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Multi-center validation of machine learning model for
preoperative prediction of postoperative mortality
Seung Wook Lee 1, Hyung-Chul Lee2, Jungyo Suh3, Kyung Hyun Lee 4, Heonyi Lee5, Suryang Seo6, Tae Kyong Kim7,
Sang-Wook Lee 8✉ and Yi-Jun Kim9✉

Accurate prediction of postoperative mortality is important for not only successful postoperative patient care but also for
information-based shared decision-making with patients and efficient allocation of medical resources. This study aimed to create a
machine-learning prediction model for 30-day mortality after a non-cardiac surgery that adapts to the manageable amount of
clinical information as input features and is validated against multi-centered rather than single-centered data. Data were collected
from 454,404 patients over 18 years of age who underwent non-cardiac surgeries from four independent institutions. We
performed a retrospective analysis of the retrieved data. Only 12–18 clinical variables were used for model training. Logistic
regression, random forest classifier, extreme gradient boosting (XGBoost), and deep neural network methods were applied to
compare the prediction performances. To reduce overfitting and create a robust model, bootstrapping and grid search with
tenfold cross-validation were performed. The XGBoost method in Seoul National University Hospital (SNUH) data delivers the best
performance in terms of the area under receiver operating characteristic curve (AUROC) (0.9376) and the area under the precision-
recall curve (0.1593). The predictive performance was the best when the SNUH model was validated with Ewha Womans
University Medical Center data (AUROC, 0.941). Preoperative albumin, prothrombin time, and age were the most important
features in the model for each hospital. It is possible to create a robust artificial intelligence prediction model applicable to
multiple institutions through a light predictive model using only minimal preoperative information that can be automatically
extracted from each hospital.
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INTRODUCTION
Approximately 250 million surgeries are performed worldwide
every year1. As the number of surgical procedures increases every
year, postoperative complications also increase2. A postoperative
complication is a major concern for patients undergoing surgeries
as it may require additional hospitalization or clinical manage-
ment3–5. As reported in 2013, the incidence rate of postoperative
complication is 37%, and the rate of 30-day postoperative
mortality is reported to range from 0.79 to 5.7%, depending on
the type of surgery and number of postoperative complications
experienced6–8. Although the incidence of postoperative mortality
has decreased owing to improved preoperative management of
surgical patients, postoperative death is the most serious type of
postoperative complication and causes a great socioeconomic
burden. Accurate prediction of postoperative mortality is impor-
tant for not only successful postoperative patient care but also for
information-based shared decision-making with patients and
efficient allocation of medical resources9,10.
Although many tools for preoperative risk assessment have

been developed, previous risk scoring systems have some
limitations. The American Society of Anesthesiologists (ASA)
physical status classification (ASA-PS) categorizes patients into
six subgroups with different prognosis based on the patients’

physical fitness, where a higher score suggests higher likelihood of
experiencing a postoperative complication11. However, since the
ASA class depends on the subjective intuition of the clinician,
there may be inter-observer variability, which is a limitation11. The
physiologic and operative severity score for the enumeration of
mortality and morbidity (POSSUM) has a limitation that manually
collected data are needed, and the American College of Surgeons
national surgical quality improvement program (ACS-NSQIP) has
the disadvantage that it is too complicated to be applied in clinical
practice12–15. The surgical outcome risk tool (SORT) has the
disadvantage of lack of external validation16. The Surgical Apgar
score is easy to apply but has poor prediction performance17.
While these risk scoring systems are based on the physician’s
history-taking and statistical methods such as logistic or Cox
regression, recent breakthroughs in machine learning have led to
attempts of using it for predicting postoperative prognosis18–34.
Furthermore, newer machine-learning models, such as extreme
gradient boosting (XGBoost)35 and deep neural networks36, have
demonstrated superior predictive performance on nonlinear data
as compared to conventional linear models such as logistic or Cox
regression37. Because patient wellness is defined in many
situations by avoiding extremely low and extremely high levels
of medical conditions, the statistical assumption of linear
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inherence in traditional logistics or Cox regression does not always
necessarily be the optimal choice. As a result, the application of
innovative machine-learning techniques capable of capturing
nonlinearity in clinical practice is imperative.
While machine-learning models have outperformed the pre-

vious risk scoring systems, these have limitations in that they are
mostly designed on single-centered data and have a fairly large
number of input features for clinical application18–21. Machine
learning has proven its capability in the creation of high-quality
prediction models, but it is important to create models that are
clinically applicable and robust against heterogeneous popula-
tions in the real world.
This study thus aimed to create a machine-learning prediction

model for 30-day mortality after a non-cardiac surgery that adapts
to a manageable amount of objective and quantitative clinical
information as input features and is validated against multi-
centered rather than single-centered data. Because this model
does not rely on medical staff to subjectively generate data, it
minimizes the inaccuracy of input data and does not require more
human resources to generate and collect data. Additionally, since
the input data is objective, it is possible to construct a model that
has optimal transferability among hospitals. We hypothesize that
the performance of a lighter model that only uses an appropriately
small number of input variables for predicting 30-day mortality
after a non-cardiac surgery at multiple institutions will be at least
as good as that of the previous complex and heavy artificial-
intelligence models that use many clinical input variables. By
demonstrating that the model has appropriate predictive power
and transferability when applied to multiple hospitals, we
attempted to confirm the clinical utility of this model.

