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EXPLOITING SPARSITY IN SDP RELAXATION FOR SENSOR
NETWORK LOCALIZATION∗
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Abstract. A sensor network localization problem can be formulated as a quadratic optimization
problem (QOP). For QOPs, semidefinite programming (SDP) relaxation by Lasserre with relaxation
order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse
SDP relaxation by Waki et al. with relaxation order 1, except for the size and sparsity of the resulting
SDP relaxation problems. We show that the sparse SDP relaxation applied to the QOP is at least as
strong as the Biswas–Ye SDP relaxation for the sensor network localization problem. A sparse variant
of the Biswas–Ye SDP relaxation, which is equivalent to the original Biswas–Ye SDP relaxation, is
also derived. We compare numerically the sparse SDP relaxation applied to the QOP, the Biswas–Ye
SDP relaxation, its sparse variant, and the edge-based SDP relaxation by Wang et al. to confirm
the effectiveness of the proposed techniques for exploiting the sparsity in SDP relaxation for sensor
network localization problems. The sparse SDP relaxation applied to the QOP is much faster than
the Biswas–Ye SDP relaxation, and the sparse variant of the Biswas–Ye SDP relaxation outperforms
all other SDP relaxations in speed.
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1. Introduction. A sensor network localization problem arises in monitoring
and controlling applications using wireless sensor networks such as inventory manage-
ment and gathering environmental data. Positioning sensors accurately in a wireless
sensor network is an important problem for the efficiency of the applications where
including GPS capability on every sensor in a network of inexpensive sensors is not an
option. It is also closely related to distance geometry problems arising in predicting
molecule structures and to graph rigidity.

The problem is to locate m sensors that fit the distances when a subset of distances
and some sensors of known position (called anchors) are provided in a sensor network
of n sensors, where n > m. Finding the solutions of this problem is a difficult problem.
It is known to be NP-hard in general [22]. Various approaches thus have been proposed
[1, 9, 10, 13, 14] for approximating the solutions.

Biswas and Ye [2] proposed a semidefinite programming (SDP) relaxation, which
is called full SDP (FSDP) relaxation, for the sensor network localization problem.
Many studies [3, 4, 5, 25, 30, 33] have followed in recent years. Compared with other
methods for the problem, the SDP relaxation by [2] aimed to compute an accurate
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solution of the problem. Solving a large-scale SDP relaxation using software packages
based on the primal-dual interior-point method [24, 29, 34] is, however, known to
be a computational challenge. As a result, the size of the sensor network localization
problem that can be handled by the SDP relaxation is limited, as mentioned in [3]. For
the sensor network localization problem with a larger number of sensors, a distributed
method in [3] was introduced, and a method combined with a gradient method [21]
was proposed to improve the accuracy. The second-order cone programming (SOCP)
relaxation was studied first in [9] and then in [30]. The solutions obtained by the SOCP
relaxation are inaccurate compared to those obtained by the SDP relaxation [30].
Edge-based SDP (ESDP) and node-based SDP (NSDP) relaxations were introduced in
[33] to improve the computational efficiency of the original Biswas–Ye SDP relaxation
in [2]. These SDP relaxations are weaker than the original SDP relaxation in theory;
however, computational results show that the quality of the solution is comparable to
that of the original Biswas–Ye SDP relaxation. It is also shown that much larger-sized
problems can be handled.

In the sum-of-squares (SOS) method by Nie in [25], the sensor network localization
problem was formulated as minimizing a polynomial with degree 4, and the solutions
were found at the global minimizer. The sparsity of the polynomial objective function
with degree 4 was utilized to reduce the size of the SOS relaxation. The advantage
of this approach is that it provides highly accurate solutions. Numerical results for
n = 500 in [25] showed that accurate solutions were found if exact distance information
was given.

When solving a polynomial optimization problem (POP) as in [25], one of the
deciding factors of computational efficiency is the degree of the polynomials in the
POP. The degree (and sparsity, if exploited) decides the size of the SDP relaxation
problem generated from the POP. Whether the global minimizer of a POP can be
obtained computationally depends on the solvability of the SDP relaxation problem.
It is thus imperative to have polynomials of lower degree in POPs to find the global
minimizer of the POPs.

For general POPs, Lasserre [19] presented a hierarchical SDP relaxation whose
convergence to a global minimizer is theoretically guaranteed. More accurate solutions
can be computed if increasingly larger-sized SDP relaxations, whose size is decided
by a positive number called the relaxation order, are solved. The size of POPs that
can be solved by Lasserre’s SDP relaxation remains relatively small because the size
of the SDP relaxation grows rapidly with the degree of the polynomials and the
number of variables. A sparse SDP (SSDP) relaxation for POPs using the correlative
sparsity of POPs was introduced to reduce the size of the SDP relaxation in [31].
We call Lasserre’s relaxation the dense SDP relaxation, as opposed to the sparse
SDP relaxation in [31]. Although the theoretical convergence of the sparse SDP
relaxation is shown in [20] for correlatively sparse POPs, the sparse SDP relaxation
is theoretically weaker than the dense SDP relaxation in general.

For quadratic optimization problems (QOPs), however, the sparse SDP relaxation
with the relaxation order 1 and the dense SDP relaxation with the same relaxation
order 1 are theoretically equivalent in the quality of the solutions, as mentioned in
section 4.5 of [31]. Thus, the solution obtained using the sparse SDP relaxation is as
accurate as that obtained by the dense SDP relaxation. Motivated by this observation,
we study a QOP formulation for the sensor network localization problem. We note
that the dense SDP relaxation with the relaxation order 1 is a special case of the SDP
relaxation by Shor [26, 27] for general QOPs. See also the work of Fujie and Kojima
in [11].
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The main objective of this paper is to improve the speed of solving the sensor
network localization problem by exploiting the sparsity. The QOP is solved numeri-
cally by SparsePOP [32], a MATLAB package for solving POPs using the correlative
sparsity. A technique introduced in [16] is employed to improve the computational
efficiency. The relationship between FSDP (the Biswas–Ye SDP relaxation [2]) and
the dense SDP relaxation [19] of the proposed QOP formulation is examined. We
show that the dense SDP relaxation with the relaxation order 1 and the sparse SDP
relaxation with the relaxation order 1, which is called SSDP, applied to the QOP for-
mulation of the sensor network localization problem are at least as strong as FSDP.
We also derive a sparse variant of FSDP, which we call SFSDP, by exploiting its spar-
sity, and show that it is equivalent to FSDP except for the size and the sparsity of
the resulting SDP relaxation problems.

The effectiveness of the proposed techniques of exploiting sparsity is demonstrated
with numerical results on SSDP and SFSDP in comparison to the original Biswas–Ye
SDP relaxation (FSDP) and the edge-based SDP relaxation (ESDP) by Wang et al.
We show that (i) SSDP is faster than FSDP, (ii) SFSDP outperforms all other SDP
relaxations in speed, and (iii) SFSDP attains comparable or better accuracy than all
other SDP relaxations in most cases.

The sensor network localization problem is stated in detail in section 2. A QOP
formulation for the sensor network localization problem with exact and noisy distance
measurements is presented. In section 3, we explain the dense and the sparse SDP
relaxations and describe a sparse variant of the Biswas–Ye SDP relaxation. We also
show that the dense SDP relaxation is at least as strong as the Biswas–Ye SDP
relaxation. Additional techniques for reducing the size of the SDP relaxation, refining
solutions, and converting sparse SDP relaxation problems into standard-form SDPs
are shown in section 4. Section 5 includes the comparison of numerical results from
SSDP, FSDP, SFSDP, and ESDP. Section 6 contains concluding remarks and future
directions.

