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Integrative multi-omics analysis has become a useful tool to understand molecular
mechanisms and drug discovery for treatment. Especially, the couplings of genetics to
metabolomics have been performed to identify the associations between SNP and
metabolite. However, while the importance of integrative pathway analysis is
increasing, there are few approaches to utilize pathway information to analyze
phenotypes using SNP and metabolite. We propose an integrative pathway analysis of
SNP and metabolite data using a hierarchical structural component model considering the
structural relationships of SNPs, metabolites, pathways, and phenotypes. The proposed
method utilizes genome-wide association studies on metabolites and constructs the
genetic risk scores for metabolites referred to as genetic metabolomic scores. It is based
on the hierarchical model using the genetic metabolomic scores and pathways.
Furthermore, this method adopts a ridge penalty to consider the correlations between
genetic metabolomic scores and between pathways. We apply our method to the SNP
and metabolite data from the Korean population to identify pathways associated with type
2 diabetes (T2D). Through this application, we identified well-known pathways associated
with T2D, demonstrating that this method adds biological insights into disease-related
pathways using genetic predispositions of metabolites.
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1 INTRODUCTION

The advances in biological techniques have led to the generation of multiple omics (multi-omics)
data, which contribute to a better understanding of biological mechanisms and diseases. For instance,
the next-generation sequencing (NGS) technology for genome-wide data and mass spectrometry for
quantitative metabolic data allow us to generate multi-omics data from the same samples at a low
cost (Metzker, 2010; Suhre and Gieger, 2012). These technical improvements have enabled multi-
omics data analysis to become a useful tool in biomedical research.

Genome-wide association studies (GWAS) have been conducted worldwide to identify single
nucleotide polymorphisms (SNPs) associated with various diseases or phenotypes.
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An intermediate variable, linking genetic variants and
phenotype, is suggested to consider the effects of genes and
environmental factors in overcoming the limitation of GWAS
(Kronenberg, 2012). One of the potential intermediate variables is
serum metabolite concentration, providing a direct readout of
biological processes, to connect genetic factors and diseases (Illig
et al., 2010; Kronenberg, 2012). Recently, metabolite genome-
wide association studies (mGWAS) and metabolic quantitative
trait loci (mQTL) analyses have been conducted by utilizing SNP
and metabolite data together (Zhang et al., 2017; Park et al., 2019;
Ouyang et al., 2021). In addition, to explore the association
between SNPs and metabolites, disease-related metabolomic
markers using SNPs were investigated through Mendelian
randomization (Moayyeri et al., 2018). Even though many
studies attempted to analyze SNP and metabolite data
together, most studies have mainly focused on either analyzing
statistical associations between SNPs and metabolites or
discovering metabolomic markers of phenotypes using SNPs.

Since pathway analysis can give a more intuitive interpretation
of the biological system, several methods have been proposed for
pathway analysis that focuses on identifying significant pathways
related to certain traits of interest (García-Campos et al., 2015;
Kao et al., 2017). Specifically, pathway analysis using multi-omics
data has now become popularly used in recent bioinformatics
research. While the importance of integrative pathway analysis is
increasing, there have been few studies about integrating SNPs
and metabolite data (Kao et al., 2017). In this study, we focus on
integrative pathway analysis of SNPs and metabolite data.

Here, we propose an integrative pathway analysis of SNP and
metabolite data using a hierarchical structural component model.
This method calculates genetic risk scores of metabolites and
investigates pathways associated with phenotypes through the
genetic risk scores. This approach is based on our earlier work
Pathway-based approach using HierArchical components of
collapsed RAre variants Of High-throughput sequencing data
(PHARAOH) (Lee et al., 2016). PHARAOH uses rare variants to
construct collapsed genes and performs pathway analysis using
these gene-summaries. PHARAOH simultaneously analyzes the
entire collapsed genes and the entire pathways in a hierarchical
model (Lee et al., 2016). We utilize this main framework of
PHARAOH and mGWAS for the integration of SNP and
metabolite data and refer to this method as a Hierarchical
Structural Component Model of SNP and Metabolite data for
pathway analysis (HisCoM-SM).

