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Featured Application: This work can be applied to in situ estimation measurements of the calorific
value of coal using laser-induced breakdown spectroscopy.

Abstract: The objective of this study was to compare different statistical algorithms for estimating
the calorific value of coal based on a quantitative analysis of the elements in coal. Laser-induced
breakdown spectroscopy (LIBS) was applied for the elemental analysis. Three different algorithms,
including the correlation analysis (CA) method, the partial least squares (PLS) analysis method,
and the signal-to-noise ratio (SNR), were adopted to accurately determine the concentrations of the
elements in coal by using Dulong’s equation. Special emphasis was placed on the selection of the delay
time to improve the measurement accuracy. The coefficient of determination, R2, was considered
for optimizing the delay time. The intensity–concentration calibration curves were obtained for the
elements in coal and the elemental concentration correlations were estimated on the basis of the
calibration curves of each element. The CA showed a higher accuracy compared to PLS and the SNR.
This confirmed that LIBS shows potential for the rapid determination of the calorific value of coal.

Keywords: laser-induced breakdown spectroscopy; correlation analysis; partial least squares;
signal-to-noise; calorific value; delay time

1. Introduction

Coal is the primary fuel of power plants in Korea, and coal-fired power plants have
produced around 40% of the country’s total electricity in recent years. In a coal-fired
power plant, measuring the calorific value is important for the plant’s efficiency and
its environmental impact, since information on the coal components can be valuable for
supplying the appropriate amount of excess combustion air. For given operating conditions,
the supply of coal for a known calorific value is important for estimating the power plant’s
efficiency. Therefore, the development of a real-time measurement technique to analyze the
calorific value of coal is required. Laser-induced breakdown spectroscopy (LIBS) is an in
situ measurement that detects the elemental composition from the specific wavelengths
of each element [1–4]. LIBS can be used for analyzing solid [5], liquid [6], and gas [7]
samples within the detection limits of specific ppm levels. Conventionally, the loss on
ignition method and a CHN (carbon, hydrogen, and nitrogen) analyzer have been used for
determining the coal components.

In the aforementioned methods, the coal samples must be pre-treated and the analysis
takes more than 10 h. On the contrary, LIBS needs little or no sample preparation compared
to the conventional loss on ignition method and less time to analyze the result. In LIBS,
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the intensity of the signal depends on the concentration of the elemental components.
The signal intensity shows a transient evolution behavior after laser pulse irradiation. To
increase the measurement accuracy, the appropriate detection time, which is controlled by
a delay time, should be determined [8–10].

To increase the accuracy of component analyses for various types of samples, studies
on the effects of variation in the experimental parameters have been carried out [11,12].
Li et al. [13] investigated the variables that affect the precision of LIBS measurements for
pelletized coal samples. The experimental parameters, including the relative standard
deviation, the pressure to pelletize the coal sample, deviations from the focal point of the
sample, the number of laser shots, and various ambient gases, were investigated. Sivakumar
et al. [14] experimentally and numerically presented the effect of the packing density of
pellets on the fluctuation of emission lines in C and Fe. A numerical model based on the
two-dimensional random close packing of disks in a confined geometry showed a good
agreement with the experimental results. The results showed that finer particles in a binary
sample provided a higher homogeneity in the laser–target interaction region, which yielded
smaller fluctuations in the LIBS emission lines. Besides improving sample preparation,
statistical approaches have been applied to data processing to improve the estimation
accuracy. Feng et al. [15] derived the coefficients of determination, R2, based on a partial
least squares regression analysis and presented a method for determining the concentration
of coal by using a function with the correction factor of a simple regression analysis. In their
work, a total of 40 laser spectra were used to increase the accuracy of measurements of the
carbon and hydrogen contained in bituminous coal. Using the partial least squares method,
they derived the coefficient of determination (R2 = 0.880). Using the root mean square error
of prediction (RMSEP) in a simple regression analysis, the error was reduced to a range from
4.47 to 5.52%. Li et al. [16] investigated the influences of different spectral preprocessing
methods such as smoothing, standard normal variate transformation, multiplicative scatter
correction, mean centering, and derivation by convolution (the Savitzky–Golay method)
on a quantitative model for the calorific value analysis of coal. Ismail et al. [12] and
Lee et al. [17] used the signal-to-noise ratio (SNR) for the selection of the delay time.
By measuring a total of 25 points, the impact of laser energy on the SNR was analyzed.
The delay time generating the highest SNR value was selected as the optimal delay time.
However, the SNR method needs a reference signal without any background noise. The
SNR value varies significantly according to the value of the noise. The width of the signal
intensity requires a correction because these values may change with the movement error
of the measurement.