2. Sensor network localization problems. Consider m sensors and ma an-
chors, both located in the �-dimensional Euclidean space R

�, where � is 2 or 3 in
practice. Let n = m + ma. The sensors are indexed with p = 1, . . . , m and the
anchors with r = m + 1, . . . , n. We assume that the location ar ∈ R

� of anchor r
is known for every r = m + 1, . . . , n, but the location ap ∈ R

� of sensor p is un-
known for any p = 1, . . . , m. We denote the exact distance ‖ap − aq‖ > 0 between
sensors p and q by dpq and the exact distance ‖ap − ar‖ > 0 between sensors p and
r by dpr . The exact values are not usually known in practice. Let N x be a subset
of {(p, q) : 1 ≤ p < q ≤ m} (the set of pairs of sensors) and N a be a subset of
{(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n} (the set of pairs of sensors and anchors). Then,
a sensor network localization problem is described as follows: Given distances (often
containing noise) d̂pq ≈ dpq between sensors p and q ((p, q) ∈ N x) and distances
d̂pr ≈ dpr between sensor p and anchor r ((p, r) ∈ N a), compute or estimate locations
ap of sensor p (p = 1, . . . , m). We consider the problem with exact distances in section
2.1 and the problem with noisy distances in section 2.2. Both problems are reduced
to QOPs. The SSDP relaxation [31] with the relaxation order 1, which is equivalent
to the dense SDP relaxation [20] as mentioned in section 3.2, can be applied to the
QOPs.

Naturally, we can represent a sensor network localization problem in terms of
a geometrical network. Let N = {1, 2, . . . , n} denote the node set of sensors p =
1, 2 . . . , m and anchors r = m + 1, m + 2, . . . , n, and N x ∪ N a the set of undirected
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edges. We assume that all the nodes are located in the �-dimensional space. To
construct a geometrical network representation of the problem, we consider a graph
G(N,N x∪N a) and add a positive number d̂pq on each edge (p, q) ∈ N x and a positive
number d̂pr on each edge (p, r) ∈ N a. Note that the node set N is partitioned into two
subsets—the set of sensors p = 1, 2, . . . , m whose locations are to be approximated
and the set of anchors r = m + 1, m + 2, . . . , n whose locations are known. Our
main concern is to compute the locations of sensors with accuracy and speed. Thus,
we focus on methods of extracting a small-sized and sparse subgraph G(N, E′) from
G(N,N x ∪ N a) in section 4.1. We then replace the graph G(N,N x ∪ N a) by such a
subgraph G(N, E′) in numerical computation. In this section, however, we formulate
a sensor network localization problem with the graph G(N,N x ∪ N a) in a QOP.

2.1. Problems with exact distances. When all of the given distances d̂pq

((p, q) ∈ N x) and d̂pr ((p, r) ∈ N a) are exact, that is, d̂pq = dpq ((p, q) ∈ N x), d̂pr =
dpr ((p, r) ∈ N a), the locations xp = ap of sensors p = 1, . . . , m are characterized in
terms of a system of nonlinear equations

dpq = ‖xp − xq‖ (p, q) ∈ N x and dpr = ‖xp − ar‖ (p, r) ∈ N a.

To apply SDP relaxations, we transform this system into an equivalent system of
quadratic equations

d2
pq = ‖xp − xq‖2 (p, q) ∈ N x and d2

pr = ‖xp − ar‖2 (p, r) ∈ N a.(1)

In practice, a radio range ρ > 0 often determines N x and N a:

N x = {(p, q) : 1 ≤ p < q ≤ m, ‖ap − aq‖ ≤ ρ},
N a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ‖ap − ar‖ ≤ ρ}.

}
(2)

If the radio range ρ > 0 is sufficiently large, the sets N x and N a coincide with the
entire sets {(p, q) : 1 ≤ p < q ≤ m} and {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n},
respectively. Decreasing the radio range ρ > 0 reduces the size of the sets N x and
N a monotonically. For smaller-sized N x and N a, the system of quadratic equations
(1), which is rewritten as (3) below, is more likely to satisfy a structured sparsity
called the correlative sparsity in the literature [15, 31]. This sparsity can be utilized
to increase the effectiveness of the sparse SDP relaxation [31] when applied to the
QOPs (4) and (6).

Introduce an �×m matrix variable X = (x1, . . . , xm) ∈ R
�×m. Then, the system

of equations above can be written as

d2
pq =

�∑
i=1

X2
ip − 2

�∑
i=1

XipXiq +
�∑

i=1

X2
iq, (p, q) ∈ N x,

d2
pr =

�∑
i=1

X2
ip − 2

�∑
i=1

Xipair + ‖ar‖2, (p, r) ∈ N a.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3)

Here, Xip denotes the (i, p)th element of the matrix X or the ith element of xp. We
call (3) a system of sensor network localization equations, and a matrix variable or
a solution X = (x1, . . . , xm) ∈ R

�×m of the system (3) a sensor location matrix.
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By introducing an objective function that is identically zero, the QOP for the sensor
network localization without noise is obtained:

minimize 0 subject to the equality constraints (3).(4)

Let L0 denote the set of solutions X ∈ R
�×m of the system of sensor network local-

ization equations (3) (or the QOP (4)).

2.2. Problems with noisy distances. When the given distances d̂pq > 0
((p, q) ∈ N x) and d̂pr > 0 ((p, r) ∈ N a) contain noise, the system of sensor network
localization equations (3) with dpq = d̂pq ((p, q) ∈ N x) and dpq = d̂pr ((p, r) ∈ N a)
may not be feasible. In such a case, we can estimate the locations of sensors with a
least square solution X of (3), i.e., an optimal solution of the problem

minimize
∑

(p,q)∈Nx

(d̂2
pq − ‖xp − xq‖2)2 +

∑
(p,r)∈Na

(d̂2
pr − ‖xp − ar‖2)2.(5)

Notice that this is an unconstrained POP. Nie [25] applied the SDP relaxation [19]
to the POP of this form. He also proposed a sparse SDP relaxation exploiting a
special structure of the POP (5) and reported some numerical results. His sparse SDP
relaxation possesses a nice theoretical property that if the system of sensor network
localization equations (3) with dpq = d̂pq ((p, q) ∈ N x) and dpr = d̂pr ((p, r) ∈ N a)
is feasible or if the POP (5) attains the optimal value 0, then so dose its sparse SDP
relaxation. As a result, the sparse SDP relaxation is exact. A disadvantage of this
formulation (5) lies in the high degree of the polynomial objective function, degree 4,
in the unconstrained POP (5). Note that degree 4 is twice the degree of polynomials
in the system of quadratic equations (3). This increases the size of the sparse SDP
relaxation of the unconstrained POP (5).

We can reformulate the POP (5) as a QOP,

minimize
∑

(p,q)∈Nx

ξ2
pq +

∑
(p,r)∈Na

ξ2
pr

subject to d̂2
pq =

�∑
i=1

X2
ip − 2

�∑
i=1

XipXiq +
�∑

i=1

X2
iq + ξpq, (p, q) ∈ N x,

d̂2
pr =

�∑
i=1

X2
ip − 2

�∑
i=1

Xipair + ‖ar‖2 + ξpr, (p, r) ∈ N a,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

where ξpq denotes an error variable. Now, the polynomials in the problem (6) are of
degree 2, a half of the degree of the objective polynomial of the POP (5), which makes
the size of the resulting dense SDP relaxation [19] smaller. In addition, the SSDP
relaxation [31] with the relaxation order 1 is equivalent to the dense SDP relaxation
with the same order.

