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Abstract

We study thermodynamics @il + 1)-dimensional dilatonic black holes in global embedding Minkowski space scheme.

Exploiting geometrical entropy correction we construct consistent entropy for the charged dilatonic black hole. Moreover,

(1+ 1) dilatonic black holes with higher order terms are shown to pog8es<®) global flat embedding structures regardless
of the details of the lapse function, and to yield a generic entropy.
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Since (1 + 1)-dimensional black holes associated
with string theory was proposdd], there have been
lots of progresses such as discoverylbfluality be-
tween two-dimensional dilatonic black hol¢a-5]
and five-dimensional one in the string theory. A ther-
mal Hawking effect on a curved manifolé,7] can
be looked at as an Unruh effe@@] in a global em-
bedding Minkowski space (GEMS). This GEMS ap-
proach[9-11] could suggest a unified derivation of
thermodynamics for various curved manifo[@ and
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the (5+ 1) GEMS structure of3 + 1) Schwarzschild
black hole solutior§12] was obtained9].

In this Letter we study thermodynamics @f+ 1)
dilatonic black holes in the GEMS scheme. Using geo-
metrical entropy correction we can obtain consistent
entropy for a charged dilatonic black hole. More gen-
eral (1+ 1) dilatonic black holes are shown to possess
(83+ 2) GEMS structures regardless of the details of
the lapse function with higher order terms, and to yield
a generic entropy formula.

We start with two-dimensional dilatonic black
holes[2-5] associated with the type IIA string the-
ory and its compactification to five dimensions whose
metric is the product of a three-sphere and an as-
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ymptotically flat two-dimensional geometry. The ten-
dimensional type IIA superstring solution consists of
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where Hs = rg/rz. Next, performing dimensional re-
duction in thexs, x; (i = 6,7,8,9) directions with

a solitonic NS 5-brane wrapping around the compact « = y, one can arrive at the five-dimensional black

coordinates, says, x; (i =6,7,8,9) and a funda-
mental string wrapping around, and a gravitational
wave propagating along. In the string frame, the 10-
metric, dilaton and 2-form fiel® are given a§l3—-16]

ds®> = —(H1K)"1f dr?
+ Hy 'K (dxs — (K' = 1) di)?
+ Hs(f~tdr® + r?d25) + dx; dx',

e = H1H5_1,
Bogs=H, " —1 + tanha,
3056789— — 1+ tanhg,

wherer? —x1+ +x4,f 1— and
r2sint o rgsint? g
H=14+—5—, Hs =14+ —5—,
r r
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Here Bos component of the Neveu—Schwarz 2-foBn

is the electric field of fundamental string a®gsg7g9

is the electric field dual to the magnetic field of the
5-brane with components;;. Exploiting dimensional
reduction in thexs, x; (i = 6,7,8,9) directions in
the Einstein framg13,14] and then performing an
T5STs789S Ts transformatiorjl7] and an SI2, R) co-
ordinate transformation associated with th€2Q)
T-duality group, together with the same set of re-
verse S and T' transformations, one can obtain the
five-dimensional black hole metric

ds?= —(H’3H ) VKt far?
+ (Hy 3Hs) YK ((dxs — K’ 1 — 1) dr)?
+ (Hy H3)1/4( “tar?+r?d0j)
b (LAY di dx (1)
=" r 5 +sinita, 2)
r§

hole metric[18]

2 2 oi hZ -2
2 o rosm o 2
ds _—< _r_2>(1+T dt

r2 -1
+ (— — l) dr? —I—rod.Q3,
o

and the dilaton which is trivially invariant under the di-
mensional reduction to yield the above regajt Here

one notes that the metr(8) is the product of the two
completely decoupled parts, namely, a three-sphere
and an asymptotically flat two-dimensional geome-
try which describes the two-dimensional charged dila-
tonic black hole. Introducing a new variahtewith

0=2/ro

2
r
eQx:2<
’o

wherem andqg are the mass and charge of the dilatonic
black hole, one can obtain the well-knowh + 1)
charged dilatonic black hol@—4]