In this study, the appropriate delay time was selected based on an estimation of the
calorific values obtained from three different data analytical methods, including correlation
analysis (CA), the partial least squares (PLS), and the SNR methods. At the determined
delay time, the LIBS intensity signals were collected and the calorific value was estimated
with the intensity data via the CA, PLS, and SNR methods. The coefficient of determination
(R2) was considered to evaluate the measurement accuracy of each analysis method. The
obtained calorific values of the coal samples were compared to those of the chemical
analysis method to assess the accuracy of the analysis methods.

2. Experiments
2.1. Experimental Setup

As shown in Figure 1, the LIBS system is composed of two main parts, which are the
laser generation part, Figure 1a, and the signal collection part, Figure 1b [18]. In the laser
generation part, the laser pulse was focused to ablate the target sample, and the plasma
was then induced from the ablated sample. The laser source was an Nd-YAG (Litron Lasers
Inc., Rugby, UK) operating at a wavelength of 1064 nm and an energy of 30 mJ over a
pulse duration of 8 ns with a repetition rate of 1 Hz in Q-switch mode. A 100 mm focal
length lens (Thorlabs Inc., Newton, NJ, USA) was used to focus the beam onto the sample
surface. In the signal collection part, the spectrometer collected the emitted signals when
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the excited electrons from atoms and ions came back to the ground state. The light from the
induced plasma was focused through a plano-convex lens with a 40 mm focal length lens
to a fiber-optic bundle. A fiber-optic cable with a 1 mm diameter was installed at an angle
of 45◦ with respect to the normal direction of the sample surface. The optical fiber was
directly connected to the slit entrance of a spectrometer with four-channel charge-coupled
devices (J200, Applied Spectra, Fremont, CA, USA). The spectrometer had a spectral range
of 180–884, a spectral resolution of 0.1 nm, and a signal-to-noise ratio of about 250:1. A
digital delay/pulse generator (Stanford Research Systems, model DG535) was used to
control the delay times when the data were recorded. The software program Aurora was
used for data acquisition. The integration time was set at 1.05 ms [19].
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2.2. Sample Preparation

Seven different bituminous coal samples that were actually used in a coal-fired power
plant in Korea were prepared. For the reference data, the elemental concentration was
determined from the conventional industrial chemical analysis. The concentrations of carbon,
hydrogen, and nitrogen were determined by a C/H/N elemental analyzer (5E Series, Daeduck
Analytical Research Institute). The concentration of the sulfur was measured via a 5E-S3200
Coulomb sulfur analyzer. The concentration of oxygen was calculated by subtracting the
concentration of the remaining elements and the concentration of ash from 100%.

The elemental concentrations of each coal sample are shown in Table 1. The method
that is widely practiced to evaluate the higher heating value (HHV) of coal, which is known
as the calorific value, is by using Dulong’s equation. Dulong’s equation uses the weight
fractions of carbon, hydrogen, oxygen, and sulfur to predict the higher heating value.
Dulong’s equation is as follows [20]:

HHV(kcal/kg) = 8080C + 34460(H − O
8
) + 2250S (1)

where C, H, O, and S are the concentrations of carbon, hydrogen, oxygen, and sulfur,
respectively. Therefore, we presented 4 main components to obtain the calorific value in
Table 1. From Equation (1), the higher heating value of coal is a positive function of the
carbon, hydrogen, and sulfur concentrations. From Table 1, the coal samples were mainly
composed of about 65 to 75% carbon. Carbon and hydrogen are the dominant components
used to evaluate the calorific value.
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Table 1. Description of coal sample.