We may replace the objective function of the QOP (6) by

∑
(p,q)∈Nx

|ξpq| +
∑

(p,r)∈Na

|ξpr |.
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This type of objective function is used in the papers [2, 33]. In this case, we have a QOP

minimize
∑

(p,q)∈Nx

(ξ+
pq + ξ−pq) +

∑
(p,r)∈Na

(ξ+
pr + ξ−pr)

subject to d̂2
pq =

�∑
i=1

X2
ip − 2

�∑
i=1

XipXiq +
�∑

i=1

X2
iq + ξ+

pq − ξ−pq , (p, q) ∈ N x,

d̂2
pr =

�∑
i=1

X2
ip − 2

�∑
i=1

Xipair + ‖ar‖2 + ξ+
pr − ξ−pr, (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0, (p, r) ∈ N a.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. SDP relaxations. We describe SDP relaxations for the QOP (4) derived

from sensor network localization with exact distances. The SDP relaxation described
for the QOP (4) in section 3.1 is a special case of the SDP relaxation proposed by
Lasserre [19] (the dense SDP relaxation) for general POPs in the sense that the
relaxation order is fixed to 1 for the QOP (4). We also mention that the dense SDP
relaxation described there is essentially a classical SDP relaxation proposed by Shor
[26, 27] for QOPs. Instead of just referring to [11, 19, 26, 27], we describe the dense
SDP relaxation in detail to compare it with the Biswas–Ye SDP relaxation [2, 28] of
the QOP (4) in section 3.2. In section 3.3, we discuss sparse variants of the dense
SDP relaxation given in section 3.1 and the Biswas–Ye SDP relaxation [2]. Most of
the discussions here are valid for the QOP (6) for sensor network localization with
noisy distances, but the details are omitted.

The following symbols are used to describe the dense and sparse SDP relaxations.
Let

I = {ip : 1 ≤ i ≤ �, 1 ≤ p ≤ m} ,(7)
the set of subscripts of the matrix variable X,

#C = the number of elements in C (C ⊆ I).

For every sensor location matrix variable X = (x1, . . . , xm) ∈ R
�×m and C ⊆ I,

define

(Xip : ip ∈ C) = the row vector variable consisting of Xip (ip ∈ C), where the
elements are arranged according to the lexicographical
order of the subscripts ip ∈ C; for example,
if C = {11, 12, 21, 22}, then (Xip : ip ∈ C) = (X11, X12, X21, X22),

and

(Xip : ip ∈ C)T (Xip : ip ∈ C) =
∑
ip∈C

∑
jq∈C

E(C)ipjqXipXjq,(8)

where E(C)ipjq denotes the #C × #C matrix whose (ip, jq)th element is 1 and all
others are 0. Specifically, we write Eipjq = E(I)ipjq ((ip, jq) ∈ I × I);

(Xip : ip ∈ I)T (Xip : ip ∈ I) =
∑
ip∈I

∑
jq∈I

EipjqXipXjq.(9)

If C ⊆ I and ip, jq ∈ C, then each E(C)ipjq forms a submatrix of Eipjq . Hence, the
matrix on the right-hand side of (8) is a submatrix of that of (9). We also note that

E(C)jqip = E(C)T
ipjq (ip, jq ∈ C);

as a result, the matrices in (8) and (9) are symmetric.
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Replacing each XipXjq by a single variable Uipjq in (9), we define an #I × #I
matrix variable U =

∑
ip∈I

∑
jq∈I EipjqUipjq . From the identity XipXjq = XjqXip

(ip, jq ∈ I), we impose Uipjq = Ujqip, or that the matrix U is symmetric. The matrix
variable U serves as a linearization of the polynomial (quadratic) matrix (Xip : ip ∈
I)T (Xip : ip ∈ I). We also use the notation U(C) for the submatrix variable of U
consisting of elements Uipjq (ip, jq ∈ C): U(C) =

∑
ip∈C

∑
jq∈C E(C)ipjqUipjq .

3.1. The dense SDP relaxation. A polynomial (quadratic) matrix inequality

O 	
(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T (Xip : (ip ∈ I))T (Xip : (ip ∈ I))

)
∈ S#I+1(10)

is added to the system of sensor network localization equations (3) to derive the
dense SDP relaxation. Since (10) holds for any sensor location matrix X ∈ R

�×m,
the solution set L0 of (3) or the set of feasible solutions the QOP (4) remains the
same. Using (9), we rewrite the polynomial matrix inequality (10) as

O 	
⎛⎝ 1 (Xip : (ip ∈ I))

(Xip : (ip ∈ I))T
∑
ip∈I

∑
jq∈I

EipjqXipXjq

⎞⎠∈ S#I+1,(11)

where Eipjp are constant symmetric matrices. Now we linearize (3) and (11) by
replacing every XipXjq with a single variable Uipjq (ip, jq ∈ I) and obtain SDP
relaxations of the system (3) and the QOP (4):

d2
pq =

�∑
i=1

Uipip − 2
�∑

i=1

Uipiq +
�∑

i=1

Uiqiq , (p, q) ∈ N x,

d2
pr =

�∑
i=1

Uipip − 2
�∑

i=1

Xipair + ‖ar‖2, (p, r) ∈ N a,

O 	
(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T U

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

and

minimize 0 subject to the constraints (12).(13)

Let

L1d =
{

X ∈ R
�×m :

(X , U) is a solution of (12)
for some U ∈ S�m×�m

}
.

Proposition 3.1. L0 ⊆ L1d.
Proof. Let X ∈ L0. Then, X satisfies (3) and (10). Let U be an #I × #I

symmetric matrix whose components are given by Uipjq = XipXjq (ip, jq ∈ I). Then,
(X, U) satisfies (12). Therefore, X ∈ L1d.

3.2. Comparison of the dense SDP relaxation with the Biswas–Ye SDP
relaxation. The Biswas–Ye SDP relaxation [2] of the system of sensor network
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localization equations (3) is of the form

d2
pq = Ypp + Yqq − 2Ypq, (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

�∑
i=1

Xipair + Ypp, (p, r) ∈ N a,

O 	
(

I� X

XT Y

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(14)

Here I� denotes the � × � identity matrix and

Y =

⎛⎜⎜⎜⎜⎜⎜⎝

Y11 . . . Y1q . . . Y1m

...
...

...
Yp1 . . . Ypq . . . Ypm

...
...

...
Ym1 . . . Ymq . . . Ymm

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Sm(15)

is a matrix variable. Let

L2d =
{

X ∈ R
�×m :

(X, Y ) is a solution of (14)
for some Y ∈ Sm

}
.

Proposition 3.2. L1d ⊆ L2d.
Proof. Suppose that X ∈ L1d. Then, there exists a U ∈ S#I such that (X, U)

satisfies (12). Let Ci = {ip : 1 ≤ p ≤ m} (1 ≤ i ≤ �). Then, #Ci = m. Define
an m × m symmetric matrix Y by Y =

∑�
i=1 U(Ci) or Ypq =

∑�
i=1 Uipiq (1 ≤ p ≤

m, 1 ≤ q ≤ m). We show that (X, Y ) satisfies (14); then X ∈ L2d follows. By
definition, we observe that

Ypp =
�∑

i=1

Uipip, Ypq =
�∑

i=1

Uipiq , and Yqq =
�∑

i=1

Uiqiq

for every p = 1, . . . , m and q = 1, . . . , m. Thus, the first two relations of (14) follow
from the first two relations of (12), respectively. Now, we consider the matrices(

1 (Xip : (i, p) ∈ Ci)
(Xip : (i, p) ∈ Ci)T U(Ci)

)
(1 ≤ i ≤ m).(16)

Note that the matrices in (16) are positive semidefinite because they are submatrices
of the positive semidefinite matrix(

1 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T U

)
in (12). The positive semidefiniteness of the matrices in (16) implies that

O 	 U(Ci) − (Xip : ip ∈ Ci)T (Xip : ip ∈ Ci) (1 ≤ i ≤ �).