The genetic metabolomic score (GMS) is calculated by
summing the effects of the corresponding SNPs on each
metabolite and then is used for pathway analysis in
PHARAOH. HisCoM-SM adopts the ridge penalties to both
GMSs and pathways to identify pathways while controlling for
potential correlations between GMSs and between pathways.

Here, we apply HisCoM-SM to SNP and metabolite data from
Korean Association REsource (KARE) cohort to identify
pathways associated with T2D. Note that T2D is a metabolic
disorder that is affected by genetic factors and environmental
exposure simultaneously (Murea et al., 2012). Through this
application to the KARE dataset, we demonstrate that
HisCoM-SM can identify previously reported pathways,

including insulin secretion and insulin resistance, associated
with T2D, using genetic predispositions of metabolites (Weyer
et al., 2001; Dayeh et al., 2014; Kahn et al., 2014).

The HisCoM-SM is available at https://statgen.snu.ac.kr/
software/HisCoM_SM.

2 MATERIALS AND METHODS

2.1 SNP Data
The SNP data was generated by the Affymetrix Genome-Wide
Human SNP array 5.0. from the Korea Association REsource
(KARE) project. KARE is based on Ansan and Ansung Korean
population cohort among 10,038 participants which was initiated
in 2001 (Cho et al., 2009). This chip originally consisted of 8,840
individuals and 352,228 SNPs. We applied quality control to our
SNP data to reduce the biases and used common variants for our
analysis (Turner et al., 2011). For quality control of SNP data, the
genotypes with over 0.1 missing rates and Hardy-Weinberg
equilibrium p-values < 10−6 were excluded. To use only
common variants, the genotypes with minor allele frequency
(MAF) ≤ 0.05 were excluded. Then, we retained the individuals
who have metabolite data and whose calling rate >0.9. After
quality control of SNPs from the KARE dataset using PLINK 1.90,
a total of 312,116 SNPs were analyzed in this work (Chang et al.,
2015).

2.2 Metabolite Data
The serum metabolites in the 691 participants were
quantitatively analyzed by a targeted metabolomics
approach using liquid chromatography-mass spectrometry
(LC-MS). 64 metabolites were measured in this work. The
metabolites of each subject were measured at the fifth follow-
up in the KARE dataset. Among 64 metabolites, 53 were
mapped to 101 pathways. The 53 metabolites were
classified into eight categories. Table 1 shows the number
of metabolites in each category. The list of metabolites and the
eight categories of metabolites are shown in Supplementary
Table S1. 627 samples were available with both SNPs and
metabolite data. Among these samples, 309 samples are
controls (normal) and 318 samples are cases (pre-T2D and
T2D). For metabolite data, systematical error removal using
random forest (SERRF) was used for batch effect correction to
remove variation due to instrument and injection time (Fan
et al., 2019).

TABLE 1 | Number of metabolites in each category.

Category Number of metabolites

Alkaloids and derivatives 1
Benzenoids 2
Lipids and lipid-like molecules 1
Nucleosides, nucleotides, and analogues 4
Organic acids and derivatives 33
Organic nitrogen compounds 4
Organic oxygen compounds 1
Organoheterocyclic compounds 7
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2.3 Diagnosis of Type 2 Diabetes
The criteria for diagnosis of T2D are 1) fasting blood glucose
(FBS) ≥ 126 mg/dl, 2) 2-h postprandial glucose (2 PP) ≥
200 mg/dl, 3) HbA1c ≥ 6.5 (%), and 4) treatment of drug.
Pre-diabetic (preT2D) individuals are diagnosed by the
criteria—1) 100 mg/dl ≤ FBS < 126 mg/dl, 2) 140 mg/dl ≤
2 PP < 200 mg/dl, 3) 5.6% < HbA1c < 6.5%, and 4) no
treatment of drug. The criteria for normal individual are 1)
FBS <100, 2) 2 PP < 140, 3) HbA1c ≤ 5.6%, and 4) no
treatment of drug. Here, we regarded T2D and preT2D
individuals as cases, and normal individuals as controls. The
baseline characteristics of those samples are shown in Table 2.