Coal Name
Concentration (wt%)

C H O S

GUNVOR 74.4 5.21 12.46 0.71
MSJ-1 69.8 5.16 16.20 0.93
MSJ-2 67.5 5.27 17.27 0.84

LANNA HARITA 68.3 5.08 18.03 0.53
MACQUARIE 67.5 4.81 18.27 1.10

PEABODY 66.3 5.01 17.96 0.67
KPU 65.6 5.25 20.97 0.10

The coal samples were initially pulverized into a powder form. By using a scale (HR-
250A), 0.3 g of each coal sample was prepared and pelletized into a 13 mm-diameter and a
2 mm-thickness under a pressure of 10 tons using a hydraulic press (PN 181-1110) as shown
in Figure 2 (left). To improve the measurement accuracy of the samples, 100 points (10× 10)
were measured for each delay time from 0.2 to 2 µs by 0.2 µs, as shown in Figure 2 (right).
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3. Theory
3.1. Grubbs Test

The coefficient of determination, R2, and the error vary according to the number of
measured points. As the number of measured points increases, the coefficient of determina-
tion value tends to become closer to 1 and the error decreases. In Figure 3, the coefficient
of determination was above 0.9 from 48 points at a wavelength of 247 nm in C. When the
coefficient of determination is above 0.9, the reliability of the data can be considered to be
high. To eliminate the suspicious data, the maximum and minimum values were subjected
to Grubbs test to determine whether the value was an outlier.
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From Equation (1), the average of the signal intensities of the carbon for each value of
G in the data was calculated from 1.75 to 3.19. For the 100 measurement points, the critical
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values of G were 3.38 and 3.21 at the confidence levels of 95 and 97.5%, respectively [21].
The maximum G value, 3.19, satisfied the above criterion at the confidence levels of 95
and 97.5%:

G =

∣∣Xmax,min − X
∣∣

s
(2)

where s, X, and Xmax,min are the standard deviation, sample mean value, and sample
maximum or minimum value, respectively.

3.2. Partial Least Squares

The partial least squares (PLS) method is considered as a good alternative to principal
component regression (PCR). The PLS method is a more robust approach when the data are
analyzed by a regression for the independent variables X and the dependent variables Y.
The PLS is built with a set of outer relations that describe X or Y as linear combinations of
components, as presented in Equation (2) [22]. The quality of a PLS model can be evaluated
by the coefficient of determination, R2, which provides information about the variation in
the used data sets. One variable is assumed to be the explanatory variable, and the other
variable is assumed to be a response variable. The coefficient of determination represents
the quality of the data adjustment within a straight line, and the value is 1 when there is
total agreement between the real and estimated values [23,24].

X = TP′ + E =
H

∑
h=1

th p′h + E, (3)

Y = UQ′ + F =
H

∑
h=1

uhq′h + F (4)

where T and U are the score matrices, P′ and Q′ are the loading matrices of X and Y,
respectively, and E and F are the residuals of X and Y.

3.3. Signal-to-Noise Ratio

In the signal-to-noise ratio, the integrated peak area of the target element is divided
by the root mean square noise multiplied by the peak widths. The integrated peak area of
the target element’s emission line, the peak width, and the root mean square (RMS) noise
are acquired from the spectral emission lines. The RMS noise is obtained from the baseline
intensities, which are adjacent to the element emission lines [25].