®)

+Slnhzot>( qz)l/z,

ds? = —N?dr®> + N2 dx?, (4)

where the lapse function is given as
=1—2me™ Ox +q2 —2Qx

We can then obtain the horiza; andx_ in terms of

the massn and the charge:
eQxH =m+ (mZ . q2)l/2
Q¥ (m2 — (5)

By using these relations, we can rewrite the lapse func-
tion as

3

N2 = (1- e—Q(x—XH))(l — e—Q(x—xf))'

First, we consider the uncharged dilatonic black

hole 2-metric
ds? = —(1 — Zme_Qx) dr® + (1 — Zme_Qx)_ldxz,

from which we can construc{3 + 1)-dimensional
GEMS

L=k (1 e‘Q()‘_)‘H))l/2 sinhk g1,
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Lok t1- e‘Q("‘xH))l/2 coshkyt,

Z =

2=x,

3_ 2 _0(—xm)2

I =€ n ) (6)
0

where the surface gravity is given lay; = Q/2. Us-
ing the GEMS(6) and the relatiorz 4 = G2 V> (details
of which will be discussed later), whe#& is a com-
pact volumeV, = 2/Q given alongz? only, we can
then obtain the desired entropy

1 d2d3s <z3 _ %eQ(ZZXH)/2>

T 4G,
1

- 7

4G, (7)
which is consistent with the previous resul{818].

Second, for a charged dilatonic black hole case as-
sociated with the metri@4), we can construct €8+ 2)
GEMSds? = —(dz%2 + (dzY)? + (dz9)? + (dz3)% —
(dz*)? given by the coordinate transformations,

S

0

z :k;ll(l_e—Q(x—xH))l/z(l_e—Q(x—x_))l/z

x sinhkyt,
A= k,}l(l _ efQ(xfo))l/z(l _ efQ(xfx,))l/z

x coshkyt,
ZZ =X,
A2 (14 Q0n=x)Y2gjn1 o= 0022
= £(z%).
2¢~3Q(—x1)/2,=Q(x—x-)/2
2 (2%, (8)

T Q(e 06— — g~ 0G—x)y
where the surface gravity is given by

ky = %(1_ e—Q(xH—xf))'

Here one can also check that, in the uncharged limit
g — 0, the above coordinate transformations are ex-
actly reduced to the previous o(® for the uncharged
dilatonic black hole case. Moreover, one can easily ob-
tain the relation betwees? andz* as follows

20300xn—x-)/2 073
S Yo e T [2(1_|_ ¢0Gn—))12

= n(2%). 9)

In the standard GEMS approach, all the informa-
tions for the entropy come from the areas themselves
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associated with the event horizons. Here the Newton
constantsG, in the higher-dimensional embeddings
are implicitly treated to be the same as the original
G, of thed-dimensional black hole®]. However, in

the (1 + 1) dilatonic black hole cases, we could not
obtain the areas in terms of the event horizons due
to the delta-function-like behaviors at the event hori-
zons, which are characteristics of ttie+ 1) dilatonic
black holes. As in(7), in order to obtain the entropies,
we thus exploit an alternative scheme, where the en-
tropy informations are extracted from the Newton con-
stantsG,, which are now splitted into two factors:
G, = G4 x V,_4 with the volumes of the compact
manifoldsV,_,. To be more specific, in order to cal-
culate the entropy for the charged dilatonic black hole,
we first consider a detector on the event horizon at
x = xy where the detector only sees a compact mani-
fold V3 along thezz andz4 directions, given by

()

V3(XH)=/dZ2dz3dz45(z3—f(zz))(S(z‘l—

=4 xm).