As a result,

O 	
�∑

i=1

(
U(Ci) − (Xip : ip ∈ Ci)T (Xip : ip ∈ Ci)

)
= Y − XT X.

Finally, the relation O 	 Y − XT X is equivalent to the last relation of (14).
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From the proof above, we can say that the Biswas–Ye SDP relaxation is an ag-
gregation of the dense SDP relaxation described in section 3.1. Proposition 3.2 makes
it possible to apply some of the results on the Biswas–Ye SDP relaxation in [2] to
the dense SDP relaxation given in section 3.1. Among many results, it is worthy to
mention that if the system of sensor network localization equations (3) is strongly
uniquely localizable, then L0 = L1d = L2d. See Definition 1 and Theorem 2 of [28].

3.3. Exploiting sparsity in the SDP relaxation problems (13) and (14).
We notice that the size of the positive semidefinite constraint in (13), 1+m�, is about
� times larger than that in (14), m+ �, when the dimension � is fixed and the number
m of sensors is large. Therefore, solving (13) is expected to be more expensive than
solving (14). In this section, we derive the sparse versions of (13) and (14), called
SSDP and SFSDP, respectively, by exploiting the sparsity of the positive semidefinite
constraint in (13) and (14). In section 5, numerical results of SSDP and SFSDP are
shown to demonstrate how effective it is to exploit the sparsity as described below.
We will observe there that not only SFSDP but also SSDP is much faster than FSDP
(the original Biswas–Ye SDP relaxation (14)).

It is convenient to introduce an undirected graph G(V, E) associated with the
sensor network localization problem to discuss sparsity exploitation in its SDP relax-
ations, where V = {1, . . . , m} denotes the set of sensors and E = N x indicates the
set of undirected edges of the graph. We identify (p, q) and (q, p) to denote an edge
(p, q) ∈ E. Let G(V, E) be a chordal extension of G(V, E) and C1, . . . , Ck be the
family of all maximal cliques of G(V, E). A graph is called chordal if every (simple)
cycle of length ≥ 4 has a chord (an edge joining two nonconsecutive vertices of the
cycle). For the definition and basic properties of chordal graphs, we refer the reader
to [6]. We note that k ≤ m since G(V, E) is chordal [6]. We assume that G(V, E) is
sparse or that the size of each maximal clique of G(V, E) is small. When the set N x

is determined by (2) for a small radio range ρ > 0, this assumption is expected to
hold.

It should be noted that G(V,N a) is obtained as a subgraph of the graph G(N,N x∪
N a), which has been introduced as a geometrical representation of a sensor network
localization problem, by eliminating all anchor nodes {m+1, m+2, . . . , n} from N and
all edges in N a. This means that anchors are not relevant at all to the discussion in
this section on exploiting sparsity in the SDP relaxation problems. However, the edges
in N a play a crucial role in extracting a smaller and sparser subgraph G(V,N x ∩ Ẽ)
of G(V,N x). We note that the method of this section is applied to the subgraph
G(V,N x ∩ Ẽ) for some Ẽ ⊆ N x ∪N a. The main purpose of extracting a subgraph is
that the sensor network localization problem with the reduced graph G(N, Ẽ) can be
solved more efficiently, resulting in highly accurate approximations of the locations of
sensors. This will be discussed in section 4.1.

A sparse SDP relaxation problem of the QOP (4) can be derived in two different
ways. The first one is an application of the sparse SDP relaxation by Waki et al. [31]
for solving a general sparse POP to the QOP (4), and the other is an application of
the positive definite matrix completion based on [12, 23] to the dense SDP relaxation
problem (13). The correlative sparsity (see [15]) in the QOP is a key property to
construct a sparse SDP relaxation in the first approach. It corresponds to the aggre-
gated sparsity (see [12]) in its dense SDP relaxation problem by Lasserre [19] with
relaxation order 1, which is exploited using the positive definite matrix completion in
the second approach. These two approaches provide equivalent sparse SDP relaxation
problems of the QOP.
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Here we derive sparse relaxation problems simultaneously using the second ap-
proach based on the positive definite matrix completion for the dense SDP relaxation
(13) and (14). The derivation of a sparse SDP relaxation problem of the QOP (4)
via the positive definite matrix completion has not been dealt with previously. It is
simple to describe, and, more importantly, it is consistent with the derivation of a
sparse counterpart of the Biswas–Ye SDP relaxation problem (14).

First, we rewrite the SDPs (13) and (14) in an equality standard primal SDP of
the form

minimize A0 • Z subject to At • Z = bt (t ∈ T ) Z � O,(17)

where T denotes a finite index set. For (13), we define

Z =
(

X00 (Xip : (ip ∈ I))
(Xip : (ip ∈ I))T U

)
,(18)

and for (14),

Z =
(

W X

XT Y

)
.(19)

After the equality standard-form SDP is obtained, the positive definite matrix comple-
tion method [12], or the conversion method using positive definite matrix completion
[23], can be applied. Specifically, the application of the conversion method to (17)
leads to a sparse SDP relaxation problem of (13) and a sparse variant of the Biswas–
Ye SDP relaxation problem (14). It should be emphasized that the resulting SDP
problems are equivalent to the dense relaxation problems (13) and (14). We explain
the derivation in detail below.

Let V denote the index set of rows (and columns) of the matrix variable Z. We
assume that the rows and columns of the matrix Z in (18) are indexed by 00 and
ip (i = 1, . . . , �, p = 1, . . . , m) in lexicographical order and those of the matrix Z
in (19) by 01, . . . , 0�, ∗1, . . . , ∗m. Hence, we can write V = V0 ∪ V1, V0 = {00},
V1 = {ip (i = 1, . . . , �, p = 1, . . . , m)} for (13) and V = V0 ∪ V1, V0 = {10, . . . , �0},
V1 = {∗1, . . . , ∗m} for (14), where ∗ denotes a fixed symbol or integer larger than �
so that each element of At can be written as [At]ipjq .

As in [12], we introduce the aggregated sparsity pattern E of the data matrices

E = {(ip, jq) ∈ V × V : [At]ipjq 
= 0 for some t ∈ T },
where [At]ipjq denotes the (ip, jq)th element of the matrix At. The aggregated spar-
sity pattern can be represented geometrically with a graph G(V , E). Note that the
edge set of the graph {(ip, jq) ∈ E : ip is lexicographically smaller than jq} has been
identified as E itself.