SNR =
(Integrated peak area)

(RMS noise)(Peak width)
(5)

3.4. Correlation Analysis

A correlation analysis (CA) measures the association between variables with the linear
correlation coefficient, R, and the correlation coefficient can be expressed in the following
form [26]:

R =

∑
i
(xi − x)(yi − y)√

∑
i
(xi − x)2

√
∑
i
(yi − y)2

(6)

where x and y are the means of xi and yi, respectively.
R ranges from −1 to 1. R = 1 corresponds to the perfect positive correlation when the

points are in same straight line with a positive slope. The coefficient of determination, R2,
is used to assess the reliability of a linear relationship between x (intensity measured for
the sample) and y (intensity measured for other samples).
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4. Results and Discussion

Selecting the delay time during an LIBS analysis is an important part of measuring
elements. The intensity of the signal is greatly affected by the delay time. Generally, the
delay times for detecting the emission signal of an ablated sample is under 100 ns for
continuum emission, 500 ns–20 µs for atomic emission, and 100 ns–5 µs for ionic emission.
At the continuum emission, the time for excited atoms to come back to the ground state
is too short to be detected. Since the spectral emission lines are eventually extinguished,
the time for capturing the signals is important to improve the measurement accuracy. The
appropriate delay times are known to vary with the transformation of the ion and the
elemental composition of the sample [8–10]. The appropriate delay time for a quantitative
analysis of a target sample is determined by the coefficient of determination, R2.

In Figure 4, coefficients of determination, R2 with various delay times are presented
to determine the appropriate delay time for the quantitative analysis of coal samples. The
spectrometer delay time varied from 0.2 to 2.0 µs by a 0.2 µs interval. The 100 spectra
samples were consecutively captured at each delay time. The calibration curves for the
100 spectra were obtained using the CA, PLS, and SNR methods. From the calibration
curves, the R2 were calculated for delay times from 0.2 to 2.0 µs. The R2 with the CA showed
a relatively high value compared to those of the other analysis methods. The highest R2 for
a 1.4 µs delay time for the CA and PLS methods were 0.97 and 0.91, respectively. However,
the highest R2 of the signal-to-noise ratio method for a 1.0 µs delay time was 0.77.
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Figure 5 shows the seven emission spectra for seven coal samples at 247.7 nm for C,
656.2 nm for H, 844.6 nm for O, and 544.65 nm for S. All four emission lines were clearly
identified from adjacent emission lines, and they were obtained with a delay time of 1.4 µs.
The wavelengths of 247.7, 656.2, 844.6, and 544.65 nm are known to be characteristic wave-
lengths for identifying the existence of carbon, hydrogen, oxygen, and sulfur, respectively,
in coal samples. In Figure 5a, the carbon emission spectrum for Gunvor presented the
maximum intensity due to the highest C concentration (74.4%) among the seven coal sam-
ples, as shown in Table 2. In Figure 5b, the highest hydrogen emission spectrum appears
to occur in the Gunvor sample. However, the base signal line for the Gunvor sample is
shifted a little bit. Considering this, the magnitude of the hydrogen spectra for the seven
samples is almost identical. Compared to other components such as hydrogen and sulfur,
the maximum intensity of the carbon spectrum was much higher than those of the other
components. In Figure 5e, the average value of 100 spectra from the seven different coal
samples is shown as a full spectrum obtained from the spectrometer.
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Table 2. Predicted calorific value of various coal samples by correlation analysis.