2.4 HisCoM-SM
The framework of HisCoM-SM consists of two steps. The step 1 is
to calculate genetic risk scores of metabolite data referred to
genetic metabolomic scores (GMSs). Genetic effects of
metabolites are estimated and then used to calculate the
GMSs. The step 2 is to perform pathway analysis using the
calculated GMSs by step 1. To perform pathway analysis, a
hierarchical structural component model (HisCoM) is used.
HisCoM consists of three layers which are input layer, latent
layer, and outcome layer. In our work, GMSs are used as input
variables, pathways are used as latent variables, and binary
phenotype is used as outcome variable. The two steps of the
process are described in more detail below.

2.4.1 Calculation of GMSs
To perform pathway analysis using SNP and metabolite data, we
first construct the GMSs. Here, we used two methods for
calculating GMSs. The first score was derived from the single-
SNP association test for metabolites. To do that, we applied linear
regression for each metabolite adjusted for age and sex and
calculated the GMSs by clumping and thresholding to remove
redundant correlated effects due to linkage disequilibrium (LD)
using PLINK (Chang et al., 2015). Clumping is the process of
selecting the most significant SNP iteratively, computing
correlation between this SNP and nearby SNPs within a
genetic distance of 250 k, and removing all the nearby SNPs
with highly correlation (r2 > 0.2) (Privé et al., 2019).
Thresholding is the process of filtering out variants with
p-values greater than a given threshold level (Privé et al.,
2019). Then, the GMSs are calculated from the effects of
remaining SNPs after clumping and thresholding using PLINK
(Chang et al., 2015).

The second score is based on the genetic best linear unbiased
prediction (GBLUP) method from Genome-wide Complex Trait

Analysis (GCTA) software (Yang et al., 2011). All SNPs are
treated as random effects in a mixed linear model adjusted for
fixed effects of sex and age (Yang et al., 2011). In GBLUP, the
effects of all SNPs are estimated by the genetic relationship matrix
(GRM) representing the relatedness of individuals’ SNPs (Yang
et al., 2011). The GRM is used to estimate the effects of all SNPs
and only 20% of SNPs with a high absolute value of the effect are
used to construct the GMSs. Then, the remaining SNP effects are
used to construct GMSs using PLINK (Chang et al., 2015).

2.4.2 Pathway Analysis Using GMSs in a Hierarchical
Component Model
After constructing the GMSs, pathway analysis is performed.
Figure 1 shows the diagram of HisCoM-SM. For each metabolite,
the correlated SNPs are selected by a single SNP association test
and GBLUP. Then, GMSs are derived as a linear combination of
these SNPs. Thus, each metabolite is linearly correlated with the
selected multiple SNPs. Similarly, each pathway is also linearly
correlated with multiple metabolites. First, an individual pathway
is mapped to the metabolites using the KEGG pathway database.
Next, the latent variables representing pathways are derived as a
linear combination of these metabolites. Then, the binary
outcome is used to estimate the effect of the relationship
between pathways and the phenotype. Let yj be the binary
outcome of the jth individual, K be the number of pathways,
Tk be the number of GMSs in the kth pathway. The xjkt denotes
GMS which is a continuous value, the wkt represents weight for
xjkt, and βk denotes the coefficient for pathway. Then, the
proposed HisCoM model is defined as follows:

logit(πj) � β0 +∑K

k�1
⎡⎣∑Tk

t�1 wktxjkt
⎤⎦βk (1)

To estimate the parameters of the model, we maximize a
penalized log-likelihood function (Eq. 2) and use alternating least
squares (ALS) for minimizing the objective function (Lee et al.,
2016). Let p(yj; γj, δ) be the probability distribution function for
the phenotype yj, λM and λP denote ridge parameters added for
potential multicollinearities between GMSs and between
pathways, respectively. After determining the ridge parameters
λM and λP by five-fold cross-validation, the coefficients wkt and
βk are estimated by ALS algorithm. In ALS algorithm, βk are
updated in a least square manner withwkt fixed. Likewise,wkt are

TABLE 2 | The characteristics of the subjects in each case (pre T2D + T2D) and
control (Normal) group.

