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The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is
analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that
at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the
antiferromagnetic spin state(opposite directions of neutron and proton spins). The self-consistent equations of
spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin
ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not
appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found
at zero temperature.
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I. INTRODUCTION

The spontaneous appearance of spin polarized states in
nuclear matter is a topic of a great current interest due to its
relevance in astrophysics. In particular, the effects of spin
correlations in the medium strongly influence the neutrino
cross section and, hence, neutrino mean free path. Therefore,
depending on whether nuclear matter is spin polarized or not,
drastically different scenarios of supernova explosion and
cooling of neutron stars can be realized. Another aspect re-
lates to pulsars, which are considered to be rapidly rotating
neutron stars, surrounded by strong magnetic field. There is
still no general consensus regarding the mechanism to gen-
erate such a strong magnetic field of a neutron star. One of
the hypotheses is that a magnetic field can be produced by a
spontaneous ordering of spins in the dense stellar core.

The possibility of a phase transition of normal neutron
and nuclear matter to the ferromagnetic spin state was stud-
ied by many authors[1–8], predicting the ferromagnetic
transition at%<s2–4d%0 for different parametrizations of
Skyrme forces(%0=0.16 fm−3 is the nuclear matter satura-
tion density). In particular, the stability of strongly asymmet-
ric nuclear matter with respect to spin fluctuations was in-
vestigated in Ref.[9], where it was shown that the system
with localized protons can develop a spontaneous polariza-
tion, if the neutron-proton spin interaction exceeds some
threshold value. This conclusion was confirmed also by cal-
culations within the relativistic Dirac-Hartree-Fock approach
to strongly asymmetric nuclear matter[10]. Competition be-
tween ferromagnetic(FM) and antiferromagnetic(AFM)
spin ordering in symmetric nuclear matter with the Skyrme
effective interaction was studied in Ref.[11], where it was

clarified that the FM spin state is thermodynamically prefer-
able to the AFM one for all relevant densities. However,
strongly asymmetric nuclear matter with Skyrme forces un-
dergoes a phase transition to a state with oppositely directed
spins of neutrons and protons[12].

For the models with realistic nucleon-nucleon(NN) inter-
action, the ferromagnetic phase transition seems to be sup-
pressed up to densities well above%0 [13–15]. In particular,
no evidence of ferromagnetic instability has been found in
recent studies of neutron matter[16] and asymmetric nuclear
matter [17] within the Brueckner-Hartree-Fock approxima-
tion with realistic Nijmegen II, Reid93, and Nijmegen
NSC97e NN interactions. The same conclusion was obtained
in Ref. [18], where the magnetic susceptibility of neutron
matter was calculated with the use of the Argonnev18 two-
body potential and Urbana IX three-body potential.

Thus, the issue of appearance of spin polarized states in
nuclear matter is a controversial one and models with effec-
tive Skyrme and realistic NN potentials predict different re-
sults. From this point of view, it is interesting to attract an-
other type of NN interaction and to compare the results for
this NN potential with the previous results. Here we continue
the study of spin polarizability of nuclear matter with the use
of an effective NN interaction, namely, we utilize the effec-
tive Gogny force[19,20]. In addition, the reason to choose
the Gogny interaction is as follows. It is known that the
Skyrme interaction is a density dependent zero-range NN
potential. Its attractive advantage is its relative simplicity and
successfulness in describing nuclei and their excited states.
However, in many cases the finite range part of the nuclear
interaction has the same importance as its density dependent
zero-range part[21,22]. This disadvantage of the Skyrme
interaction is overcome by the Gogny interaction due to its
finite range character. We will find the phase diagram of spin
polarized nuclear matter with the Gogny interaction and will
compare it with the results for the Skyrme and realistic NN
potentials.
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As a framework of consideration, we choose a Fermi liq-
uid (FL) description of nuclear matter[23–25]. We explore
the possibility of FM and AFM phase transitions in nuclear
matter, when the spins of protons and neutrons are aligned in
the same direction or in the opposite direction, respectively.
In contrast to the approach, based on the calculation of mag-
netic susceptibility, we obtain the self-consistent equations
for the FM and AFM spin order parameters and solve them at
zero temperature. This allows us not only to determine the
critical density of instability with respect to spin fluctuations,
but also to establish the density dependence of the order
parameters and to clarify the question of thermodynamic sta-
bility of various phases.