RESULTS
Study population characteristics
The average age of surgical patients was the lowest in Ewha
Woman's University Medical Center (EUMC). Orthopedic surgery
was the most common type of surgery in Boramae Hospital
(BRMH), whereas general surgery was the most common in the
remaining three hospitals. Owing to this difference in the
distribution of surgery departments between the hospitals, the
proportion of neuro-axial anesthesia, such as spinal anesthesia, in
BRMH was higher than those in other hospitals. The rate of
emergency surgery was the highest in Asan Medical Center (AMC).
The mortality rate within 30 days after surgery was reported to be
as low as 0.2–0.4% in all four hospitals. Table 1 presents the data
characteristics of each hospital.

Missing-value characteristics
The mean proportion of missing values were 3.76, 5.30, 16.33, and
19.66% in Seoul National University Hospital (SNUH), AMC, EUMC,
and BRMH, respectively (Supplementary Table 1). The proportion
of missing values in EUMC’s body-mass index (BMI), type of
anesthesia, ASA-PS grade, and BRMH laboratory tests was
relatively high, suggesting that these missing values are related
to each hospital’s data storage characteristics. For instance, at
EUMC, ASA-PS grade information that was recorded separately
from the main database was unable to be linked to the main
database due to the de-identified patients’ IDs. The correlation
between variables measured as a companion test (e.g., laboratory
tests) was high (absolute correlation value ≥0.7), but the
correlation was not remarkable in the other cases with absolute
correlation values less than 0.7 (Supplementary Fig. 1a). The
variables with a high percentage of missing values (The BMI, type
of anesthesia, ASA-PS grade in EUMC, and laboratory tests in
BRMH) did not demonstrate a strong association with other
variables’missing values (absolute correlation value <0.7). Missing-
value events did not show a specific pattern in each hospital,

indicating that the missing mechanism for each patient in each
hospital was random (Supplementary Fig. 1b). Considering this
random pattern of missing-value events and low correlation
between missing values of variables, we replaced missing values
with median values.

Results of model performance
Figure 1 presents the area under the receiver operating
characteristics curve (AUROC) and the area under the precision-
recall curve (AUPRC) of each candidate modeling method in SNUH
data. All four candidate models exhibited superior prediction
performances in terms of AUROC and AUPRC, compared to that of
the ASA-PS class. The XGBoost method delivered the best
performance in terms of AUROC (0.942) and AUPRC (0.175). The
XGBoost method delivered the best performance in the EUMC
data, similar to the SNUH model, and the logistic regression (LR)
method delivered the best performance in the BRMH data
(Supplementary Fig. 2). In the AMC data, the LR model based on
AUROC and XGBoost model based on AUPRC delivered the best
performance (Supplementary Fig. 2). The XGBoost method
delivered the best performance in the lab model of SNUH and
EUMC data, as in the conventional model (Supplementary Fig. 3).
The LR method delivered the best performance in the AMC lab
model. The XGBoost method and LR method delivered the best
performances in terms of AUROC and AUPRC, respectively, in
the BRMH lab model (Supplementary Fig. 3). Table 2 presents the
results of mean values of bootstrapping performance of the
conventional models to which the XGBoost algorithm was applied
with data from each hospital. Table 2 presents the result obtained
using all input variables for the modeling, whereas Table 3
presents the result of comparing them with a lab model using
only 12 preoperative variables. Typically, the SNUH model and
EUMC model with large amounts of data delivered superior
performance when externally validated with data from other
institutions. The performance in terms of the AUROC value of
external validation is the best when the SNUH model is validated
on EUMC data (AUROC 0.941). The performance in terms of the
AUPRC value of external validation is the best when the SNUH
model is validated on BRMH data (AUPRC 0.180). In the case of
external validation of AMC data with the EUMC model in the lab
model, the AUROC value was the highest (0.923). When external
validation was performed on BRMH data with the SNUH model,
the AUPRC value was the highest (0.177).
Supplementary Table 3 presents a comparison of AUROC and