Now, we construct a chordal extension G(V , E) of G(V , E) by simulating the
chordal extension from G(V, E) to G(V, E). For the SDP relaxation problem (14),
define

E0 = {(i0, j0) ∈ V0 × V0 (1 ≤ i < j ≤ �)},
E1 = {(i0, ∗p) ∈ V0 × V1 (1 ≤ i ≤ �, 1 ≤ p ≤ m)},
E2 = {(∗p, ∗q) ∈ V1 × V1 ((p, q) ∈ E)},
E = E0 ∪ E1 ∪ E2.
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We note that G(V0, E0) forms a complete graph and G(V0 ∪ V1, E1) a complete bi-
partite graph. From the construction of the coefficient matrices At (t ∈ T ) of (14)
and the extension G(V, E) from G(V, E), we see that [At]ipjq = 0 (i.e., (ip, jq) 
∈ E)
if (ip, jq) 
∈ E . Hence, E ⊂ E . This implies that G(V , E) is an extension of G(V , E).
To see that G(V , E) is chordal, we assume that E ′ = {(i0p0, i1p1), (i1p1, i2p2), . . . ,
(ir−1pr−1, irpr)} ⊂ E with i0p0 = irpr forms a cycle for some r ≥ 4 and show that
there is a chord in E ′ or an edge (isps, itpt) ∈ E with 0 ≤ s < t < r. We con-
sider two cases. First, assume that all edges in the cycle E ′ are from E2. Then
{(p0, p1), (p1, p2), . . . , (pr−1, pr)} forms a cycle in G(V, E). Since G(V, E) is chordal,
there is a chord (ps, pt) ∈ E with 0 ≤ s < t < r in the cycle. Hence (∗ps, ∗pt) ∈ E
is a desired chord in the cycle E ′. Now assume that at least one edge of E ′ is from
E0 ∪ E1, say, (i0p0, i1p1) = (i00, i1p1) ∈ E0 ∪ E1. Then i0p0 = i00 is adjacent to every
node of E ′. Hence (i0p0, i1p2) serves as a chord. Thus we have shown that G(V , E) is
a chordal extension of G(V , E). Define

Ch = {10, . . . , �0, ∗p (p ∈ Ch)} (1 ≤ h ≤ k).

Then C1, C2, . . . , Ck are the maximal cliques of G(V , E). In fact, if C = {i10, . . . , is0,
∗p1, . . . , ∗pt} is a clique of G(V , E), then {p1, . . . , pt} is a clique of G(V, E), which is
contained in a maximal clique Ch; hence C is contained in Ch.

For (13), define

E1 = {(00, ip) ∈ V0 × V1 (1 ≤ i ≤ �, 1 ≤ p ≤ m)},
E2 = {(ip, jq) ∈ V1 × V1 ((p, q) ∈ E, 1 ≤ i ≤ �, 1 ≤ j ≤ �)},
E3 = {(ip, jp) ∈ V1 × V1 (1 ≤ p ≤ m, 1 ≤ i < j ≤ �)},
E = E1 ∪ E2 ∪ E3,

Ch = {00, 1p, . . . , �p (p ∈ Ch)} (1 ≤ h ≤ k).

Similarly to the case of (14), we can prove that G(V , E) forms a chordal extension
of G(V , E) and that C1, . . . , Ck are its maximal cliques. The argument there may be
slightly complicated, but the basic idea of the proof is essentially the same.

If we apply the conversion method [23] to (17) using the information on the
chordal graph G(V , E) and its maximal cliques C1, . . . , Ck, then we obtain an SDP
problem

minimize A0 • Z
subject to At • Z = bt (t ∈ T ), ZCh,Ch

� O (1 ≤ h ≤ k).

}
(20)

Here ZCh,Ch
denotes a submatrix of Z consisting of the elements Zipjq (ip ∈ Ch, jq ∈

Ch). If the size of every Ch is small, we can solve the SDP (20) more efficiently than
the original SDP (17). In the SDP problem (20), two distinct maximal cliques Ch1

and Ch2 may intersect each other. Hence, it is not a standard SDP to which the
primal-dual interior-point method can be applied. In section 4.4, we discuss how we
transform it into a standard equality-form SDP.
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For (13), the SDP (20) is rewritten as

minimize 0

subject to d2
pq =

�∑
i=1

Uipip − 2
�∑

i=1

Uipiq +
�∑

i=1

Uiqiq , (p, q) ∈ N x,

d2
pr =

�∑
i=1

Uipip − 2
�∑

i=1

Xipair + ‖ar‖2, (p, r) ∈ N a,

O 	
(

1 (Xip : (ip ∈ C̃h))
(Xip : (ip ∈ C̃h))T U(C̃h)

)
(1 ≤ h ≤ k),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

where C̃h = Ch\{00} = {1p, . . . , �p (p ∈ Ch)}. For (14), the SDP (20) is rewritten as

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq, (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

�∑
i=1

Xipair + Ypp, (p, r) ∈ N a,

O 	
(

I� (xp : p ∈ Ch)
(xp : p ∈ Ch)T Y Ch,Ch

)
(1 ≤ h ≤ k),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(22)

where (xp : p ∈ Ch) denotes the � × #Ch matrix variable consisting of xp (p ∈ Ch)
and Y Ch,Ch

a submatrix of Y consisting of elements Y pq (p ∈ Ch, q ∈ Ch). Let

L1s =
{

X ∈ R
�×m :

(X, U) is a solution of (21)
for some U ∈ S�m

}
,

L2s =
{

X ∈ R
�×m :

(X, Y ) is a solution of (22)
for some Y ∈ Sm

}
.

Proposition 3.3. L1s = L1d ⊆ L2s = L2d.
Proof. By Proposition 3.2, we know that L1d ⊆ L2d. The equivalence of the SDPs

(17) and (20) is established in [12]. Hence L1s = L1d and L2s = L2d follow.
We briefly mention a generalization of the sparse variant (22) of the Biswas–Ye

SDP relaxation, which includes the node-based and edge-based SDP relaxations of
sensor network localization problems proposed in [33]. They are regarded as further
relaxations of the Biswas–Ye SDP relaxation. We call them NSDP and the ESDP,
respectively, as in [33]. Our sparse SDP relaxation described above is compared with
the ESDP with numerical results in section 5.

Let Γ be a family of nonempty subsets of the set {1, . . . , m} of sensors. Then, a
relaxation of the Biswas–Ye SDP relaxation (14) is

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq, (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

�∑
i=1

Xipair + Ypp, (p, r) ∈ N a,

O 	
(

I� X(C)
X(C)T Y (C)

)
(C ∈ Γ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(23)

Obviously, if we take the family of maximum cliques C1, . . . , Ck of the chordal ex-
tension G(V, E) of the aggregated sparsity pattern graph G(V, E) for Γ, the SDP (23)
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coincides with the SDP (22). On the other hand, if Γ = {{q ∈ V : (p, q) ∈ N x} : p ∈ V }
in the SDP (23), it becomes the NSDP relaxation, and if Γ = {{p, q} : (p, q) ∈ N x} ,
the ESDP relaxation is obtained. In the case of the ESDP relaxation, each member of
the family Γ consists of two elements, and the matrix in the positive semidefinite con-
dition of (23) is (�+2)× (�+2). Let Ln and Le denote the solution sets of the NSDP
and ESDP relaxations, respectively. By construction, we know that L2d ⊆ Ln ⊆ Le.
It was shown in [33] that if the underlying graph G(V, E) is chordal, then L2d = Ln.
In this case, we know that G(V, E) = G(V, E) and that L2d = L2s = Ln also follows
from Proposition 3.3.

4. Additional techniques. We present two methods for reducing the size of
the sparse SDP relaxation problem (21) to increase computational efficiency. We note
that in the method described in section 4.1, the size of the system of sensor network
localization equations (3) is reduced before applying the sparse SDP relaxation. The
method in section 4.2 is to decrease the size of the SDP relaxation problem by elimi-
nating free variables [16, 18]. In addition, we address the issues of refining solutions
of the SDP relaxation using a nonlinear least square method and how we transform
the SDP (20) into a standard form SDP in sections 4.3 and 4.4, respectively.

