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Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global 
charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, 
they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete 
symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like 
configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we 
argue that discrete charges are also respected by gravity.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has been known for a long time that discrete sub-groups of 
gauge groups, the so-called discrete gauge symmetries, are not bro-
ken by gravitational interactions [1,2]. Effects of quantum gravity 
are studied by looking at various topologies of the metric ten-
sor gμν . If some gauge charges are separated from our Universe 
by metric change, the separated gauge charges cannot be com-
pletely hidden from our Universe because they leave long range 
flux lines. On the other hand, if global charges are separated from 
our Universe, the lost charges leave no hint to an observer in our 
Universe and he notices that global charges are not conserved in 
our Universe. Thus, gauge symmetries are not broken but global 
symmetries are broken by metric changes. This is the basic reason-
ing that discrete gauge symmetries are used in particle physics [3]. 
This top–down approach on discrete symmetries fits to the string 
compactification [4,5] because string theory does not allow any 
global symmetry.

In the bottom–up approach, the flux line argument is not so 
clear. It uses just the classical gauge fields and does not rely on 
the renormalizability in the theory of elementary particles. To be 
specific, let us consider a continuous symmetry U(1). If U(1) is a 
gauge symmetry, it should not have any gauge anomaly. If U(1) is a 
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global symmetry, it may have a gauge anomaly U(1)–G − G where 
G is a gauge group as in the Peccei–Quinn (PQ) global symmetry 
U(1)PQ [6]. Obstructing the PQ symmetry needed for an “invisible” 
axion was based on this argument [7].

However, the absence of any gauge anomaly is not a guaran-
tee for a gauged U(1) symmetry. Some global U(1) symmetries 
may not have any gauge anomaly. The difference in the gauge and 
global symmetries resides in the property on the local transfor-
mation, i.e. using a covariant derivative Dμ = ∂μ − i Aμ in gauge 
theories, or just an ordinary one ∂μ in global symmetries. A dis-
crete subgroup of U(1) cannot know whether the mother U(1) is 
gauged or not. In the bottom–up approach, there must be some 
other reason for the effects of the metric change.

In this paper, we adopt the concept of “hair” which means that 
hair’s thickness is the same at any distance from the surface of 
the head. At the surface, there must be fields at the surface for a 
hair to be defined. This definition excludes any possibility for hairs 
of global symmetries. In gauge theories, there are gauge fields at 
the surface. In gauge theories, the relation of the fields at the sur-
face with the charge Q in the volume enclosed by the surface is 
provided by the equations of motion and current conservation. Ex-
istence of hairs is crucial in guaranteeing the symmetry in the 
presence of the gravitational interaction. It is known that black 
holes have gauge-charge hairs, which will be briefly commented 
in parallel with our method.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Multiple discrete vacua. Some of minima are shown as green bullets. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

For a gauge charge Q , we have gauge fields spreading out 
from Q . Consider the current jμ and the corresponding electric 
field E along a line to be interpreted as a hair. We can perform lo-
cal transformations such that E is the same along a line but zero 
outside the line, which behaves as a hair.1

In this paper, we show how discrete charges can have hairs in 
the bottom–up approach, and derive that discrete symmetries are 
not broken by gravity. For an explicit presentation, we will present 
examples with the Abelian discrete symmetry ZN and in particular 
with Z2 illustrations.

2. Discrete charges of ZN vacua

A discrete symmetry is defined by the number of minima of the 
potential V such as in Fig. 1. Let us consider one minimum, say a 
green bullet in Fig. 1. We can choose the value of the Higgs field 
to be zero at that point so that the discrete symmetry is realized 
by the Wigner–Weyl manner. If it has a flat direction there, then 
one must consider a continuous symmetry, which has been spon-
taneously broken already. Not considering continuous symmetries, 
with the multiple vacua of Fig. 1, the discrete symmetry is good at 
any point of the minima. We will consider the discrete charges at 
such a minimum.

Realization of discrete symmetries in the Universe leads to do-
main walls [8]. In the “invisible” axion case [9], the Peccei–Quinn 
symmetry leads to ZN domain walls [10]. For the Kim–Shifman–
Vainstein–Zakharov “invisible” axion where there is only one vac-
uum [11], even the Z1 domain wall can be considered in the Uni-
verse evolution [12]. In this case, however, all space points except 
at the wall are in the same vacuum. Different vacua arise for the 
cases of N ≥ 2. Two kinds of walled vacua are possible for Z2, viz. 
Fig. 2. Two vacua of Z2 are defined with discrete charges q = 2n
and 2n + 1, mod. 2 (n = integer).