The Newton constantis then given 8¢ = G2Va(xg)
to yield the entropy at = xp

1
SG) = 7= / d2d2dz (2 - f(2))
X 8(24 — h(zg))
__ 1
e

Note that, even though we have usedthggq) in cal-
culation of the above entrop§(xg), the final result
does not contain any information of the chatgand
massn associated with the even horizang andx_,
to yield the same entropy’) of the uncharged case.
Different from the uncharged case, we have an-
other event horizonr = x_, where we have another
compact manifold with volumé/z(x_) = z*(x_) to
yield the modified Newton constaiiis = G, V3 with
V3= Va(xy) + Va(x=) = z%(xp) + z4(x_), since the
detector at the event horizan= x_ can see two com-
pact manifolds att = x_ andx = xy. Moreover, it
has been claimed if19] that the entropy of a charged
black hole should decrease with the absolute value of
the black hole charge. We can then obtain the entropy
loss due to the existence of the compact manifold at

(10)
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X =X_
8S = —% dz?dz3dz*8(° — £(2%))8(z* — h(2%))
4G5
1 Hxn)
T 4Ga 2Aem) + ()
to yield the total entropys = S(xg) — 85 of the dila-
tonic charged black hole as follows
1 24(x0)
T 4G, A + A
1 m+ m2—g)L2
=i > ,

which is consistent with the previous result[8)18].
Note that in the vanishing charge limjt — 0, the

(11)

above entropy is reduced to that of uncharged case

(7). Moreover, without thd/-duality transformations

discussed above, we can obtain the consistent entrop
(11) via the GEMS embeddings and their associated

geometrical entropy corrections.
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wherec; = —2m, ¢ = ¢ andc¢, (n > 3) are coeffi-
cients of higher order terms. Note that the lapse func-
tion (12) can be rewritten in terms of the event hori-
zonsx, (n=1,2,...) with x; = xy andx,, > x,t1,

N2=T](1—e20m),
n=1

As in the previous case, we can obtain the surface
gravity, the 2-acceleration and the Hawking temper-
ature in more general form

dN dN
ky =N— , ap =—,

dx |_y, dx

1 ky
Ty = ——, 13
" 27t N (13)

which are independent of the dimensionality of the
GEMS structures. We construct the GEMS embedding
solutions for our generdll + 1) dilatonic black hole

Yoy making an ansatz of three coordinate? z%, z2)

in (15)to yield

Following the standard procedure in general rela- _(dZO)Z + (dzl)z + (dz2)2

tivity, one can obtain the 2-acceleration, the Hawking
temperature and the black hole temperature

Qe %% (m — g%~ )

4= (1— =200 —xn))1/2(] — ¢—20(x—x-))1/2°
Ty = 25
= or
0 1— e~ Q0H—x-)

- 4 (1— e~ Q0—xm)1/2(1 — ¢—Qx—x-))1/2°
0 0y~
TZNTH:E(]'_E Q(xH x,))’

where we have used the Killing vector= 9, on the
two-dimensional dilatonic charged black hole mani-
fold described byz, x) for the trajectories. Here note
that the above Hawking temperatufg is also given
by the relation in(13) [6].

Next, we consider more general dilatonic black
holes associated with the on-shell actj8]

1= / d®x [—4V“ (e V) + e ¥ (R +2V?9)],

where the dilaton field is given by (x) = ¢o — 3 0x
and the 2-metric is given big) with the lapse function

N2=1+ che_"Qx, (12)
n=1

2
=ds®— (N—Z - kH2<d—N> — 1>dx2
dx
=ds? - (d23)2 + (dz4)2.

Here we have used the fact that the terms in the paren-
thesis in the second line can be expressed in terms of
difference of two positive definite terms

2

N72- k,;2<d—N> ~1=F?-G2
dx

where F and G can be read off fron(15). We can

thus obtain the(3 + 2)-dimensional GEMSds2 =

—(dz%? + (dzY? + (dz9)? + (d2%)? — (dz*%? given

by the coordinate transformations,

(14)

2% =kt N sinhky1,
L=kt N coshkyr,

2=x,

Z3:/d)CF(X)Ef(ZZ),

A= /dx G(x) = g(2?).

Note that, as irf9), z* can be expressed in termszt
P=g B =hE).