4.1. Reducing the size of the system of sensor network localization
equations (3). Recall that G(N,N x ∪ N a) denotes a graph associated with the
system of sensor network localization equations (3), where N = {1, . . . , n} denotes
the node set consisting of all sensors and anchors. Consider subgraphs G(N, E′) of
G(N,N x ∪ N a) with the same node set N and an edge subset E′ of N x ∪ N a. Let
deg(p, E′) denote the degree of a node p ∈ N in a subgraph G(N, E′), i.e., the number
of edges incident to a node p ∈ N . In the �-dimensional sensor network localization
problem, deg(p, E) ≥ � + 1 for every sensor node p is necessary (but not sufficient) to
determine their locations when they are located in generic positions. Therefore, we
consider the family Gκ of subgraphs G(N, E′) of G(N,N x ∪N a) such that deg(p, E′)
is not less than min{deg(p,Nx ∪N a), κ} for every sensor node p, where κ is a positive
integer not less than � + 1. We choose a minimal subgraph G(N, Ẽ) from the family
Gκ and replace N x and N a by N x ∩ Ẽ and N a ∩ Ẽ, respectively, in the system of
sensor network localization equations (3). Since this method of reducing the size of
(3) is based on heuristics, it may weaken the quality of the relaxation as shown in
Table 4 in section 5.

When choosing edges from N x and N a for a reduced edge set Ẽ, we give priority
to the edges in N a over those in N x. More precisely, for every sensor p = 1, 2, . . . , m,
we first choose at most � + 1 edges, (p, r) ∈ N a, and then choose edges from N x

to produce a minimal subgraph G(N, Ẽ) satisfying the desired property. As N a

involves more edges, the resulting subgraph G(V,N x ∩ Ẽ) becomes sparser and small.
Thus, the sparse SDP relaxation in section 3.3 for the reduced problem with the graph
G(V,N x∩Ẽ) can be solved more efficiently. This will be confirmed through numerical
results in section 5.

With an increasingly larger value for κ, we can expect to obtain more accurate
locations of the sensors, though it takes longer to solve the sparse SDP relaxation. In
the numerical experiments in section 5, we took κ = � + 2.

A different way of reducing the size of the system of sensor network localization
equations (3) was proposed by Wang et al. [33]. They restricted the degree of each
sensor node to a small positive integer λ. Let Gλ denote the family of subgraphs
G(N, E′) of G(N, E) such that deg(p, E′) ≤ λ for every sensor p. It was suggested
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to take 5 ≤ λ ≤ 10 in their SDP relaxation method called ESDP proposed for the
2-dimensional sensor network localization problem in [33].

We tested these two methods, the one choosing a minimal subgraph from the
family Gκ, and the other choosing a maximal subgraph from the family Gλ, and found
that the former method is more effective when it is combined with SSDP (the sparse
SDP relaxation (21) described in section 3.3), FSDP (the Biswas–Ye SDP relaxation
(14) described in section 3.2), and SFSDP (the sparse variant (22) of FSDP described
in section 3.3).

4.2. Reducing the size of the SDP relaxation problem (21). We rewrite
the sparse SDP relaxation problem (21) as a dual standard-form SDP with equalities

maximize
k∑

i=1

biyi

subject to a0 −
k∑

i=1

aiyi = 0, A0 −
k∑

i=1

Aiyi � O

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(24)

for some vectors ai (i = 0, 1, . . . , k), symmetric matrices Ai (i = 0, 1, . . . , k), and real
numbers bi = 0 (i = 1, . . . , k). The corresponding primal SDP is of the form

minimize aT
0 z + A0 • Z

subject to aT
i z + Ai • Z = bi (i = 1, . . . , k), Z � O,

}
(25)

which contains free vector variable z. In [16], Kobayashi, Nakata, and Kojima pro-
posed a method to reduce the size of the primal-dual pair SDPs of this form by
eliminating the free variable vector z from the primal SDP (25) (and the equality
constraint a0 −∑k

i=1 aiyi = 0 from the dual (24)). We used an improved version
[18] of their method before applying SeDuMi [29] to solve primal-dual pair SDPs (25)
and (24) in the numerical experiments in section 5. The method worked effectively
to reduce the computational time for solving the SDPs (24) and (25).

4.3. Refining solutions by a nonlinear least square method. A nonlinear
optimization method can be used to refine the solution obtained by an SDP relaxation
of the sensor network localization problem as suggested in [5], where the gradient
method is used. In the numerical experiments in section 5, the MATLAB function
“lsqnonlin,” an implementation of the trust-region reflective Newton method [7, 8] for
nonlinear least square problems with bound constraints, is used.

4.4. Conversion of the SDP (20) into a standard-form SDP. Two ways of
converting the SDP (20) into a standard-form SDP to which the primal-dual interior-
point method can be applied exist: a conversion of the SDP (20) into an equality
standard form SDP, which was presented in [23], and a conversion into a linear ma-
trix inequality standard-form SDP having equality constraints, which was used in
SparsePOP [32]. We implemented the second method in SFSDP (the sparse variant
of the Biswas–Ye SDP relaxation described in section 3.3), and a brief description is
as follows.

For simplicity of discussion, we assume that the size of data matrices At (t ∈ T )
and the matrix variable Z is n and each C̄h is a subset of {1, 2, . . . , n}. We introduce
matrices F ij (1 ≤ i ≤ j ≤ n), which form a basis of Sn. Here F ij denotes an n × n
symmetric matrix such that the elements in the (i, j)th and (j, i)th position are 1 and
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all the other elements are 0. Then, we can represent the matrix variable Z as

Z =
∑

1≤i≤j≤n

F ijzij , zij ∈ R (1 ≤ i ≤ j ≤ n).

We also use the notation F ij(C) for a submatrix of F ij consisting of the elements F ij
pq

((p, q) ∈ C × C), where C is a subset of {1, 2, . . . , n}. Let

Ih = {(i, j) ∈ C̄h × C̄h : 1 ≤ i ≤ j ≤ n} (1 ≤ h ≤ k),
Ī = {(i, j) : [At]ij 
= 0 for some t = 0 or t ∈ T, 1 ≤ i ≤ j ≤ n}.

Then, we can rewrite the SDP (20) as

minimize
∑

(i,j)∈Ī

(
A0 • F ij

)
zij

subject to
∑

(i,j)∈Ī

(
At • F ij

)
zij = bt (t ∈ T ),∑

(i,j)∈Ih

F ij(Ch)zij � O (1 ≤ h ≤ k),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(26)

or

minimize
∑

(i,j)∈Ī

(
A0 • F ij

)
zij

subject to −bt +
∑

(i,j)∈Ī

(
At • F ij

)
zij ≥ 0 (t ∈ T ),

bt −
∑

(i,j)∈Ī

(
At • F ij

)
zij ≥ 0 (t ∈ T ),∑

(i,j)∈Ih

F ij(Ch)zij � O (1 ≤ h ≤ k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(27)

The resulting SDP becomes a standard linear matrix standard-form SDP, which is
often called a dual standard-form SDP. Thus, we can apply the primal-dual interior-
point method to the SDP (27). SeDuMi, the software used for solving SDP problems
in the numerical experiment in section 5, can handle an SDP of the form (26) without
converting it into the form of (27).