AUPRC values between each candidate model in each hospital
dataset. In the comparison of AUROC values, the XGBoost model
and LR model showed a significant difference between the
random forest (RF) model and ASA-PS class in all datasets except
for in BRMH dataset. While the XGBoost and LR models of BRMH
showed a significant difference to the five-layer deep neural
network (DNN) model, this trend was not observed in other
datasets. In comparison of AUPRC values, the XGBoost model and
LR model showed statistically significant superiority compared to
ASA-PS class in all datasets except for in BRMH dataset. The
significant differences in AUPRC were observed between the
XGBoost model and RF, LR models in the SNUH dataset. The DNN
model also presented a significant difference in AUPRC to ASA-PS
class in SNUH and EUMC datasets. The DNN model using lab
features presented significant difference to RF and LR models
(p= 0.0196, p= 0.0204) in SNUH dataset. Only the LR model using
all features showed significant superiority in AUPRC to ASA-PS
(p= 0.0380) in the BRMH dataset.
Supplementary Fig. 4 presents the results of applying the

XGBoost model with tenfold cross-validation trained only the
value of the SNUH model to the test data of the four institutions.
When the XGBoost model of SNUH was applied to the test data of
SNUH using tenfold cross-validation analysis, it was confirmed that
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the AUPRC value increased from 0.175 to 0.194. When it was
applied to AMC, EUMC, and BRMH data, it was confirmed that the
AUROC value increased from 0.927 to 0.941, 0.941 to 0.950, and
0.908 to 0.913, respectively. A calibration plot for the tenfold cross-
validation model was generated using a test set from SNUH and
all datasets of three other hospitals (Supplementary Fig. 5). As a
result, in all four hospitals, the mean predictive value and the
actual fraction of positives were positively correlated. With
increasing mean predictive values in AMC and EUMC, there was
a tendency for the mortality rate to be slightly overestimated.
Supplementary Table 2 presents the results of oversampling of

positive events and downsampling of negative events at various
sampling rates to overcome data imbalance. Compared to
reference models that are developed on training data without
resampling, models trained with upsampled or downsampled
datasets mostly showed a decline in performance. As an
exception, the BRMH model reported an increased AUROC for
upsampling ratios of 0.01 and 0.1 and downsampling ratios of
0.01, 0.05, 0.1, and 0.25 and an increased AUPRC for upsampling

ratios of 0.01 and 0.05 and a downsampling ratio of 0.01. In
addition, the EUMC model also reported an increased AUROC of
0.001 in an upsampling ratio of 0.01. No resampling methods
increased the AUPRC over the confidence interval of reference.

Model interpretation via feature importance
The feature-importance extracted from the XGBoost algorithm
was different for each model (Fig. 2). In the SNUH and AMC
models, the preoperative albumin level was found to be
variable, with the highest influence on mortality within 30 days
after surgery; however, the age in the EUMC model and the
preoperative prothrombin time (PT) value in the BRMH model
were the most important variables in the postoperative 30-day
mortality.

DISCUSSION
Although numerous artificial intelligence prediction models based
on hospital data have been developed to date, their direct

Table 1. Data characteristics of the four medical institutions.

SNUH AMC EUMC BRMH P value

(n= 223,905) (n= 66,522) (n= 131,867) (n= 32,110)