In Fig. 2 (a), the (red, Q total = 1) vacuum is seen from the 
q = 0 (yellow) vacuum. A closed domain wall separates these two. 
This wall viewed from the yellow vacuum is symbolized by the 
limegreen color. In Fig. 2 (b), the q = 0 (yellow, Q total = 0) vac-

1 Here, the line is not a mathematical one but has some physical thickness. Thus, 
gauge charges can have hairs but global charges cannot, and metric changes know 
only hairs.
Fig. 2. (a) A walled vacuum (red, qtotal = 1) seen from the q = 0 (yellow) vacuum. 
Inside the wall, the opposite q = 1 (red) vacuum is seen through a crack in the wall. 
This view of the wall is colored limegreen. (b) A walled vacuum (yellow, qtotal = 0) 
seen from the q = 1 (red) vacuum. This view of the wall is colored blue. Dashes rep-
resent closing surfaces and black dots represent particles. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

uum is seen from the q = 1 (red) vacuum. The wall viewed from 
the red vacuum is symbolized by the blue color. In Fig. 2 (a), the 
dashed boundary encloses the walled q = 1 vacuum. A scalar field 
φ in the q = 0 or q = 1 vacua is represented by eiqπ R(x).

Let us illustrate examples in Z2. Then, q can be 0 or 1. For q = 0, 
we use the field VEV φ = 0.2 For a ball of discrete charge q, the 
radius of the ball is determined by minimizing the energy

Eω = E + ω

[
q − 1

2i

∫
d3x (�∗∂t� − �∂t�

∗)
]

, (1)

where ω (with the energy dimension) is the Lagrange multiplier 
and q of the ball can be defined as

q = 1

2i

∫
d3x (�∗∂t� − �∂t�

∗). (2)

In the evolving Universe, the vacuum inside the ball expands 
such that φ in the red becomes constant. For a spherically sym-
metric R(x), let us parametrize it as

� =
√

3k3

4π4ω
eiωt

{
1, for 0 ≤ r < π

k

0, for r > π
k

(3)

where π/k is the radius of the ball, and � = 0 in the yellow part 
of Fig. 2 (a). So, we obtain

1

2i

∫
(inside dashed)

d3x (�∗∂t� − �∂t�
∗) = 1.

The total charge q inside the dashed surface of Fig. 2 (a) is 1, and 
the dashed string symbolizes this fact.

Definition of charge q by Eq. (2) is not by the Nöther current. 
It is simply defined by the vacuum expectation value (VEV) of the 
phase of a Higgs field �. To relate this charge q to the charge de-
fined by the Nöther current, the t dependence of � is introduced 
as the example in Eq. (3). To make it an integer, the VEV which is 
designed as a constant3 is appropriately chosen. Equation (1) is the 
matching condition to the charge q calculated by the Nöther cur-
rent. Discrete symmetries in the Universe are realized by the VEVs 
of Higgs field � having degenerate minima as shown in Fig. 1. So, 
it is appropriate to figure out the discrete charges in the vacuum 

2 If φ = −v corresponds to q = 0, we add a constant v to simplify the value of φ.
3 In the connected portion in the Universe, the minimum of the potential with a 

fixed value of � is chosen everywhere.
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Fig. 3. (a) A ZN walled ball seen in the q = 0 vacuum. The tail of the “tadpole” can have n = 0, 1, · · · , N − 1 dashed lines. N dashed line is equivalent to no tail, i.e. no ZN

charge. (b) Another view of (a) by the discrete flux, and (c) an expanded view of (b) with the dashed boundary touching the wall. In (a), the discrete charges inside two 
dashed surfaces are the same.
of spin-0 bosons as shown in Fig. 2 where the limegreen surface 
separates two different Higgs portions in the Universe. In case of 
Fig. 2 (b), we apply discrete transformation eiπ Q . Then it is equiv-
alent to the discussion in Fig. 2 (a).