Note that we consider the thermodynamic properties of
spin polarized states in nuclear matter up to the high density
region relevant for astrophysics. Nevertheless, we take into
account the nucleon degrees of freedom only, although other
degrees of freedom, such as pions, hyperons, kaons, or
quarks could be important at such high densities.

II. BASIC EQUATIONS

The normal states of nuclear matter are described by the
normal distribution function of nucleonsfk1k2

=Tr%ak2

+ ak1
,

wherek;sp ,s ,td, p is the momentum,sstd is the projec-
tion of spin (isospin) on the third axis, and% is the density
matrix of the system. The self-consistent matrix equation for
determining the distribution functionf follows from the
minimum condition of the thermodynamic potential[23] and
is

f = hexpsY0« + Y4d + 1j−1 ; hexpsY0jd + 1j−1. s1d

Here the nucleon single particle energy« is defined through
the energy functional of the systemEsfd as

«k1k2
sfd =

]Esfd
]fk2k1

. s2d

In Eq. (1), the quantities« andY4 are matrices in the space of
k variables, withY4k1k2

=Y4t1
dk1k2

st1=n,pd, Y0=1/T, Y4n

=−mn/T, andY4p=−mp/T being the Lagrange multipliers,mn
and mp being the chemical potentials of neutrons and pro-
tons, andT being the temperature.

Taking into account the possibility of FM and AFM phase
transitions in nuclear matter, the normal distribution function
f of nucleons and single particle energy« can be expanded in
the Pauli matricessi andtk in spin and isospin spaces

fspd = f00spds0t0 + f30spds3t0 + f03spds0t3 + f33spds3t3,

s3d

«spd = «00spds0t0 + «30spds3t0 + «03spds0t3 + «33spds3t3.

s4d

Expressions for the distribution functionsf00, f30, f03, f33 in
terms of the quantities« read

f00 =
1

4
hnsv+,+d + nsv+,−d + nsv−,+d + nsv−,−dj,

f30 =
1

4
hnsv+,+d + nsv+,−d − nsv−,+d − nsv−,−dj, s5d

f03 =
1

4
hnsv+,+d − nsv+,−d + nsv−,+d − nsv−,−dj,

f33 =
1

4
hnsv+,+d − nsv+,−d − nsv−,+d + nsv−,−dj.

Herensvd=hexpsv /Td+1j−1 and

v+,+ = j00 + j30 + j03 + j33,

v+,− = j00 + j30 − j03 − j33, s6d

v−,+ = j00 − j30 + j03 − j33,

v−,− = j00 − j30 − j03 + j33,

where

j00 = «00 − m00, j30 = «30,

j03 = «03 − m03, j33 = «33,

m00 =
mn + mp

2
, m03 =

mn − mp

2
.

The quantityv±,±, being the exponent in the Fermi distribu-
tion functionn, plays the role of the quasiparticle spectrum.
In the general case, the spectrum is fourfold split due to the
spin and isospin dependence of the single particle energy
«spd in Eq. (4). The branchesv±,+ correspond to neutrons
with spin up and spin down, and the branchesv±,− corre-
spond to protons with spin up and spin down.

The distribution functionsf should satisfy the normaliza-
tion conditions

4

Vo
p

f00spd = %, s7d

4

Vo
p

f03spd = %n − %p ; a%, s8d

4

Vo
p

f30spd = %↑ − %↓ ; D%↑↑, s9d

4

Vo
p

f33spd = s%n↑ + %p↓d − s%n↓ + %p↑d ; D%↑↓. s10d

Herea is the isospin asymmetry parameter,%n↑, %n↓ and%p↑,
%p↓ are the neutron and proton number densities with spin up
and spin down, respectively;%↑=%n↑+%p↑ and %↓=%n↓
+%p↓ are the nucleon densities with spin up and spin down.
The quantitiesD%↑↑ andD%↑↓ play the roles of FM and AFM
spin order parameters[12].