Demographic data

Age, years 53.7 ± 16.1 54.7 ± 15.9 48.5 ± 17.1 56.7 ± 17.6 <0.001

Sex, female 123,670 (55.2%) 38,117 (57.3%) 79,232 (60.1%) 17,560 (54.7%) <0.001

Body-mass index, kg/m2 23.6 ± 3.6 24.1 ± 3.8 23.8 ± 3.8 24.7 ± 4.0 <0.001

Preoperative laboratory results

White blood cell, 103/μL 6.61 ± 2.69 6.74 ± 2.58 7.49 ± 3.91 7.09 ± 2.84 <0.001

Hemoglobin, g/dL 13.1 ± 1.8 12.7 ± 1.9 13.1 ± 1.9 13.0 ± 1.9 <0.001

Platelet, 103/μL 241.2 ± 74.3 242.5 ± 74.9 245.6 ± 72.0 248.6 ± 76.5 <0.001

Sodium, mmol/L 140.2 ± 2.7 139.8 ± 2.6 140.7 ± 3.0 138.9 ± 2.8 <0.001

Potassium, mmol/L 4.2 ± 0.4 4.3 ± 0.4 4.2 ± 0.4 4.3 ± 0.4 <0.001

BUN, mg/dL 15.0 ± 7.8 16.1 ± 10.7 13.7 ± 6.9 15.6 ± 9.5 <0.001

Creatinine, mg/dL 0.99 ± 1.07 1.00 ± 1.25 0.92 ± 0.68 0.98 ± 1.18 <0.001

Albumin, g/dL 4.1 ± 0.5 3.7 ± 0.5 4.1 ± 0.6 4.1 ± 0.4 <0.001

GOT, IU/L 24.5 ± 79.0 25.1 ± 29.5 26.5 ± 95.0 28.4 ± 114.4 <0.001

GPT, IU/L 23.4 ± 44.9 22.6 ± 31.3 25.1 ± 50.9 24.5 ± 64.7 <0.001

Glucose, mg/dL 110.6 ± 36.7 114.8 ± 38.7 198.3 ± 243.9 119.8 ± 42.4 <0.001

PT, INR 1.01 ± 0.16 1.01 ± 0.14 1.02 ± 0.38 1.05 ± 0.09 <0.001

aPTT, sec 33.0 ± 6.6 27.4 ± 3.7 26.9 ± 5.4 28.5 ± 5.0 <0.001

Type of surgery, n

General surgery 87,681 (39.2%) 22,115 (33.2%) 40,611 (30.8%) 9470 (29.5%) <0.001

Otolaryngologic surgery 20,776 (9.3%) 5366 (8.1%) 14,279 (10.8%) 4114 (12.8%) <0.001

Urologic surgery 29,876 (13.3%) 7517 (11.3%) 9117 (6.9%) 3518 (11.0%) <0.001

Orthopedic surgery 44,503 (19.9%) 8226 (12.4%) 23,486 (17.8%) 9515 (29.6%) <0.001

Gynecological surgery 32,396 (14.5%) 11,507 (17.3%) 26,509 (20.1%) 3968 (12.4%) <0.001

Plastic surgery 8665 (3.9%) 2111 (3.2%) 9788 (7.4%) 1002 (3.1%) <0.001

Type of anesthesia, n

General anesthesia 182,263 (81.4%) 53,855 (81.0%) 100,223 (76.0%) 21,797 (67.9%) <0.001

Neuro-axial anesthesia 37,025 (16.5%) 3597 (5.4%) 10,716 (8.1%) 8591 (26.8%) <0.001

MAC 3475 (1.6%) 0 (0.0%) 4985 (3.8%) 1717 (5.3%) <0.001

Regional anesthesia 1134 (0.5%) 295 (0.4%) 509 (0.4%) 5 (0.0%) <0.001

Emergency surgery, n 8450 (3.8%) 5790 (8.7%) 4208 (3.2%) 1142 (4.5%) <0.001

30 days mortality, n 612 (0.3%) 159 (0.2%) 316 (0.2%) 113 (0.4%) 0.002

Data were presented as mean ± standard deviation, median (interquartile range), or number (percentage).
BUN blood urea nitrogen, GOT glutamate oxaloacetate transaminase, GPT glutamate pyruvate transaminase, PT prothrombin time, aPTT activated partial
thromboplastin time, MAC monitored anesthesia care.
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application in clinical practice is limited. Existing models required
an excessive number of variables in order to enhance prediction
performance, and, more crucially, a model developed in one
institution functioned poorly in another.
The purpose of this study was to construct a viable artificial

intelligence model for predicting prognosis prior to surgery that
could be used in the real world. This type of model should exhibit
the following characteristics: (1) Models can be transferred
between hospitals; (2) data generation and recording do not
require additional labor. (3) A straightforward and lightweight
design; (4) the accuracy of the model is comparable to that of
previous models. To create this model, we used only objective and
quantitative data that were automatically imported from the

electronic medical record system, reducing interhospital variation
and increasing data volume to improve accuracy. The results of
this study reveal that prediction power does not decrease even
when using only the minimum number of variables that can be
automatically extracted from electronic medical records of each
hospital, compared to the previously proposed prediction model
that requires numerous clinical input variables. Additionally, this
model performed well when applied directly to other hospitals,
indicating that it is transferrable between hospitals. The dis-
advantage of existing machine-learning prediction models was
that they overfit the training data, making them inapplicable to
other hospitals or necessitating retraining. Our model, on the
other hand, is directly internalized into the hospital's electronic

Fig. 1 Performance evaluation of machine learning algorithms for postoperative 30-day mortality predictions. AUROC (a) and AUPRC (b)
of several models for postoperative 30-day mortality in the SNUH dataset. The values of AUROC and AUPRC are presented as 95% confidence
intervals. AUROC area under receiver operating characteristic curve, AUPRC area under precision-recall curve, DNN deep neural network, XGB
extreme gradient boosting, RF random forest, LR logistic regression, ASA-PS American society of anesthesiologists physical status
classification.

Table 2. Validation results of four models using all features for postoperative 30-day mortality.