Coal Name
Concentration (%) Calorific Value

(kcal/kg)
Chemical Analysis

(kcal/kg) ErrorC H O S

GUNVOR 75.03 5.27 12.55 0.46 7348.22 7360 0.16
MSJ-1 68.7 5.21 13.88 0.52 6760.15 6915 2.24
MSJ-2 68.1 5.15 17.96 0.84 6522.44 6852 4.81

LANNA HARITA 67.55 5.01 18.23 0.72 6415.43 6619 3.08
MACQUARIE 67.32 4.48 17.43 0.64 6246.87 6705 6.83

PEABODY 66.3 4.77 18.03 0.58 6237.19 6630 5.92
KPU 64.18 4.08 10.46 0.67 6156.22 6619 6.99
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In Figure 6, the correlation between the intensity of the LIBS signal at 247.7 nm and
the concentration of carbon in coal samples was analyzed with delay times of 1.4 µs
for the CA and PLS methods and 1.0 µs for the SNR method. The signal intensity at a
wavelength of 247 nm, which is a representative spectrum of the atomic carbon from the
LIBS spectra data, was selected for estimating the carbon concentration in the samples.
Because the used coal samples were composed of over 60% carbon, the intensity of the
carbon signal was larger than those of the other remaining elements. The carbon signal
could be easily distinguished from the other elements. Depending on the coal sample,
the carbon concentration varied from about 65 to 75% and the signal intensities were
proportional to the carbon concentration. The R2 for the CA, PLS, and SNR methods was
0.98, 0.92, and 0.65, respectively. The magnitude of the error bars in the carbon samples
were relatively small compared to that of the other elements, with a maximum of 4.3, 5.1,
and 5.7% from the mean value for the CA, PLS, and SNR methods, respectively. This was
caused by the large quantity of carbon in the coal samples.
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In Figure 7, the correlation between the LIBS signal intensity and the hydrogen con-
centration in coal was analyzed at the wavelength of 656.2 nm in the LIBS spectrum. The
R2 for the CA, PLS, and SNR methods was 0.13, 0.14, and 0.06, respectively. The error
bars represent the standard deviation of the signal intensity from the average intensity of
100 points. The standard deviation of the hydrogen peak was larger than that of carbon
peak, as shown in Figure 6, which showed 7.7, 13.9, and 14.2% of maximum errors from the
mean values for the CA, PLS, and SNR methods, respectively. The hydrogen concentrations
in the coal samples ranged between 4.8 and 5.2%. The low concentration gave a low signal
intensity and a small variation of less than 0.5% in hydrogen between the samples produced
difficulty in distinguishing the intensity variation to identify the hydrogen concentration.

In Figure 8, the LIBS signal intensity at the 844.6 nm wavelength was calibrated with
the oxygen concentration in the coal samples. The oxygen concentration in the coal samples
was found to be between 12 and 20% from Table 1. Oxygen is the second most abundant
element in coal. The difference between the oxygen concentrations of different samples,
which was relatively large compared to that of hydrogen, gave a better R2 value for the
CA, PLS, and SNR methods, with values of 0.15, 0.18, and 0.16, respectively. In addition, as
the LIBS signal was collected under atmospheric conditions, the oxygen in the atmosphere
affected the measurement accuracy of the oxygen in coal. This resulted in a larger maximum
errors compared to that of hydrogen, with values of 15.7, 26.8, and 27.4% for the CA, PLS,
and SNR methods, respectively.
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In Figure 9, the LIBS signal intensity at the wavelength of 544.65 nm was calibrated
with the sulfur concentration in the coal samples. The sulfur concentration in coal varied
from 0.5 to 1.1%, as shown in Table 1. The overall peak intensity of sulfur was quite
similar to that of oxygen, as shown in Figure 7. In spite of the small variation in the sulfur
concentrations, the sulfur showed a better peak intensity variation and smaller error bars
compared to oxygen, which allowed for a better estimation of the sulfur concentration. The
R2 for the CA, PLS, and SNR methods was 0.98, 0.65, and 0.02, respectively. The maximum
errors from the mean values were 17.2, 17.9, and 16.3% for the CA, PLS, and SNR methods,
respectively. In the CA and PLS analyses, the signal intensity increased with an increase
in the sulfur concentration. In the SNR method, the signal intensity showed the opposite
trend. Because the SNR method considers both the peak intensity and the baseline noise,
the increased baseline noise at higher sulfur concentrations could result in the opposite
trend with other methods.