Case Control p-value

Male 157 (49.37%) 157 (50.81%) 0.7794
Age (years) 58.26 57.32 0.0653
BMI 25.22 24.60 0.0059
Number of subjects 318 309 —

FIGURE 1 | A schematic diagram of the HisCoM-SM.
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updated with βk fixed. This ALS algorithm is iterated until
convergence.

ϕ � ∑N

j�1log p(yj; γj, δ) − 1/2λM∑K

k�1 ∑Tk

t�1 w
2
kt − 1/2λP ∑K

k�0β
2
k

(2)
After estimation, the phenotype is resampled 100,000 times

through permutation to generate the null distribution of
coefficients of pathways to calculate empirical p-values. To
correct the multiple comparisons problem, the false discovery
rate (FDR) is applied (Benjamini and Hochberg, 1995). Here, we
use the WISARD (workbench for integrated superfast association
studies for related datasets) to perform integrative pathway
analysis using GMSs (Lee et al., 2018).

3 RESULTS

3.1 Metabolite Genome-wide Association
Study in KARE Dataset
To detect genetic variants associated with metabolites, we
performed the mGWAS using linear regression, adjusting for
sex and age. Out of 53 metabolites, only two metabolites have
significantly (p < 1e-8) associated SNPs. Specifically, we identified
17 SNPs associated with Glycine which is related to insulin
sensitivity and secretion (Floegel et al., 2013). These SNPs are
located on chromosome 2. We also identified 15 SNPs associated
with Dimethylglycine. The list of the identified mQTL is shown in
Supplementary Table S2. Figure 2 is a Manhattan plot for SNPs
associated with Glycine and Dimethylglycine.

3.2 Pathway Analysis of T2D
HisCoM-SM was applied to SNP and metabolite data of T2D/
preT2D patients and normal samples from the KARE dataset

which is a large Korean population-based cohort. We first
mapped the KEGG pathway database with metabolite data.
Among 64 metabolites, 53 metabolites were mapped to 101
pathways. Then, the GMSs were used as components of
pathways, which are latent variables in the model. Note
that we used the two methods to construct GMSs: 1)
Single-SNP association-based GMSs and 2) GBLUP-based
GMSs. Those two methods are discussed in detail in the
Methods section. The lists of identified pathways with
HisCoM-SM based on single-SNP association denoted by
HisCoM-SM (single) and HisCoM-SM based on GBLUP
denoted by HisCoM-SM(GBLUP) are shown in
Supplementary Tables S3, S4, respectively.

To detect the significant pathways associated with T2D in
HisCoM-SM, we selected the pathways with high absolute
coefficient values and low q-values. The metabolic pathway
(map 01100) had the highest absolute effect value and the
lowest q-value in both HisCoM-SM (single) and HisCoM-
SM(GBLUP). Among the 49 metabolites contained in this
pathway, Arginine, Tryptophan, Lactate, Trimethylamine
N-oxide (TMAO), Trans-4-Hydroxy-L-proline, and Hippurate
were significant in both HisCoM-SM methods. Arginine
facilitates the action of glucose to stimulate insulin release
(Gerich et al., 1974). In addition to Arginine, the other five
metabolites have also been reported as risk factors for the
incidence of T2D or the prevalence of T2D (Van Doorn et al.,
2007; Crawford et al., 2010; Chen et al., 2016; Shan et al., 2017;
Tang et al., 2017). In addition, both HisCoM-SM methods
identified the same pathway with the second-highest absolute
coefficient value and the lowest q-value. This pathway is the
biosynthesis of amino acids (map 01230) and has also been
reported to be associated with T2D in previous studies
(Aichler et al., 2017; Lu et al., 2019). These results
demonstrate that HisCoM-SM(single) and HisCoM-
SM(GBLUP) can yield consistent results and identify pathways
associated with T2D.