Train Test

AUROC

SNUH AMC EUMC BRMH

SNUH 0.942 (0.940–0.945) 0.927 (0.923–0.932) 0.941 (0.938–0.943) 0.908 (0.902–0.915)

AMC 0.920 (0.917–0.923) 0.935 (0.930–0.939) 0.915 (0.911–0.919) 0.877 (0.869–0.885)

EUMC 0.934 (0.932–0.937) 0.930 (0.926–0.934) 0.956 (0.953–0.958) 0.912 (0.906–0.919)

BRMH 0.913 (0.910–0.916) 0.895 (0.889–0.901) 0.921 (0.917–0.925) 0.916 (0.909–0.923)

AUPRC

SNUH 0.175 (0.169–0.181) 0.096 (0.087–0.104) 0.130 (0.124–0.137) 0.180 (0.166–0.194)

AMC 0.090 (0.086–0.093) 0.092 (0.084–0.100) 0.090 (0.084–0.096) 0.133 (0.121–0.145)

EUMC 0.111 (0.107–0.115) 0.081 (0.074–0.088) 0.155 (0.147–0.163) 0.179 (0.165–0.193)

BRMH 0.105 (0.100–0.109) 0.073 (0.067–0.079) 0.101 (0.094–0.108) 0.142 (0.131–0.153)

Data were presented as means (95% confidence intervals).
AUROC area under receiver operating characteristic curve, AUPRC area under precision-recall curve, SNUH Seoul National University Hospital, AMC Asan Medical
Center, EUMC Ewha Womans University Medical Center, BRMH Boramae hospital.
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medical record (EMR) system without additional processing, and
prognosis can be predicted with a single click. Even if we do not
internalize the program in the EMR, we only use a few parameters,
which enables real-time prognosis prediction in an outpatient
clinic by entering these parameters into the program via the web.
When the prediction powers of the models developed based on

the data of each hospital were compared, it was confirmed that
the more the amount of data, the better the prediction power. The
prediction model of SNUH, which had the largest amount of data,
delivered the best prediction performance. Based on these results,
the prediction model developed based on the datasets of merged
data of all hospitals would deliver the best prediction perfor-
mance. However, it is very difficult to implement the merged data
by combining datasets from multiple institutions in the real world
owing to various legal and institutional regulations. Despite these
barriers, this study shows the importance of the amount of data in
prediction performance.
From the datasets of the four institutions used in this study, it is

shown that the amount and characteristics of each dataset are
diversely distributed. Clinically generated data in the real world
are hospital-dependent and diversely distributed38. Therefore, it is
very difficult to develop a robust prediction model applicable to
multiple institutions. However, this study showed that a more
robust model can be developed with only a small number of
variables if a large amount of data are obtained.
In our study, we developed a prediction model using only the

results of 12 preoperative laboratory test variables, data of three
demographic characteristics, and surgical-related information
such as that of the anesthesia method, emergency status, and
surgery department. In addition, we developed the lab model
using only the results of 12 preoperative laboratory test variables.
The reason we performed modeling using only such a small
number of variables was to use only objective information that
can be commonly extracted from various institutions for applic-
ability to various medical institutions for creating a prediction
model. It was expected that the development of a prediction
model using only this small number of objective clinical variables
would enable the development of a more robust model. As a
result, even though only such a small number of variables were
used in our models, the prediction performance did not
deteriorate, compared to the performances achieved in previous
studies. This suggests that a machine-learning model trained only
on objective and quantitative values of a sufficiently large cohort
may be applied in other hospitals with prediction performance
similar to that in the hospital where the model was trained. In a

recent study on a deep-learning model that predicts 30-day
postoperative mortality, deep-learning techniques such as the
convolutional neural network (CNN) and long short-term memory
(LSTM) network were developed using a wide range of data
including preoperative information as well as intraoperative vital
signs and intraoperative drug and fluid data19. However, the
performance results of the model reveal that AUROC was 0.867
and AUPRC was less than 0.1 in the study19.
In our study, the ensemble methods, such as the XGBoost

model, delivered the best prediction performance. The XGBoost
model delivered superior performance overall, even compared to
the performance of the five-layer DNN model. Moreover, in
addition to numerical superiority in performance metrics, the
XGBoost model presented a statistically significant difference from
other prediction models and the ASA-PS model. In comparison to
the five-layer DNN model, however, the significance was observed
in a part of the datasets. Although the performance results differ
depending on the tuning of hyper-parameters, it was confirmed
that the XGBoost model delivered performance comparable to
that of the deep-learning algorithm in predicting postoperative
mortality using preoperative clinical information. Although
techniques that can extract feature-importance in deep learning
have been recently introduced, the biggest advantage of tree-
based machine-learning models is that these can extract the
feature-importance of the model, showing the possibility of
solving the “black box” problem, which has been reported as the
main limitation of artificial-intelligence models38,39. In this study,
important variables of each hospital model could be determined
using Shapley additive explanations (SHAP) values40. In SNUH and
AMC, albumin was the strongest predictor of postoperative 30-day
mortality, whereas, in EUMC and BRMH, age and preoperative PT
were the strongest predictors, respectively. Diversity in clinical
environment and patient demographics is accountable for the
abovementioned variance in feature-importance analysis results of
each hospital. Numerous reports have demonstrated that patients
with hypoalbuminemia have a poor prognosis following surgery41.
Serum albumin constitutes 50–70% of total serum protein and is
responsible for determining the plasma osmotic pressure. It is
produced only in the liver and is significantly decreased in
conditions such as liver disease, renal disease, malnutrition,
inflammation, and shock42. In other words, serum albumin level
is a nonspecific factor that represents an overall metabolic
function of a patient and hypoalbuminemia prior to surgery
indicates a serious illness state, such as considerable inflammation
induced by the patient’s disease and impairment of major organ

