the annotations of TCGA-STAD employed in this study (https:// github. com/ EBVNET/ EBVNET).

Our study has certain limitations that require further analysis. First, our proposed pipeline employed a fixed 
pooling operator for a slide-level aggregation. This simple decision fusion method of aggregating patch-level 
labels to a slide-level label is inconsistent with the decision process in pathology. In addition, this approach dis-
regards spatial relationships between patches, resulting in a loss of global contextual information present in WSI. 
However, since EBV-positive tumors have morphologically homogeneous characteristics, simple thresholding 
or major voting, which are the most widely used approaches for the post-processing strategies of classification 
tasks, would have been  effective55. Second, the use of EBV identification as a screening tool is more helpful on 
biopsy specimens, where lesions are much smaller and likely to be ignored. However, we validated EBVNet on 
the external dataset of HGH, which consists of WSI from gastrectomy specimens (Supplementary Table S6). 
The performance of our pipeline should be further fine-tuned and investigated on the hard cases of these biopsy 
slides. Finally, our network should be ameliorated for clinical applications achieving 100% sensitivity with an 
acceptable false rate. A large dataset for training or fine-tuning will be helpful to achieve this.

In conclusion, our study has illuminated the potential of deep learning systems to identify histology-based 
biomarkers. Our EBVNet is expected to serve as an alternative to effectively screen EBV status using ubiquitously 
available H&E slides.

Methods
Experimental design. In this study, three different datasets were used for training, fine-tuning, and exter-
nal validation, respectively (Fig. 1). EBVNet, which consisted of the tumor classifier and EBV classifier (Fig. 1), 
was trained on a public dataset (TCGA-STAD). For fine-tuning and external validation, we used two datasets 

Figure 4.  Representative heatmaps of an EBV positive case. The colors of the overlaid heatmaps represent the 
output of the EBV classification model (second classifier in the sequential classification framework), which 
means predicted probabilities of being an EBV-positive tumor, as defined in the color bar. In the top row, each 
heatmap corresponds to the EBV positive tumor probability values from classifiers before (a) and after (b) fine-
tuning with the ISH dataset. A zoomed-in view of a region with low probability (c) and high probability (d) of 
being an EBV positive tumor, according to the fine-tuned EBV classifier (EBVNet), is visualized in the bottom 
row.

https://github.com/EBVNET/EBVNET
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from different institutes, the ISH and HGH (Supplementary Table S6). The ISH dataset was employed for fine-
tuning, and the HGH dataset for external validation. We also compared the performance of EBVNet before and 
after fine-tuning using slide-wise performance on the HGH dataset.

Data acquisition and annotation. We retrieved anonymized histology images (diagnostic slides, FFPE 
tissue) from the TCGA-STAD project through the Genomic Data Commons  Portal58. A total 319 WSI were used 
to train the deep learning model after removal of WSI with corrupt image files, lack of visible tumor tissue, miss-
ing values in EBER-RNA results, or histology for tumors other than adenocarcinoma (Fig. 1).

For fine-tuning, 108 WSI of gastric cancer were collected from ISH. To externally validate the developed 
model, we used an independent cohort that encompasses 60 WSI of stomach cancer with surgical resection 
from HGH.

All slides from the ISH and HGH cohorts were scanned at 40× objective magnification (∼0.25 μm/pixel) using 
Leica Aperio ScanScope AT2 (Leica Biosystems, Wetzlar, Germany). This study was approved by the Institutional 
Review Board at ISH (IRB no., IS21SIME0031) and HGH (IRB no., 2020-09-002), respectively, and conducted 
in accordance with the Declaration of Helsinki. Informed consent from patients was waived with IRB approval.

Digitalized H&E histology slides were re-surveyed, and adenocarcinoma regions in the TCGA and the ISH 
dataset were manually annotated by an expert gastrointestinal pathologist (S. Ahn) using the ASAP software, 
v.1.9.0 (Geert Litjens, Nijmegen, Netherlands). Every region with adenocarcinoma was assigned as “tumor.” 
As all WSIs used in this study contained tumor areas, which also have areas of normal tissue, the remaining 
unannotated areas were considered as normal tissue. We generated tumor patches based on tumor annotation, 
and normal patches derived from unannotated areas (Supplementary Table S3). Randomly selected patches 
generated from the TCGA datasets and not used in training classifiers, were used for internal validation (the 
hold-out TCGA dataset).

Full details for the strategies of image preprocessing, including patch generation, are provided in the Sup-
plementary method.

EBV labels. For TCGA samples, the EBV status was retrieved directly from the molecular result, as described 
by Liu et al. and Tathiane et al.9,59 without re-analysis for EBV. For samples in the ISH and HGH cohorts, EBV 
status was determined via EBER-ISH results.