3.3 Comparison of HisCoM-SM to
Conventional HisCoM Using Metabolite
Data
For comparison purposes, we applied the conventional
HisCoM to KARE metabolite data to identify the T2D
related pathways (Supplementary Table S5). Table 3
summarizes the commonly significant (FDR q-value < 0.05)
pathways by HisCoM-SM(single), HisCoM-SM(GBLUP), and
conventional HisCoM using only metabolite data. These
commonly significant pathways are categorized by the
KEGG pathway category and subcategory. Metabolism is
the category that has the greatest number of significant
pathways. Among the 64 significant pathways, 31 pathways
are included in the metabolism category. Figure 3 is a scatter
plot for the FDR q-values and the correlation coefficients for
each pair of methods. Here, the q-values of HisCoM-SM and
HisCoM showed quite consistent patterns yielding high
correlation coefficients. Figure 4 is a Venn diagram to
show the numbers of significant pathways (FDR q-value <

FIGURE 2 | Manhattan plot for Dimethylglycine and Glycine
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0.05) shared by different methods. Note that 64 out of 74
significant pathways were commonly identified by all three
methods, indicating that HisCoM based methods yielded
quite consistent results. Also, all pathways identified by
HisCoM-SM (single) were identified by HisCoM-
SM(GBLUP).

In Figure 4, conventional HisCoM identified two pathways
that HisCoM-SM could not detect, one of which
(selenocompound metabolism; map 00450) was previously
reported to be associated with T2D (Shin et al., 2020). On the
other hand, HisCoM-SM(GBLUP) identified three pathways,
which conventional HisCoM could not find. Two out of these
pathways were reported as associated with T2D. These two
significant pathways are biotin metabolism (map 00780) and
vascular smooth muscle contraction (map 04270) (Xie et al.,
2006; Hashimoto et al., 2020). For biotin metabolism, several
studies have shown that plasma triacylglycerol, low-density
lipoprotein cholesterol (LDL), and fasting glucose are reduced
in patients with T2D who take biotin supplementation (Maebashi
et al., 1993; Revilla-Monsalve et al., 2006). Furthermore, biotin

intake has been reported to be effective in improving glycaemic
control through diabetic animal models (Reddi et al., 1988; Zhang
et al., 1997).

4 DISCUSSION

Several studies have suggested that pathway analysis using
multi-omics data allows more insights into biological systems.
Pathway analysis using more than one omics data is becoming
increasingly common. However, few studies can identify
disease-related pathways considering SNPs and metabolites
together.

We proposed a novel pathway analysis integrating SNP and
metabolite data. Our method introduced novel genetic
metabolomic scores (GMSs) for pathway analysis. We used a
single-SNP association and a GBLUP approach to construct
GMSs. The calculated GMSs were used as components of
pathways in a hierarchical model. The coefficients can be
estimated by analyzing GMSs and pathways simultaneously,

TABLE 3 | Identified common pathways in HisCoM-SM and conventional HisCoM (q-value < 0.05). The pathways are categorized by KEGG pathway categories and KEGG
pathway subcategories. The values in parenthesis are the number of pathways included in the KEGG pathway.

KEGG pathway category KEGG pathway subcategory Pathway

Cellular Processes (3) Cell growth and death Ferroptosis
Cell motility Regulation of actin cytoskeleton
Cellular community - eukaryotes Gap junction

Environmental Information
Processing (4)

Membrane transport ABC transporters
Signal transduction mTOR signaling pathway/Sphingolipid signaling pathway
Signaling molecules and interaction Neuroactive ligand-receptor interaction

Genetic Information Processing (2) Folding, sorting, and degradation Sulfur relay system
Translation Aminoacy-tRNA biosynthesis

Human Diseases (9) Drug resistance: antineoplastic Antifolate resistance
Endocrine and metabolic disease Insulin resistance
Neurodegenerative disease Amyotrophic lateral sclerosis/Parkinson disease
Substance dependence Alcoholism/Amphetamine addiction/cocaine addiction/Morphine addiction/Nicotine addiction