Table 3. Validation results of four lab models using only 12 features of laboratory test for postoperative 30-day mortality.

Train Test

AUROC

SNUH AMC EUMC BRMH

SNUH 0.926 (0.921–0.930) 0.921 (0.914–0.928) 0.916 (0.910–0.921) 0.888 (0.877–0.899)

AMC 0.912 (0.908–0.916) 0.925 (0.917–0.932) 0.897 (0.891–0.903) 0.861 (0.849–0.873)

EUMC 0.921 (0.917–0.925) 0.923 (0.915–0.930) 0.921 (0.915–0.927) 0.905 (0.895–0.915)

BRMH 0.897 (0.892–0.902) 0.896 (0.887–0.905) 0.891 (0.884–0.898) 0.905 (0.894–0.915)

AUPRC

SNUH 0.154 (0.146–0.162) 0.105 (0.092–0.117) 0.125 (0.115–0.135) 0.177 (0.159–0.196)

AMC 0.088 (0.083–0.093) 0.090 (0.079–0.100) 0.086 (0.080–0.093) 0.122 (0.108–0.137)

EUMC 0.115 (0.109–0.122) 0.078 (0.069–0.086) 0.143 (0.133–0.152) 0.163 (0.145–0.182)

BRMH 0.101 (0.095–0.106) 0.079 (0.068–0.090) 0.106 (0.097–0.115) 0.151 (0.134–0.168)

Data were presented as 95% confidence intervals.
AUROC area under receiver operating characteristic curve, AUPRC area under precision-recall curve, SNUH Seoul National University Hospital, AMC Asan Medical
Center, EUMC Ewha Womans University Medical Center, BRMH Boramae Hospital.
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functions, which impairs the body’s ability to recover from surgical
stress43. Prothrombin is the most abundant coagulation factor in
the blood. Prolonged PT may result in substantial bleeding during
surgery, which may have a detrimental effect on the prognosis44.
Since prothrombin is produced by the liver, its abnormality may
indicate liver dysfunction45. Patients who take warfarin, which
prolongs the PT, are more likely to have underlying heart or brain
disease. Additionally, if surgery was performed despite prolonged
PT, it is highly likely that the patient’s situation was an emergency.
Therefore, PT has a strong link with postoperative prognosis. In
general, PT may be more indicative of a patient’s overall health
than activated partial thromboplastin time (aPTT), as warfarin has
no effect on the aPTT and solitary prolonged aPTT is uncommon46.
The strength of our study is that it is the only study that collects

large-scale data from four independent institutions to create and
compare artificial intelligence models that predict postoperative
30-day mortality. In most of the previous studies, models were

developed with data from a single-center and validated with data
from the same institution. Because of the absence of data for
external validation, most of the previous prediction models have
overfitting problems, which cause difficulty in applying models
developed by one institution to the other. In this situation, our
work that externally validates prediction models using multicenter
data is expected to serve as an important milestone in the
development of generalized, robust models applicable to multiple
hospitals.
Because our study excludes intraoperative variables, it has

the advantage of being able to predict prognosis in a preoperative
setting. If the prognosis is to be predicted in the intensive care
unit or postoperative setting, including intraoperative variables,
will allow for more accurate prediction. Indeed, when intraopera-
tive data were included, the accuracy of prognosis prediction
increased slightly (data not shown). If we incorporate interopera-
tive data into our current model for postoperative care, it is