In order to characterize spin ordering in the neutron and
proton subsystems, it is convenient to introduce neutron and
proton spin polarization parameters
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Pn =
%n↑ − %n↓

%n
, Pp =

%p↑ − %p↓
%p

. s11d

The self-consistent equations for the components of the
single particle energy have the form[11,12]

j00spd = «0spd + «̃00spd − m00, j30spd = «̃30spd,

j03spd = «̃03spd − m03, j33spd = «̃33spd. s12d

Here «0spd="2p2/2m0 is the free single particle spectrum,
m0 is the bare mass of a nucleon, and«̃00, «̃30, «̃03, «̃33 are the
FL corrections to the free single particle spectrum, related to
the normal FL amplitudesU0skd , . . . ,U3skd by formulas

«̃00spd =
1

2Vo
q

U0skdf00sqd, k =
p − q

2
,

«̃30spd =
1

2Vo
q

U1skdf30sqd,

«̃03spd =
1

2Vo
q

U2skdf03sqd,

«̃33spd =
1

2Vo
q

U3skdf33sqd. s13d

Further we do not take into account the effective tensor
forces, which lead to coupling of the momentum and spin
degrees of freedom[26–28], and, correspondingly, to aniso-
tropy in the momentum dependence of FL amplitudes with
respect to the spin polarization axis.

To obtain numerical results, we use the effective Gogny
interaction. The amplitude of the NN interaction in this case
reads

v̂sp,qd = t0s1 + x0P̂sd%g + p3/2o
i=1

2

mi
3sWi + BiP̂s − HiP̂t

− MiP̂sP̂tde−sp − qd2mi
2/4, s14d

whereP̂s andP̂t are the spin and isospin exchange operators,
andt0, x0, mi, Wi, Bi, Hi, andMi are some phenomenological
constants, characterizing a given parametrization of the
Gogny forces. In numerical calculations we shall utilize the
D1S potential[20]. Using the same procedure as in Ref.[24],
it is possible to find expressions for the normal FL ampli-
tudes in terms of Gogny force parameters

U0skd = 6t0%
g + 2p3/2o

i=1

2

mi
3s2Bi − 2Hi − Mi + 4Wid

− 2p3/2o
i=1

2

e−k2mi
2
mi

3s2Bi − 2Hi − 4Mi + Wid,

s15d

U1skd = − 2t0%
gs1 − 2x0d + 2p3/2o

i=1

2

mi
3s2Bi − Mid

+ 2p3/2o
i=1

2

e−k2mi
2
mi

3s2Hi − Wid,

U2skd = − 2t0%
gs1 + 2x0d − 2p3/2o

i=1

2

mi
3s2Hi + Mid

− 2p3/2o
i=1

2

e−k2mi
2
mi

3s2Bi + Wid,

U3skd = − 2t0%
g − 2p3/2o

i=1

2

mi
3Mi − 2p3/2o

i=1

2

e−k2mi
2
mi

3Wi .

Thus, with account of expressions(5) for the distribution
functions f, we obtain the self-consistent equations(12) and
(13) for the components of the single particle energyj00spd,
j30spd, j03spd, j33spd, which should be solved jointly with
the normalization conditions(7)–(10), determining the
chemical potentialsm00, m03 and FM and AFM spin order
parametersD%↑↑ ,D%↑↓. Since the FL amplitudes in Eqs.(15)
contain two Gaussian terms, the self-consistent equations
represent, in fact, the set of coupled integral equations,
which can be solved iteratively using the Gaussian mesh
points in the momentum space.

III. PHASE TRANSITIONS IN SYMMETRIC
NUCLEAR MATTER

Early research on spin polarizability of nuclear matter was
based on the calculation of magnetic susceptibility and find-
ing its pole structure[4,5], determining the onset of instabil-
ity with respect to spin fluctuations. Here we shall solve
directly the self-consistent equations for the FM and AFM
spin order parameters at zero temperature. In this study we
consider the case of symmetric nuclear matters%n=%pd.

The FM spin ordering corresponds to the caseD%↑↑Þ0,
j30spdÞ0, D%↑↓=0, j33spd=0, and there are two unknown
parametersm00, D%↑↑ and two unknown functionsj00spd,
j30spd [m03=0, «03spd=0 as a consequence of isospin sym-
metry]. The AFM spin ordering corresponds to the case
D%↑↓Þ0, j33spdÞ0, D%↑↑=0, j30spd=0 and we should find
two unknown parametersm00, D%↑↓ and two unknown func-
tions j00spd, j33spd.