In the context of section 3.3, each C̄h corresponds to a maximal clique of a chordal
graph (1 ≤ h ≤ k) and Ī ⊆ ⋃k

h=1 Ih. If the chordal graph is sparse, the SDP (27)
satisfies a structured sparsity, called the correlative sparsity in [15], which makes the
application of the primal-dual interior-point method to the SDP (27) very efficient.
See [15, section 4].

Remark 4.1. We also tested the other method presented in [23] to convert the
SDP (20) into an equality standard-form SDP. But it did not work as effectively as
the conversion of the SDP (20) into a linear matrix inequality standard-form SDP
having equality constraints described above. See [17] for more details and numerical
comparison between these two methods applied to the SDP (22).

5. Numerical results. We compare the following methods in the numerical
experiments:

• FSDP. The Biswas–Ye SDP relaxation [3], described in (14) in section 3.2.
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• ESDP. The edge-based SDP relaxation [33], equivalent to (23) with Γ =
{{p, q} : (p, q) ∈ N x}.

• SSDP. The sparse SDP relaxation (21) of the QOP (4) for sensor network
localization problems with exact distances, described in section 3.3. SSDP
is implemented by applying the sparse SDP relaxation by Waki et al. [32]
for a general sparse polynomial optimization problem to the QOP (4). More
precisely, SDP relaxation problems are constructed by applying SparsePOP
[31] to the QOPs (4) and solved by SeDuMi [29] in SparsePOP.

• SFSDP. The sparse variant of FSDP described in sections 3.3 and 4.4. See
(22).

Among ESDP, FSDP, the POP method in [25], and the SOCP relaxation in [30],
ESDP was shown to be the most efficient, as shown in [33]. MATLAB codes for ESDP
and FSDP can be downloaded from the website [35]. The code for ESDP provides the
solutions after refining the solution using the gradient method. The solutions before
refining are provided by the code for FSDP.

For refining the obtained solutions from FSDP, SSDP, and SFSDP, we use a
nonlinear least square method provided by the MATLAB function lsqnonlin, an im-
plementation of the trust-region Newton method [7, 8] for nonlinear least square
problems with bound constraints. As mentioned in section 4.2, an improved version
[18] of the method in [16] for handling equality constraints to reduce the size of the
SDP relaxation problem is employed in SSDP before applying SeDuMi.

Numerical test problems are generated as follows: m sensors ap (p = 1, 2, . . . , m)
are distributed randomly in the 2-dimensional unit square [0, 1] × [0, 1] or the 3-
dimensional unit cube [0, 1]3, where m = 500, 1000, 2000, and 4000 are used in the
2-dimensional problems and m = 1000 in the 3-dimensional problems. Anchors are
placed as follows:

bd3: 3 anchors on the boundary points (0, 0), (0.5, 0), (0, 0.5),
corner4: 4 anchors on the corners (a1, a2), ai ∈ {0, 1},

5 × 5: 25 anchors on the grid (a1, a2), ai ∈ {0, 1/4, 2/4, 3/4, 1},
rand50: 50 randomly placed anchors in [0, 1]× [0, 1],

rand100: 100 randomly placed anchors in [0, 1]× [0, 1]

for 2-dimensional problems, and

corner8: 8 anchors on the corners (a1, a2, a3), ai ∈ {0, 1},
3 × 3 × 3: 27 anchors on the grid (a1, a2, a3), ai ∈ {0, 1/2, 1},

rand25: 25 randomly placed anchors

for the 3-dimensional problems. A radio range ρ chosen from {0.06, 0.08, 0.1, 0.2, 0.3}
for the 2-dimensional problems and from {0.3, 0.4, 0.5} for the 3-dimensional prob-
lems determines the sets N x and N a by (2). The exact distances

dpq = ‖ap − aq‖ ((p, q) ∈ N x) and dpr = ‖ap − ar‖ ((p, r) ∈ N a)

are computed. For numerical problems with noisy distances, we further perturb the
distances as

d̂pq = (1 + σεpq)dpq ((p, q) ∈ N x) and d̂pr = (1 + σεpr)dpr ((p, r) ∈ N a).(28)
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Here σ denotes a nonnegative constant, and εpq and εpr are chosen from the standard
normal distribution N(0, 1). We call σ a noisy factor and take σ = 0.1 for noisy
problems in sections 5.2, 5.3, and 5.4.

Throughout section 5, ρ denotes radio range, λ an upper bound for the degree of
any sensor node described in section 4.1 for ESDP, κ a lower bound for the degree
of any sensor node described in section 4.1 for FSDP, SSDP, and SFSDP, “cpu”
average cpu time over 5 problems in seconds consumed by SeDuMi with the accuracy
parameter pars.eps = 1.0e-5. As in [2, 3, 4, 30, 33], the root mean square distance
(rmsd) (

1
m

m∑
p=1

‖xp − ap‖2

)1/2

is used to measure the accuracy of the locations of sensor p = 1, 2, . . . , m computed by
SeDuMi and to measure the accuracy of their refinement by the gradient method in
ESDP or the MATLAB function lsqnonlin in FSDP, SSDP, and SFSDP. The values
of rmsd after the refinement are included in the parentheses. We note that ESDP
provides rmsd only after refining the locations of sensors. The values is of rmsd in all
tables denote average rmsd over 5 problems. Numerical experiments were performed
on PowerPC 1.83GHz with 2GB memory.

Table 1

Numerical results on 2-dimensional problems with randomly generated 500 sensors in [0, 1] ×
[0, 1] and exact distances (σ = 0.0).

Anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(5) bd3 (6.3e-01) 21.9 (5.4e-01) 74.7 (3.4e-01) 64.5
ESDP(10) bd3 (6.5e-01) 47.6 (4.7e-01) 262.0 (2.2e-01) 169.3
FSDP(4) bd3 2.9e-01 (4.2e-02) 461.6 1.2e-04 (3.1e-06) 399.7 (1.1e-07) 548.9
SSDP(4) bd3 7.2e-01 (6.3e-01) 172.6 5.8e-02 (7.2e-07) 60.3 (5.8e-07) 34.1
SFSDP(4) bd3 4.9e-01 (4.7e-01) 21.6 1.0e-02 (3.4e-08) 15.1 (7.8e-09) 12.5

ESDP(5) corner4 (8.7e-02) 25.9 (1.9e-02) 42.4 (1.1e-02) 77.0
ESDP(10) corner4 (2.5e-02) 82.2 (4.0e-06) 237.5 (1.9e-07) 106.6
FSDP(4) corner4 1.7e-02 (6.7e-03) 515.8 1.0e-04 (1.9e-07) 474.2 (1.1e-08) 399.5
SSDP(4) corner4 2.5e-02 (6.7e-03) 243.8 1.1e-04 (1.1e-07) 49.2 (1.7e-08) 26.8
SFSDP(4) corner4 5.4e-02 (4.7e-02) 21.5 1.4e-04 (3.8e-08) 11.7 (1.5e-09) 8.9

ESDP(5) 5 × 5 (4.0e-03) 60.1 (7.6e-05) 38.0 (4.0e-08) 37.1
ESDP(10) 5 × 5 (2.5e-06) 68.3 (6.0e-08) 93.9 (1.2e-08) 133.4
FSDP(4) 5 × 5 5.1e-04 (1.4e-07) 340.6 2.7e-05 (6.9e-09) 317.2 (4.2e-08) 367.4
SSDP(4) 5 × 5 4.0e-04 (7.6e-08) 83.0 5.8e-05 (4.2e-08) 7.6 (6.5e-08) 5.5
SFSDP(4) 5 × 5 1.0e-03 (2.5e-04) 13.2 1.7e-05 (7.2e-12) 6.2 (2.9e-12) 5.8