Fig. 2 Feature-importance of each hospital model with respect to SHAP value. a SNUH model, b AMC model, c EUMC model, d BRMH
model. SHAP Shapley additive explanations, SNUH Seoul National University Hospital, AMC Asan Medical Center, EUMC Ewha Womans
University Medical Center, BRMH Boramae Hospital.
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anticipated that we will be able to easily create a model for
postoperative care that retains the benefits of our current effective
model in the future.
One limitation of our study is the relatively low AUPRC value,

compared to the high AUROC value. The AUPRC scores of our
models are in the range of 0.1–0.2. As in previous studies, the
extremely rare incidence of mortality in each medical center and
data imbalance of each hospital may be the cause of the low
AUPRC value. Techniques such as oversampling of the incidences
and undersampling of the non-incidences were used to attempt
to reduce the influence of data imbalance on model perfor-
mance; however, these techniques failed to improve the AUPRC
value. Although the SMOTE that we tried is a popular technique
to balance the data, there is a criticism that subsampling has not
a theoretical justification and cannot be considered a definitive
tool. The researchers pointed out that there is no need to
subsample and that only replacing the Bayes rule with the new
quantile rule will be theoretically justifiable to solve the class
imbalance in data47. While a low AUPRC is not uncommon for
prediction models in clinical situations, the models we devel-
oped achieved better prediction performance than that achieved
in previous studies by selecting appropriate modeling methods
and training datasets.
The calibration plot indicated a tendency for the final tenfold

cross-validation model to slightly overestimate mortality in some
hospitals, indicating that clinicians may need to use this model
with caution in clinical practice. However, because the death
event is the final stage of the clinical aggravation process, a
slightly overestimating model would be better than an under-
estimating model to prevent a patient’s near-death risk situation.
Another limitation of our study is that we did not adopt various

technical alternatives for the transferability of the model. Our
study confirmed that obtaining as many datasets as possible
increases the robustness of the model, but this is very difficult to
realize in actual clinical practice. Although it is very important to
collect high-quality data and develop a prediction model based on
such data to realize a robust model, alternatives for learning
imbalanced data with an algorithm such as federated learning
have been recently proposed48,49. Therefore, various techniques
for overcoming this limitation of difficulty in collecting multi-
institutional data in the real world are expected to be developed
through future research.
It is possible to create a robust artificial intelligence prediction

model applicable to multiple institutions through a light predictive
model using only minimal preoperative information that can be
automatically extracted from each hospital.

METHODS
Study design
This study was conducted according to “Guidelines for Development and
Reporting Machine-Learning Predictive Models in Biomedical Research: A
Multidisciplinary View.”50 It was approved by the institutional review board
(IRB) of Seoul National University Hospital (IRB No. 2011-141-1176), Asan
medical center (IRB No. 2021-0186), Ewha Woman's University Hospital (IRB
No. 2020-11-017), and Seoul Metropolitan Government-Seoul National
University Boramae Medical Center (IRB No. 30-2020-268). Written
informed consent was waived owing to the nature of the retrospective
study design. This study was executed and reported in accordance with
STROBE (STrengthening the Reporting of OBservational studies in
Epidemiology) guidelines.

Inclusion and exclusion criteria
We performed a retrospective analysis of data collected from 454,404
patients over 18 years of age who underwent non-cardiac surgeries from
four independent institutions. The dataset of Seoul National University
Hospital (SNUH) contains the data of 223,905 patients who underwent
surgeries from October 2004 to December 2019, and the dataset of
Boramae Hospital (BRMH) contains the data of 32,110 patients who

underwent surgeries from January 2016 to December 2019. The dataset of
Ewha Womans University Medical Center (EUMC) contains the data of
131,867 patients from January 2001 to December 2019. Data from 66,522
patients who underwent surgeries from March 2019 to April 2021 in Asan
Medical Center (AMC) were extracted. We excluded patients who
underwent heart surgeries, organ transplant surgeries, and neurosurgeries
and excluded patients whose final clinical course was unknown because of
a lack of follow-up during the study period.
For patients who underwent multiple surgeries during the study

period, only the first surgery performed after admission was included in
the analysis.

Variable selection and data collection
The variable selection process was discussed by all authors, including
experts in each clinical department. We listed all available clinical data
from the electronic medical record system and performed feature selection
(data not shown). The commonly high-ranked features among the four
hospitals were considered variable candidates for further analysis. The
study omitted variables with major differences between hospitals (e.g.,
surgery name and diagnosis name) and variables with a high rate of
missing values (e.g., troponin I) and a high degree of subjectivity in their
measurement and performance by medical staff (e.g., central venous
catheterization and arterial catheterization). Finally, we selected the
following variables: information on demographics (age, sex, BMI),
preoperative laboratory results (white blood cells (WBCs), hemoglobin,
platelet, sodium, potassium, blood urea nitrogen (BUN), creatinine,
albumin, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate
transaminase (GPT), glucose, PT, and aPTT), type of surgery (general,
otolaryngologic, urologic, orthopedic, gynecological, and plastic), type of
anesthesia (general, neuro-axial, monitored anesthesia care, and regional),
emergency surgery were collected.
Data including patient demographics, preoperative laboratory tests,

surgical information, and postoperative clinical outcomes were extracted
from the electronic medical record system of each hospital. Patient
demographic data include age, sex, height, weight, and BMI. Preoperative
laboratory tests include WBCs, hemoglobin, platelet, PT, aPTT, sodium,
potassium, BUN, creatinine, GOT, GPT, and albumin. Surgical information
includes the emergency status of surgery, department of surgery, and type
of anesthesia. We also collected the ASA-PS class for each surgical patient
evaluated preoperatively.