In Fig. 2 (b), qtotal = 4 = even = 0 within the white dashed sur-
face, which must be the case for any closed surface. So, the white 
dashed surface of Fig. 2 (b) can be shrunk to naught. In Fig. 2 (a), 
qtotal = 3 = odd = 1 within the dashed surface, which must be the 
case for any closed surface, which encloses the limegreen ball. To 
identify qtotal, we extend a dashed line from the limegreen ball 
up to the horizon. The dashed surface of Fig. 2 (a) is named as 
an infinite-tail “tadpole”, having a head and a long tail. At the 
limegreen surface, there exists the Higgs field which provides the 
logistics for a hair to exist in our case.

Suppose that the U(1) charges of � and ψ are 2 and 1, respec-
tively, and there is no U(1)–G − G anomaly where G is a gauge 
group. Then, this U(1) can be a gauge or global group. The U(1) 
transformations by an angle θ on the fields are � → ei 4πθ� and 
ψ → ei 2πθψ . A potential invariant under U(1) is

V = −
(√

2μψ∗ 2� + h.c.
)

+ · · · (4)

where · · · are other U(1) invariant terms. At a high scale f , the 
U(1) is broken to Z2 by the VEV, 〈�〉 = f /

√
2. Let us split ψ to a 

radial and phase fields,

ψ = v + ρ√
2

ei 2πθ (5)

For a moment, let 〈v〉 = 0 where θ = φ/v . At this stage, there is 
no θ dependence in the potential because 〈φ〉 = 0. There is no way 
to distinguish the U(1) as a global or gauge group. Now, let |ψ |
develop a VEV, 〈|ψ |〉 = v/

√
2, so that the Z2 symmetric potential, 

−( f μ ψ∗ 2 + h.c.), develops a θ dependence,

V = − f μ v2 cos θ + · · · (6)

In the region φ = −v (yellow) and +v (red), let q = 0 (yellow) 
and 1 (red), respectively.4 Now, the difference appears. In a gauged 
U(1), θ becomes redundant in the sense that it can be removed 
from V by a gauge transformation [2]. But, a global U(1) mani-
fests itself in the form of the domain-wall energy density shown 
in Eq. (6). The effective thickness of the domain wall is

λthickness ≈
√

λ

v

√
f

μ
(7)

4 The discrete charges are the phase values of scalar fields.
where λ is a quartic coupling constant, determining f from the 
neglected terms in (4). So, the domain wall can be seen as we 
discussed above, and the intersection of domain walls works as a 
hair.

3. Discrete charge conservation in the bottom–up approach

A conserved current of a continuous symmetry is constructed 
with an infinitesimal shift of fields, � → ei 2πε(x)Q � where Q is 
the generator of the transformation. For a discrete charge I of �
in ZN symmetry, we adopt this around a specific discrete value I
with I = {1, 2, · · · , N − 1},

� → e
i 2π

[
I
N +ε(x)

]
�. (8)

The vacua of fields are defined for specific values of scalar fields as 
in Sec. 2, which is related to the charges of quanta, Eq. (8), in the 
volume via conservation of the current.

For a discrete symmetry, the vacuum structure of Higgs fields 
allows a hair(s) as shown in Sec. 2. This string-like hair starts from 
a nonzero discrete charge q and ends at another discrete charge or 
at the horizon. In Fig. 3 (a), we show ZN hairs spreading out from a 
nonzero discrete charge. The Higgs vacua are defined by the VEVs 
of Higgs fields. In Fig. 3 (a), we enclose the discrete charges by two 
dashed surfaces, the thick and thin ones. The discrete charges in-
side the thin and thick surfaces are exactly the same. If we assign 
one discrete charge to one dashed line, the discrete charges inside 
the thin and thick surfaces are exactly the same, i.e. the hair in-
terpretation of the dashed lines equates these two estimations. For 
example, the Higgs vacuum value at the star at the dashed line is 
the same as that at the triangle. Calculating the discrete charge in 
Fig. 3 (b) is like calculating the discrete charge in Fig. 3 (c) where 
we made it clear by moving the dashed surface touching the wall 
at the RHS of Fig. 3 (c). So, when discrete charges move, we can 
consider them dragging dash lines corresponding to some units of 
discrete charges.