In the FM spin state of symmetric nuclear matter we have
%n↑=%p↑, %n↓=%p↓, nucleons with spin up fill the Fermi sur-
face of radiusk2, and nucleons with spin down occupy the
Fermi surface of radiusk1, which satisfy the relationships

1

3p2sk2
3 − k1

3d = D%↑↑,
1

3p2sk1
3 + k2

3d = %. s16d

Since at zero temperature there are no spin up nucleons
with k.k2 and there are no spin down nucleons withk
.k1, then, as follows from Eq.(6), v+,+sk2d=v+,−sk2d=0,
v−,+sk1d=v−,−sk1d=0.
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In the AFM spin state%n↑=%p↓, %n↓=%p↑, neutrons with
spin up and protons with spin down fill the Fermi surface of
radiusk2, and neutrons with spin down and protons with spin
up occupy the Fermi surface of radiusk1, satisfying the equa-
tions

1

3p2sk2
3 − k1

3d = D%↑↓,
1

3p2sk1
3 + k2

3d = %. s17d

At zero temperature there are no spin up neutrons and
spin down protons withk.k2 and there are no spin down
neutrons and spin up protons withk.k1. Hence, as follows
from Eq. (6), v+,+sk2d=v−,−sk2d=0, v+,−sk1d=v−,+sk1d=0.

In the totally FM polarized state we haveD%↑↑=%, k2
=kF;s3p2%d1/3 and the degrees of freedom, corresponding
to nucleons with spin down are frozensk1=0d. For totally
AFM polarized nuclear matter we haveD%↑↓=%, k2=kF,
wherek2 is given by the same expression as in the FM case,
since now the degrees of freedom, corresponding to neutrons
with spin down and protons with spin up, are frozensk1

=0d.
Now we present the results of the numerical solution of

the self-consistent equations with the D1S Gogny effective
force. The main qualitative feature is that for the D1S force
there are solutions corresponding to AFM spin ordering and
there are no solutions corresponding to FM spin ordering.
The reason is that the sign of the multipliert0s2x0−1d in the
density dependent term of the FL amplitudeU1, determining
spin-spin correlations, is positive, and, hence, the corre-
sponding term increases with increase of nuclear matter den-
sity, preventing instability with respect to spin fluctuations.
Contrarily, the density dependent term −2t0%

g in the FL am-
plitude U3, describing spin-isospin correlations, is negative,
leading to spin instability with oppositely directed spins of
neutrons and protons at higher densities. Here the situation is
similar to that with the Skyrme effective forces SLy4 and
SLy5 in strongly asymmetric nuclear matter[12], where
analogous behavior of the FL amplitudesU1 and U3 in the
high density domain prohibits the formation of the state with
the same direction of neutron and proton spins and leads to
the appearance of the state with the oppositely directed spins
of neutrons and protons at high densities. However, the re-
sults with the Gogny effective interaction are in contrast with
the results of microscopic calculations with a realistic NN
interaction[17], predicting that the FM spin state is always
preferable over the AFM one for all relevant densities, but is
less favorable compared to the normal state.

In Fig. 1 it is shown the dependence of the AFM spin
polarization parameterD%↑↓ /% as a function of density at
zero temperature. The AFM spin order parameter arises at
density%<3.8%0 for the D1S potential. A totally antiferro-
magnetically polarized statesD%↑↓ /%=1d is formed at %
<4.3%0. The neutron and proton spin polarization param-
eters for the AFM spin ordered state are opposite in sign and
equal to

Pn = − Pp =
D%↑↓

%
.

For comparison, we plot in Fig. 1 the density dependence
of the AFM spin polarization parameter for the Skyrme ef-
fective forces SkM* and SGII[11]. It is seen that the results
with the D1S potential are close to those with the SkM*
potential (for the D1S force the AFM spin polarization pa-
rameter is saturated within a narrower density domain than
for the SkM* force).

To check the thermodynamic stability of the spin ordered
state with oppositely directed spins of neutrons and protons,
it is necessary to compare the free energies of this state and
the normal state. In Fig. 2, the difference between the total
energies per nucleon of the spin ordered and normal states is
shown as a function of density at zero temperature. One can
see that nuclear matter in the model with the D1S effective
force undergoes at some critical density a phase transition to
the AFM spin state.

In Fig. 3, the difference between the total energies per
nucleon of the spin polarized and normal states is decom-

FIG. 1. AFM spin polarization parameter as a function of den-
sity at zero temperature for the D1S Gogny force and the
SkM* ,SGII Skyrme forces.

FIG. 2. Total energy per nucleon, measured from its value in the
normal state, for the AFM spin state as a function of density at zero
temperature for the D1S Gogny force and the SkM* ,SGII Skyrme
forces.
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posed into two parts, the kinetic and correlation ones. In
spite of increasing the kinetic energy per nucleon in the AFM
spin state, the AFM spin state becomes thermodynamically
preferable over the normal state due to the energy gain
caused by medium correlations, mainly by spin-isospin cor-
relations, leading to AFM instability of the ground state.