The most significant factor in increasing the LIBS measurement error was the noise,
which was greater than the signal of the element. The degree of homogenization of the
sample, the laser output, and interference of the plasma spectrum with the emissions
from the element are associated with noise. For a more accurate analysis, it is possible to
minimize the noise by reducing the background of the spectrum.
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Figure 10 shows the relationship between the carbon concentration of a coal sample
used for an LIBS measurement and the estimated concentration of the carbon that is
obtained from the CA, PLS, and SNR methods with the signal intensity of the target
elements from the LIBS spectrum. The dotted line in Figure 9 presents the points where
the estimated concentration of the element was equal to the measured concentration in the
coal sample. When the mark is closer to the dotted line, the estimation of the elemental
concentration of the coal sample is better. In Figure 10, the estimated concentration of
carbon from the CA shows a better accuracy compared to other analysis methods. A clear
distinction among the signal intensities of carbon for different concentrations in the coal
samples could increase the accuracy of the estimation of the carbon content.
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In Figure 11, the relationship between the estimated concentration of hydrogen using
the LIBS signal intensity and the known concentration of hydrogen in the coal sample
is depicted. As shown in Table 1, the hydrogen concentration in the coal sample was
between 4.8 and 5.2%. The LIBS signal peak intensity difference with changes in the
concentration of hydrogen in the sample may not be clear, and this affects the estimation
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accuracy. The peak intensity itself was small when the concentration of the target element
in the sample was small. This increased the effects of the baseline noise. For that reason,
the estimation accuracy for the hydrogen concentration using the PLS and SNR methods
was low compared to that of the CA method. Overall, the hydrogen concentration in the
coal sample was underestimated.
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In Figure 12, the relationship between the estimated concentration of oxygen using
the LIBS intensity and the known concentration of oxygen in the coal sample is presented.
Because the experiment was performed under atmospheric conditions, the oxygen content
in the atmosphere affected the LIBS signal intensity for the oxygen measurement. Unlike the
other elements under consideration, more than half of the marks located on the upper side
of the diagonal line represent the tendency for overestimating the oxygen content. The KPU
sample from Table 1 consisted of 20.97% oxygen, which is similar to the oxygen content
in the air and shows a low estimation accuracy. The CA performed on the other samples
showed estimated concentrations of oxygen that were close to the diagonal dotted line.
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In Figure 13, the sulfur concentrations in the coal sample as estimated from the LIBS
intensity were compared with the known concentration of sulfur in the sample. The sulfur
concentration was approximately 1% in the coal sample. The sulfur peak from the LIBS
spectrum could be identified in spite of the small concentration. The intensity of the
peak was quite similar to that of the baseline noise. This could lead to the peak intensity
fluctuations being affected by the baseline noise intensity fluctuations.
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In this study, LIBS was performed in the air. Errors due to the gas components in the
air may affect the measurement of elements, especially O and H. However, the CA method
showed an improved accuracy with a coefficient of determination of 0.971 compared to
the PLS and SNR methods with the R2s of 0.914 and 0.777, respectively. The CA method
showed the negligible measurement error in the air.

In Table 2, the estimated concentrations of the target elements in the coal sample to
calculate the calorific value of coal are presented. The calorific values were calculated with
Dulong’s equation based on the estimated concentrations of the elements in coal using the
LIBS signal intensity with the CA method. The calculated calorific value was compared
to the calorific value obtained from a bomb calorimeter presented as a chemical analysis.
The error between the calculated calorific value and the calorific value from the chemical
analysis was from 0.16 to 6.99%. By comparing Tables 1 and 2, the percent difference
between the estimated concentrations of the elements in the coal samples and the known
concentrations could be determined. From Equation (1), the accuracy of the calorific value
calculation of coal is most affected by the percent difference in the estimated concentration
of hydrogen, because hydrogen has the biggest coefficient value. With a similar magnitude
of the percent difference in the estimated concentration, hydrogen brought about a bigger
error in the calorific value estimation than carbon.