Model development. Deep neural networks, denoted by EBVNet, were trained on image patches with the 
aim of predicting EBV status in gastric cancers. The baseline framework consists of two sequential binary classi-
fiers (Fig. 1). The first binary classifier is a tumor classification model (Normal vs. Tumor), and it is followed by 
the second binary classifier, which is the EBV prediction model (EBV negative tumor vs. EBV positive tumor). 
Among all the patches fed to the first classifier, only the patches predicted as tumors enter the second classifier. 
For training binary classifiers, two networks were used: ResNet50 and Inception V3. The ResNet network is well 
known for its residual connections and therefore used to mitigate the vanishing gradient and stabilize the learn-
ing process. The inception network consists of inception blocks with different parallel convolution filters for the 
extraction of representative features with fewer parameters. As an alternative approach to the sequential binary 
classifiers, we conducted an experiment to train a simple multi-classification network for EBV positive tumor, 
EBV negative tumor, and normal tissues, denoted by a 3-class classifier. For the 3-class classifier, Inception V3 
was employed.

Limited generalizability of a deep learning model may hinder its clinical applicability resulting in poor per-
formance on real-world data. One way to mitigate this problem is to re-weigh the model on target datasets with 
domain-specific features. Following this approach, fine-tuning can be used to ensure domain adaptation. Herein, 
the weight values of each binary classifier trained on the source TCGA dataset were employed to fine-tune the ISH 
dataset, as the ISH and HGH cohorts exhibited similar clinical characteristics and color spaces (Supplementary 
Table S6). All the layers were unfrozen and re-trained using the ISH dataset.

Full details on neural network training, model selection, hyperparameter optimization and data augmenta-
tion, are provided in the Supplementary method.

Inference of EBV status. For patch-wise EBV status inference in a sequential binary classifier framework, 
first, patch images were given as input to the tumor classification model (Fig. 1), which then provided the prob-
ability of each patch being a tumor patch as output. The patches with predicted probabilities higher than 0.5 were 
assigned as tumor-predicted patches (N_tumor). Second, tumor-predicted patches were given as input to the 
EBV prediction model, which then provided the probability of each patch being an EBV positive tumor patch as 
output. The patches with predicted probabilities higher than 0.1 were assigned as EBV positive-predicted patches 
(N_EBVpos). Unlike the 0.5 threshold value of the tumor classifier, the cut-off for the EBV classifier was set to 
the low value of 0.1 to ensure that the sensitivity is high when detecting an EBV positive tumor patch. For infer-
ence in a 3-class classifier framework, patch images were given as input to the classification model (Normal vs. 
EBV negative tumor vs. EBV positive tumor), which then returned the probabilities of each class as output. The 
class with the highest probability was assigned as the prediction for each patch.

For slide-wise classification (EBV positive slide vs. EBV negative slide) after the patch-wise EBV status infer-
ence, we defined the EBV probability score (EPS) as the ratio of EBV positive-predicted patches to tumor-
predicted patches (N_EBVpos / N_tumor). The cut-off value for EPS was calculated using Youden’s J  statistic60, 
which is the cut-off value with the highest difference between true positive and false positive rate. The cut-off 
value was calculated for the HGH dataset as 0.2.
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Internal and external validation. The binary classifiers (the tumor classifier and the EBV classifier) and 
the 3-class classifier trained on the TCGA dataset were internally validated on the hold-out TCGA dataset using 
patch-wise performance.

We externally validated the performance of EBVNet on the HGH dataset. Slide-wise performance was 
assessed through the dichotomized outcomes of WSI in EBV status. The performance of EBVNet before fine-
tuning was also compared to that after fine-tuning.

Feature visualization. To visualize and interpret the deep learning predictions, we employed three 
approaches. First, we identified the falsely predicted patches for each class of the TCGA dataset, allowing observ-
ers to identify potential reasons for misclassification. Second, in order to appreciate the variability of learned 
representation, we used the three classifiers to generate and visualize post-convolution layer activation for the 
hold-out TCGA dataset. Activation values in the post-convolution layer were calculated on each image patch. 
Once calculated, activation vectors across all patches were mapped with the dimensionality reduction technique 
known as Uniform Manifold Approximation and Projection (UMAP)61. Finally, we rendered patch-level predic-
tions for EBV status as activation maps, visualizing prediction scores as heatmap overlays on the original WSI 
in the HGH cohort.

Reader study. To compare the performance of EBVNet with that of pathologists, we conducted a reader 
study in which four board-certified pathologists with 4–20 years of experience (JJ, JP, JS, and S Ahn) reviewed 
168 WSI from both cohorts. The pathologists were blind to all clinical information, as well as EBVNet’s perfor-
mance. For each WSI, they recorded whether they thought the cancer could be classified as EBV positive or EBV 
negative.

Evaluation metrics. We compared the performance of each algorithm trained on the TCGA dataset, using 
patch-wise accuracy, sensitivity, specificity, NPV, precision, and F1-score. We measured the slide-wise perfor-
mance of our network on HGH dataset using the AUPRC, AUROC, accuracy, sensitivity, specificity, NPV, preci-
sion, and F1-score. These metrics were defined as follows:

where TP, TN, FP, FN represented the total number of true positive, true negative, false positive, and false nega-
tive, respectively.

Data availability
The data that support the findings of this study were derived in part from TCGA database (https:// www. cancer. 
gov/ tcga) and their annotation are provided via an open-source license at https:// github. com/ EBVNET/ EBVNET.

Code availability
All source codes are available under an open-source license at https:// github. com/ EBVNET/ EBVNET.
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