IV. DISCUSSION AND CONCLUSIONS

Spin instability is a common feature associated with a
large class of Skyrme models, but is not realized in more
microscopic calculations. In this respect, it is interesting to
study the possibility of appearance of spin polarized states in
nuclear matter utilizing another type of NN potential. Here
we used the finite range Gogny effective interaction, which is
successful in describing nuclei and their excited states. The
force parameters are determined empirically by calculating
the ground state in the Hartree-Fock approximation and by
fitting the observed ground state properties of nuclei and
nuclear matter. The analysis based on the Gogny interaction
shows that the self-consistent equations of symmetric nuclear
matter have solutions corresponding to AFM spin ordering
and have no solutions at all corresponding to FM spin order-
ing. This result is in contrast to calculations with the Skyrme
interaction, predicting a FM phase transition in symmetric
nuclear matter[11]. In the last case, the SkM*, SGII param-
etrizations were used, developed to fit the properties of
nucleon systems with small isospin asymmetry. However, if
the spin ordered state with oppositely directed spins of neu-
trons and protons for the Gogny interaction survives in the
domain of high isospin asymmetry, then this result can coin-
cide with the calculations for the Skyrme interaction, predict-
ing the appearance of this state in strongly asymmetric
nuclear matter[12]. In the last case, the calculations were
done with the SLy4,SLy5 parametrizations, developed to re-
produce the properties of nuclear matter with high isospin
asymmetry.

In a microscopic approach, one starts with the bare inter-
action and obtains an effective particle-hole interaction by
solving iteratively the Bethe-Goldstone equation. In contrast
to the Skyrme and Gogny models, calculations with realistic
NN potentials predict more repulsive total energy per particle
for a polarized state comparing to the nonpolarized one for
all relevant densities, and, hence, give no indication of a
phase transition to a spin ordered state.

It must be emphasized that the interaction in the spin and
isospin dependent channels is a crucial ingredient in calcu-
lating spin properties of nuclear matter and different behav-
ior at high densities of the interaction amplitudes describing
spin-spin and spin-isospin correlations lies behind this diver-
gence in calculations with effective and realistic potentials,
from one side, and calculations with different types of effec-
tive forces, from the other side. Since our calculations with
the Gogny interaction predict the AFM spin state as the
ground state of symmetric nuclear matter, this emphasizes
the role of spin-isospin correlations in the high density re-
gion. Due to the antiferromagnetic spin polarization, some
neutrons and protons with opposite spins, e.g., spin up neu-
trons and spin down protons, fill the Fermi surface with the
larger radius and others, spin down neutrons and spin up
protons, occupy the Fermi surface with the smaller radius.
When density increases, some neutrons and protons undergo
spin-flip transitions from the inner Fermi surface to the outer
one due to increase of spin-isospin correlations. The usual
way to constrain the interaction parameters of spin depen-
dent amplitudes is based on the data on isoscalar[29] and
isovector (giant Gamow-Teller) [30] spin-flip resonances.
However, it is necessary to note that in order to get robust
results for the spin polarization phenomena, these constraints
should be obtained for the high density region of nuclear
matter. Probably, such constraints can be obtained from the
data on the time decay of the magnetic field of isolated neu-
tron stars[31].

In summary, we have considered the possibility of phase
transitions into spin ordered states of symmetric nuclear mat-
ter within the Fermi liquid formalism, where the NN inter-
action is described by the D1S Gogny effective force. In
contrast to the previous considerations, where the possibility
of formation of FM spin polarized states was studied on the
basis of calculation of the magnetic susceptibility, we obtain
self-consistent equations for the FM and AFM spin order
parameters and solve them at zero temperature. It has been
shown in the model with the D1S effective force that sym-
metric nuclear matter undergoes a phase transition to the spin
polarized state with oppositely directed spins of neutrons and
protons, while the state with the same direction of the neu-
tron and proton spins does not appear. The AFM spin order
parameter arises at density%<3.8%0 and is saturated at%
<4.3%0. These results may be of importance for the ad-
equate description of spin related phenomena in the interior
of neutron stars.
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FIG. 3. Total energy per nucleon, measured from its value in the
normal state, for the AFM spin state as a function of density at zero
temperature for the D1S Gogny force, decomposed into kinetic and
correlation parts.
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