(15)
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Now we comment on the dimensionality of the
GEMS embeddings in the general dilatonic black
holes. The charge parameter= g2 introduces one
more time-like dimension to yield two time dimen-
sionalities with (3 + 2) GEMS structures for the
charged dilatonic black hole. In the general dilatonic
black holes withc, (n = 1,2,...), even though we
have horizong, more than two onesy andx_ of the
charged dilatonic black hole, the GEMS structures are
fixed as(3 + 2) dimensions with no more increasing
dimensionality, since only two positive definite terms
F? andG? are enough to describe the termgb4) re-
gardless of whatever the lapse functivd has higher
order terms withc, (n=1,2,...).

Next, we calculate the entropy for the gengfh-

1) dilatonic black hole with higher order terms. As in
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After some algebra with the identitig$), substitu-
tion of z4(x1) andz*(x») in (17) into the generic en-
tropy formula(16) reproduces the previous res(iil).
Similarly, for the uncharged case with = —2m and

cn =0 (n > 2), we can easily check that the entropy
(16)is reduced to the previous ofi#). For more gen-
eral cases witle; = —2m, c2 = g2 and nonvanishing
cn (n > 3), we can find the expression faf in the
GEMS (15), which is given by an integral form. Dif-
ferent from the charged case with(x,) (n = 1,2)

in (17), for this general dilatonic black hole we do not
have explicit analytic expressions fdl(x,) at the mo-
ment so that we cannot proceed to evaluate the entropy
via the formula(16). However, if the coefficients,
are given explicitly, we can find, andz*(x,), with
which the generic entrop§l 6) is supposed to yield to

the charged dilatonic black hole case, a detector on theall order a result consistent with that given8j.

event horizon at = xy only sees a compact manifold
V3 along thezz andz,4 directions to yield the entropy
(10) at x = xp. However, we have other event hori-
zonsx = x, (n = 2,3,...) associated with compact
manifolds with volumes/a(x,) = z*(x,) to yield the
Newton constant

Gs=G2) Va(xa) =Gz _ z*(xa).

n=1
The existences of the compact manifoldsxat x,,
(n=2,3,...) thus yield the geometrical entropy cor-
rection originated fronGs

n=1

1 )
4G Y, _172%(x)’
so that, together witl§ (x ;) which has the same form

as(10), we can obtain the total entroy= S(xy) —
3§ of the genera(l + 1) dilatonic black hole

_ i Zn=2 Z4(x’1)
4Gy, )

In the charged case witty = —2m, ¢ = q2 and
cn =0 (n > 3), by exploiting the explicit expression
for z* in the GEMS(8) we obtain for the horizonsg; =
xg andxy = x_

88 =

(16)

2¢Q(r1+x2)/2

Q(e@*1 — ¢Qx2)’
2Q2Bx1—x2)/2

Q(eQxl — eQXZ) ’

) =

Hxp) = (17)

In conclusion, we have investigated the higher-
dimensional global flat embeddings aoft + 1)
(un)charged and general dilatonic black holes. These
two-dimensional dilatonic black holes are shown to be
embedded in th€3 + 1) and (3 + 2) dimensions for
the uncharged and charged two-dimensional dilatonic
black holes, respectively. Moreover, in the general
dilatonic black holes with higher order terms, even
though we have horizons, more than two onesy
andx_ of the charged dilatonic black hole, the GEMS
structures have been shown to be fixed3as 2) with
no more increasing dimensionality.

Different from the uncharged case, in order to ob-
tain the entropy of th¢l + 1) charged dilatonic black
holes, we have taken into account all the compact man-
ifold associated with the event horizons to yield the
modified Newton constant. Exploiting the geometri-
cal entropy correction originated from the modified
Newton constant, we have obtained the entropy for the
charged dilatonic black holes and even for the general
dilatonic black holes. It is quite significant to obtain
the consistent entropies through the GEMS embed-
dings and their associated geometrical entropy correc-
tions, without getting involved in th&-duality trans-
formations associated with the type IIA string theory.
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