Metabolism (31) Amino acid metabolism Alanine, aspartate and glutamate metabolism/Arginine and proline metabolism/Arginine
biosynthesis/Cysteine and methionine metabolism/Glycine, serine and threonine metabolism/
Histidine metabolism/Phenylalanine metabolism/Phenylalanine, tyrosine and tryptophan
biosynthesis/Tyrosine metabolism/Valine, leucine and isoleucine biosynthesis/Valine, leucine,
and isoleucine degradation

Biosynthesis of other secondary
metabolites

Caffeine metabolism/Neomycin, kanamycin, and gentamicin biosynthesis

Carbohydrate metabolism Butanoate metabolism/Glyoxylate and dicarboxylate metabolism/Pyruvate metabolism
Energy metabolism Nitrogen metabolism
Global overview maps 2-Oxocarboxylic acid metabolism/Biosynthesis of amino acids/Carbon metabolism/Metabolic

pathways
Metabolism of cofactors and vitamins Nicotinate and nicotinamide metabolism/Pantothenate and CoA biosynthesis/Porphyrin and

chlorophyll metabolism/Thiamine metabolism
Metabolism of other amino acids beta-Alanine metabolism/D-Arginine and D-ornithine metabolism/D-glutamine and

D-glutamate metabolism/Glutathione metabolism/Taurine and hypotaurine metabolism
Nucleotide metabolism Purine metabolism

Organismal Systems (15) Digestive system Bile secretion/Mineral absorption/Pancreatic secretion/Protein digestion and absorption
Endocrine system Estrogen signaling pathway/Insulin secretion/Prolactin signaling pathway
Excretory system Proximal tubule bicarbonate reclamation
Nervous system Dopaminergic synapse/GABAergic synapse/Glutamatergic synapse/Long-term depression/

Retrograde endocannabinoid signaling/Synaptic vesicle cycle
Sensory system Taste transduction
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considering the correlations between these scores and between
pathways, respectively.

We applied HisCoM-SM to the KARE cohort dataset. Our
HisCoM-SM successfully identified pathways that were
reported to be related to T2D. In our result, the pathways
identified by HisCoM-SM and conventional HisCoM were
almost overlapped, indicating that HisCoM-SM and HisCoM
yielded quite consistent results, and the GMSs can be utilized
for pathway analysis. Moreover, HisCoM-SM could identify
the T2D-related pathways that the conventional HisCoM
using only metabolite data could not detect. Since 53
targeted metabolomics in our analysis may cover only a
small portion of the metabolome, modeling the effects of

SNPs on these metabolites resulted in similar results from
the conventional HisCoM method using only metabolites. We
are planning to modify HisCoM-SM so that it allows for each
pathway to have inputs from both genes and metabolites
simultaneously. In other words, SNPs can directly
contribute to pathways (not through metabolites), which
also makes a more biological sense. The new model with a
rewired structure is expected to improve the performance. We
will leave it as a near-future study.

Here, we applied the clumping and thresholding process to
generate genetic metabolomic scores using p-values from
linear regression models. Instead of linear regression
models, other approaches such as Kernel regression can be
applied to detect non-linear relationships between SNPs and
metabolites. Our HisCoM-SM can also use other GMSs such
as the ones derived from the LD pred method (Vilhjálmsson
et al., 2015). Also, once the effect of SNPs on each metabolite
is obtained, it can be used to calculate the GMSs for other
datasets only with SNPs. The GMSs can be calculated using
the effects of SNPs. Regarding the estimation of effects of
pathways and genetic metabolomic scores, we can use
different types of penalty functions. For example, LASSO
or Elastic Net can be easily incorporated into our model
instead of the Ridge penalty. Furthermore, we can
construct a predictive model using HisCoM-SM approach
for diagnosis. Specifically, we will evaluate the prediction
performance of HisCoM-SM and compare it with those of
other models such as original HisCoM using only SNPs and
metabolites in a near future.

We believe that our method may add practical biological insights
into the disease-related pathways by genetic predispositions of
metabolites and contribute to the understanding of molecular
mechanisms and treatment for the disease.
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