In Table 3, the estimated concentrations of the elements in coal using the LIBS signal
intensity with the PLS method is shown. The error between the calorific values calculated
using Dulong’s equation and the chemical analysis was found to be from 8.72 to 17.71%.
The estimated carbon concentration had around a 2% difference from the sample’s carbon
concentration, which is a similar level of accuracy as with the CA. As shown in Figure 11,
the PLS method had a low accuracy in predicting the hydrogen concentration in coal
compared to the CA method. It showed a maximum error of a 3% difference from the
sample. The underestimated hydrogen concentration made the percent error bigger in the
calorific value calculation.
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Table 3. Predicted calorific value of various coal samples by partial least squares.

Coal Name
Concentration (%) Calorific Value

(kcal/kg)
Chemical Analysis

(kcal/kg) ErrorC H O S

GUNVOR 74.01 4.27 17.31 0.54 6717.97 7360 8.72
MSJ-1 67.23 4.42 15.96 0.47 6278.41 6915 9.21
MSJ-2 66.42 4.23 19.79 0.75 5988.81 6852 12.60

LANNA HARITA 69.01 3.24 18.13 0.76 5928.66 6619 10.43
MACQUARIE 67.8 3.71 18.94 0.69 5956.39 6705 11.16

PEABODY 65.9 2.77 17.65 0.6 5532.49 6630 16.55
KPU 63.59 2.02 9.32 0.62 5446.66 6619 17.71

In Table 4, the estimated concentration of the elements in coal using the LIBS signal
intensity with the SNR method is presented. The estimated calorific value based on the
SNR method showed an error range from 10.70 to 22.90% with the calorific value from the
chemical analysis. This was quite a large error compared to those of the other methods.
In some samples, the carbon and hydrogen concentrations were both underestimated
by a maximum of 3%, which made the error larger. Because the SNR method considers
the baseline noise in Equation (5), a smoothing method to reduce the effect of random
fluctuations may be needed.

Table 4. Predicted calorific value of various coal samples by signal-to-noise ratio method.

Coal Name
Concentration (%) Calorific Value

(kcal/kg)
Chemical Analysis

(kcal/kg) ErrorC H O S

GUNVOR 73.3 3.77 15.54 0.89 6572.42 7360 10.70
MSJ-1 65.44 3.85 17.98 0.68 5855.07 6915 15.33
MSJ-2 68.75 3.48 20.35 0.79 5895.41 6852 13.96

LANNA HARITA 68.08 3.18 18.18 0.61 5827.31 6619 11.96
MACQUARIE 67.2 2.48 19.46 0.86 5465.48 6705 18.49

PEABODY 63.49 2.18 18.21 0.65 5111.45 6630 22.90
KPU 62.94 2.14 11.12 0.57 5356.83 6619 19.07

5. Conclusions

In order to increase the measurement accuracy of quantitative and qualitative analyses
in coal, estimations using the LIBS, the PLS, SNR, and CA methods were performed to
validate the measurement accuracy of each method. Based on the estimated concentrations
using the CA, PLS, and SNR methods, the calibration curves for each of the elements (C,
H, O, and S) were obtained. The calorific values were estimated based on the elemental
concentrations of the coal samples acquired from three different analysis methods. The CA
method showed an improved accuracy with the R2 of 0.971 compared to PLS and SNR with
R2s of 0.914 and 0.777, respectively. The calculated calorific values of coal using Dulong’s
equation were compared to those of the chemical analysis. The error between the calculated
value and the chemical analysis was a minimum of 0.16% to a maximum of 6.99% for the
CA method, and those of the PLS and SNR methods ranged from 8.72 to 17.71% and from
10.7 to 22.9%, respectively. The determination of the calorific value using the CAwas in
good agreement with the value obtained by conventional chemical analysis.
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