Now let us proceed to discuss the wormhole effects in the 
metric theory of gravity. Through wormholes, discrete charges can 
flow out from our Universe O. For simplicity, now let us focus 
on Z2. An infinite-tail “tadpole” is symbolized in Fig. 4 (a), where 
Q total = 1. Discrete charge flow can be visualized as a “tadpole” 
passing through the wormhole as shown in Fig. 4 (b). If one tries 
to separate out the shadow world S from O by cutting the worm-
hole through the gray plane in Fig. 4 (b), it cuts the infinite tail of 
“tadpole”. Then, at the cut plane, dashed lines are attached to a 
walled ball at each surface as shown in Fig. 2 (c). Recovering the 
wormhole throat, the observer O confirms that no discrete charge 
is lost. To the observer O, gravitational effects do not break the dis-
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Fig. 4. (a) A walled ball seen in the q = 0 vacuum. The tail of a tadpole-like config-
uration extends to the horizon. (b) A tadpole passing through a wormhole. (c) The 
wormhole cut in the gray plane in (b). The observer O recovers the discrete charge. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

crete symmetry in consideration. This type of wormhole argument 
was used for a U(1) gauge symmetry in Ref. [5].

4. Scalar vacua

Let us illustrate how such hairs from discrete charges are set up 
in the spontaneously broken ZN vacua. For simplicity, we present it 
in Z2. Let us consider a dashed surface of Fig. 2 (a). Our objective is 
to obtain a two dimensional delta function at the surface of radius 
r in the spherical-polar coordinate system, (θ0, ϕ0). Consider an 
effective Z2 symmetric action,

Leff = 1

M2
eff

(
∂μ∂νψ∗) (

∂μ∂νψ
)
. (9)

At a closed surface, we can consider an effective Lagrangian where 
the Lorentz symmetry is broken as in Fig. 2 (a), and contract with 
the (μi) indices in (9), jμi . To have currents related to (9), consider 
a shift in the discrete vacuum I , viz. Eq. (8). There are two index 
current, proportional to ∂μ∂iε(x), and one index currents, propor-
tional to ∂με(x) and ∂iε(x). One index currents are not of interest 
here. The two-index current is

∝ i ei 2π( I
N − I

N )
(
ψ∗[Q ψ∂μ∂ iψ] − [Q ψ∂μ∂ iψ]∗ψ)

. (10)

Let us consider the two-index phase at I = 1 and N = 2, i.e. for 
Q ψ = 1 and ψ = f +ρ√

2 f
ei 2πφ/ f ,

1

2π i
ji j = f

M2
eff

∂ i∂ jφ → Q = f

M2
eff

∫
d3xφ ∂ i∂ jφ (11)

= f λthickness

M2
eff

∫
d2x∂ i∂ jφ

=
√

λv

μ

∫
d�

f v

M2
jθϕ,
eff
Fig. 5. A Z2 string.

where v is the VEV of φ breaking Z2, μ is the φ mass as the 
result of this breaking, and λthickness is given in Eq. (7). A delta 
function is obtained from the derivative of a step function in the 
angle direction. It is shown in Fig. 5. Here, the parameter Meff is 
defined at the radius r so that Q becomes 1,

M2
eff =

√
λ

f 2 v3

μ
, (12)

and

jθϕ(θ,ϕ) = 1

r2
δ(cos θ − cos θ0)δ(ϕ − ϕ0). (13)

With the current conservation, this surface integral is related to 
the head charge of the tadpole,

∂μ jμi = 0 → Q i ∝
∫
V

d3x
∂

∂x j
j ji =

∫
�r

d2σr jri, (14)

where �r is the surface orthogonal to the radial direction. The 
current conservation used in (14) is obtained via the equation of 
motion ∂2ψ = −m2ψ and ∂2ψ∗ = −m2ψ∗ ,

∂μ jμi = 1

2

[
ψ∗∂ i∂2ψ + (∂μψ∗)∂ i∂μψ (15)

− (∂2ψ∗)∂ iψ − (∂μψ∗)∂ i∂μψ
]

= 1

2

[
ψ∗∂ i∂2ψ − (∂2ψ∗)∂ iψ

] = 0.