Model outcomes
The outcome of the main interest of this study is in-hospital mortality
within 30 days after surgery. In-hospital mortality data were extracted as
binary information based on the last mortality date in the electronic
medical record within 30 days after surgery.

Model building
Missing values of the model variables were replaced with median values. All
continuous variables were scaled using the StandardScaler of Scikit-learn
package, and categorical variables were input to the model via one-hot
encoding51. For modeling, traditional machine-learning methods, such as
LR algorithms and RF, were used, and XGBoost ensemble algorithm and
DNN methods were applied to compare the model prediction perfor-
mances35,36,52,53. The entire dataset of each hospital was divided into
training, validation, and test datasets in a 6:2:2 ratio for the development of
all models. The DNN model has a structure consisting of five hidden layers.
For each layer of the DNN model, batch normalization and rectified linear
unit (ReLu) functions were applied to the dense layer with a dropout rate of
0.554. Cross-entropy was used as the loss function of the model, and the
parameters of the models were optimized to minimize the loss function of
each model55. We used the bootstrap method to overcome the imbalance
in clinical data and calculate the performance of each model more robustly.
The bootstrap method repeats the process of resampling the training data,
training a new model, and evaluating the model multiple times. The
performance of the model is then calculated as the average performance of
individual models developed by the bootstrap method. Even if a model
overfits the data, these problems can be alleviated by averaging their result,
yielding a more general model. Bootstrap method can considerably reduce
the overfitting of the developed models.
In addition to bootstrap, a tenfold cross-validation method was imple-

mented to generate a final model for clinical application, check the
performance of the uniformly trained model on the entire data of one

S.W. Lee et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    91 



hospital, and confirm the applicability of this model in other hospitals56. Grid
search was used to find the most optimized hyper-parameter values for the
recall, and the training set was trained using a stratified tenfold cross-
validation method57. The model was tested with the test set of the selected
hospital and data from other hospitals to confirm the prediction performance.
We attempted to use two methods, namely upsampling of positive

events and downsampling of negative events in the data, to overcome
data imbalance for predicting a rare event with an extremely low
incidence58. First, we upsampled training data for each center using the
synthetic minority oversampling technique (SMOTE), so that the ratio of
resampled positive events to negative events became 0.01, 0.05, 0.1, or
0.25. We trained XGBoost models with the upsampled data and compared
the internal validation results of the models. The second approach was to
randomly downsample the training data, so that the ratio of positive
events and resampled negative events became 0.01, 0.05, 0.1, or 0.25. Then
we compared the internal validation results of the models trained with the
downsampled data. We used the SMOTENC function and RandomUnder-
Sampler function of a Python library, imbalanced-learn, to implement
SMOTE and random downsampling.

Model validation
Two types of models—a conventional model that uses all input variables
and a lab model that only uses results of 12 laboratory test parameters
(WBCs, hemoglobin, platelet, PT, aPTT, sodium, potassium, BUN, creatinine,
GOT, GPT, and albumin)—were developed, and their performances were
compared. The performance of the model was compared with that of the
XGBoost model built based on the ASA-PS class. The prediction
performance was validated and compared among the local models
developed from the data of each hospital. Four local models were
developed from the data of four institutions, and each model was
externally validated on the data from other hospitals (Fig. 3). The
prediction performances were compared in terms of AUROC and AUPRC.
The comparison of AUROC and AUPRC was done both numerically and
statistically. The statistical comparison of AUROC values and AURPC values
was each computed using Delong Test and Permutation test59–61

(Supplementary Table 3). A calibration plot was used to evaluate the
agreement between the observed and expected values based on the
probability of postoperative 30-day mortality predicted by various models.

Model interpretation via feature-importance
We implemented an explainable AI model by performing a feature-
importance analysis on the generated prediction model. The feature-
importance of the four independent local models was determined using
the Shapley additive explanations (SHAP) values40. The SHAP value, which
expresses the influence of a variable on a prediction in terms of direction
and range, is computed using the prediction outcome of each possible
combination of features40.

Statistical analysis and modeling tools
Continuous variables were expressed as means and standard deviations,
whereas categorical variables were expressed as numbers and percen-
tages. Continuous variables were compared in four institutions using one-
way analysis of variance (ANOVA), whereas categorical variables in the four
groups were compared using the Kruskal–Wallis H-test. Variables with two-
tailed p values less than 0.05 were considered statistically significant.
Machine learning and DNN modeling was performed in python 3.9 using
Scikit-Learn and TensorFlow packages51.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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