5. Conclusion

Showing that discrete charges carry hairs in the bottom–up ap-
proach, we argued that discrete symmetries are respected by grav-
ity. It is based on the fact that discrete symmetries are realized 
with domain walls in the Universe via the VEVs of Higgs fields, 
and the intersection of domain walls looks like a hair.
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Fig. 6. A charged black hole.

Fig. 7. A field vacua around a black hole.

Appendix A. Around a blackhole

Around a blackhole, the argument goes in parallel to the case 
of wormhole. So, we briefly point out the flux line argument in 
a charged Universe and draw the similarity in case of discrete 
charges.

The larger event horizon (out of two solutions) of the Reissner–
Nordström black hole [13] occurs at

r+ = 1

2

(
rS +

√
r2

S − 4r2
Q

)
(16)

where rS is the Schwarzschild radius without the charge. In 
Fig. 6 (a), we show the situation. The event horizon takes into ac-
count the energy inside it, as depicted with the white illustration. 
It is basically the impossibility of the graviton field to go out of 
the horizon, bounded by Tμν . Any graviton, a spin-2 field, can end 
at another energy point, due to the positive energy theorem, in-
side the blackhole horizon. When we consider mass of a charged 
particle, it includes the field energy also. This count of energy sub-
tracts the electromagnetic field energy permeating from the hori-
zon to infinity, which is shown as r2

Q in Eq. (16). Within the closed 
boundary shown in Fig. 6 (a), the electromagnetic field cannot end 
inside the blackhole horizon for a net charge Q given inside the 
black hole. So, the field line goes out of the horizon of the grav-
ity field, which looks like a hair from the black hole. Of course, 
the outside field is not included in Tμν on the right-hand side 
of the Einstein equation. So, if fields permeating over the whole 
space are present, it is better to consider their effects just inside 
the blackhole. In Fig. 7 around a closed surface black hole, the elec-
tromagnetic field configuration, not interfering with the fact of the 
closed surface nature of the black hole, is illustrated.

Now, let us consider that the boundary of the fields is con-
fined inside the horizon. If the field lines are forbidden to cross 
Fig. 8. Hairs of a black hole: (a) for an electromagnetic charge, and (b) for a discrete 
tadpole.

Fig. 9. A tadpole is thrown into the q = 0 vacuum.

the boundary for the spin-1 fields also, one cannot allow a net 
charge Q inside the horizon and must give up the closed surface 
of the blackhole,5 and the metric must allow the open geometry as 
shown in Fig. 6 (b). By gauge transformation, the electromagnetic 
fields of Fig. 6 (a) are transformed to those of Fig. 6 (b) where, in 
the most part of the blackhole space, the gravity field is bounded 
within the dashed area but the electromagnetic field goes out into 
the open space through the pinched hole. This is the hair we ex-
plain within our set-up. Spin-0 fields do not have the flux lines but 
can have different quantum numbers distinguishing different do-
mains of the spin-0 field vacua. For spin-1 field the hair is the field 
strength and for spin-0 field we argued that it must be the inter-
section of domain walls. This was named as ‘tadpole’. In Fig. 8, the 
hairs of U(1) gauge field and Z2 tadpole are shown. In Fig. 8 (b), the 
discrete vacuum of the blackhole in the open geometry is q = 0. 
Here, we note the difference between the flux line and the discrete 
tadpole. The electromagnetic flux carries energy and hence affects 
the blackhole radius. But, the discrete vacua in Fig. 1 are degener-
ate and different vacua have the same energy. If they have strings 
(intersection of domain walls), they must be taken into account 
in the energy calculation inside the blackhole, not considering the 
outside part. So, the blackhole radius is not changed.

Vacua of spin-0 field are not constrained by the blackhole hori-
zon, and the same vacuum can be connected to the outside as the 
field lines of Fig. 6 (a). In Fig. 9, a Z2 tadpole is thrown into the 
q = 0 blackhole vacuum, and the outside observer notices that he 
lost a discrete charge q = 1 to the blackhole. Namely, he notices 
that the black hole has a Z2 hair. If the tail is cut, the outside 
observer notices that the blackhole ate only even number of Z2

charge with some energy increase inside the blackhole but the dis-
crete charge is not increased in the blackhole. Thus, the existence 
of a blackhole does not violate the discrete symmetry.

5 In the closed Universe, a non-zero charge must break the U(1) gauge symmetry 
[14].
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