ESDP(5) rand50 (3.1e-02) 68.4 (1.3e-04) 77.8 (6.0e-07) 50.7
ESDP(10) rand50 (2.0e-05) 144.1 (2.1e-08) 104.9 (2.2e-08) 196.1
FSDP(4) rand50 5.6e-03 (7.6e-08) 352.0 2.9e-06 (1.6e-07) 386.9 (9.6e-09) 410.2
SSDP(4) rand50 1.2e-03 (3.6e-07) 27.9 1.4e-06 (7.2e-08) 6.9 (4.9e-14) 5.4
SFSDP(4) rand50 1.9e-02 (1.4e-02) 10.1 1.0e-04 (1.9e-10) 6.5 (8.5e-10) 5.9

5.1. Problems with exact distances. Table 1 shows numerical results on the
problems with 500 sensors randomly generated in [0, 1]× [0, 1] and exact distances (or
σ = 0). If we compare the values of rmsd, we see that
(a) FSDP(4), SSDP(4), and SFSDP(4) attain a similar quality of rmsd in almost

all test problems; however, cpu time consumed by FSDP(4) to solve SDP
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Table 2

Numerical results on 2-dimensional problems with randomly generated 1000 sensors in [0, 1] ×
[0, 1] and and exact distances (σ = 0.0).

Anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(5) bd3 (6.3e-01) 78.9 (5.4e-01) 185.9 (3.5e-01) 142
ESDP(10) bd3 (6.3e-01) 283.1 (4.4e-01) 560.4 (2.0e-01) 370.0
SSDP(4) bd3 4.7e-01 (4.4e-01) 557.9 3.0e-02 (7.3e-07) 107.0 (3.2e-08) 84.2
SFSDP(4) bd3 1.3e-01 (2.6e-03) 55.3 2.9e-03 (5.7e-09) 27.3 (2.7e-09) 27.6

ESDP(5) corner4 (1.7e-02) 90.9 (6.6e-03) 153.6 (9.8e-04) 167.7
ESDP(10) corner4 (3.1e-03) 351.8 (5.7e-06) 593.8 (6.3e-07) 278.7
SSDP(4) corner4 1.1e-03 (1.2e-06) 892.7 1.1e-04 (3.5e-07) 101.3 (2.8e-08) 55.2
SFSDP(4) corner4 1.9e-03 (2.2e-08) 50.2 1.5e-04 (6.3e-09) 20.5 (5.4e-09) 18.0

ESDP(5) 5 × 5 (3.8e-03) 148.1 (9.8e-08) 94.1 (3.2e-08) 81.3
ESDP(10) 5 × 5 (2.0e-06) 283.5 (3.8e-08) 428.1 (9.2e-09) 466.4
SSDP(4) 5 × 5 6.3e-04 (1.4e-07) 239.7 3.2e-05 (3.0e-08) 19.3 (5.7e-09) 14.2
SFSDP(4) 5 × 5 2.8e-04 (3.5e-09) 27.9 6.3e-06 (3.8e-11) 11.1 (1.9e-12) 9.9

ESDP(5) rand100 (1.4e-03) 147.2 (1.5e-07) 145.1 (1.8e-08) 183.1
ESDP(10) rand100 (1.1e-06) 297.9 (3.8e-08) 445.1 (1.2e-08) 663.0
SSDP(4) rand100 1.2e-03 (3.5e-08) 35.8 1.6e-06 (3.5e-08) 15.4 (3.0e-15) 15.2
SFSDP(4) rand100 4.4e-04 (2.0e-08) 13.9 1.5e-06 (8.9e-11) 10.3 (4.1e-11) 10.2
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Fig. 1. ESDP (10) after applying the gradient method and SSDP (4) after applying lsqnonlin
for 500 sensors, 3 anchors on the boundary and ρ = 0.2. Here a circle denotes the true location of a
sensor, � the computed location of a sensor, and a line segment a deviation from true and computed
locations.

relaxation problems using SeDuMi is longer than SSDP(4) and SFSDP(4).
In particular, the difference in cpu time increases as ρ changes to 0.2 and 0.3.

Based on this observation, ESDP, SSDP, and SFSDP are compared on larger-scale
problems with 1000 sensors in the 2-dimensional space in the following discussion.
Table 2 shows numerical results on the problems with 1000 sensors randomly generated
in [0, 1] × [0, 1] and exact distances (or σ = 0). From Tables 1 and 2, we notice the
following:
(b) For bd3 with ρ = 0.1 in Tables 1 and 2, very large values of rmsd were obtained

with ESDP(5), ESDP(10), SSDP(4), and SFSDP(4).
(c) In cases of bd3 with ρ = 0.2 and 0.3 in Tables 1 and 2, SSDP(4) and SFSDP(4)

attained rmsd small enough to locate the sensors accurately, while ESDP(5)
and ESDP(10) did not. See Figure 1.
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(d) In Table 2, SSDP(4) spent more cpu time solving SDP relaxation problems by
SeDuMi for corner4, 5 × 5, and bd3 with ρ = 0.1, and less cpu time in all
other problems than ESDP(5) and ESDP(10).

(e) In all test problems, cpu time consumed by SSDP(4) and SFSDP(4) to solve SDP
relaxation problems using SeDuMi decreases as the radio range ρ increases.
Note that as the radio range ρ increases, N a involves more edges, and the
reduced problem after applying the method in section 4.1 becomes sparse
and small. As a result, its SDP relaxation can be solved faster. This can be
observed in Table 3, where information on the sparsity of the SDP relaxation
problems constructed by ESDP(5), FSDP(4), SSDP(4), and SFSDP(4) is
exhibited. It is known that the size of the Schur complement matrix, the
number of nonzeros of its sparse Cholesky factor, and the maximum size of
SDP blocks, which are denoted as sizeR, #nnzL, and maxBl, respectively, are
key factors by which to measure the sparsity of the SDP relaxation problems.
In SSDP(4) and SFSDP(4) cases, the considerable decrease in sizeR, #nnzL,
and maxBl leads to shorter cpu time by SeDuMi as ρ changes from 0.1 to 0.3.

(f) In most of the cases in Tables 1 and 2, SFSDP(4) outperforms all other methods
in cpu time and attains comparable or better rmsd than all other methods.
Table 3 shows that the number of nonzeros of the sparse Cholesky factor
of the Schur complement matrix is much smaller in SFSDP(4) than in all
other methods ESDP(5), FSDP(4), and SSDP(4). This is a main reason why
SFSDP(4) is faster than all other methods.

Table 3

The size of the Schur complement matrix (sizeR), the number of nonzeros in its sparse Cholesky
factorization (#nnzL), and the maximum size of SDP blocks (maxBl) when executing SeDuMi for
SDP relaxation problems with 500 sensors and and exact distances (σ = 0.0).

Anchor ρ=0.1 ρ=0.3
location sizeR #nnzL maxBl sizeR #nnzL maxBl

ESDP(5) corner4 18,257 730,478 4 20,431 1,002,821 4
FSDP(4) corner4 1,690 1,428,895 502 1,966 1,933,916 502
SSDP(4) corner4 13,137 3,632,361 49 8,481 575,600 27
SFSDP(4) corner4 4,569 307,470 26 3,396 88,708 15

ESDP(5) 5 × 5 18,745 765,301 4 24,533 1,107,289 4
FSDP(4) 5 × 5 1,754 1,539,135 502 2,493 3,108,771 502
SSDP(4) 5 × 5 10,737 1,618,590 35 4,206 61,440 15
SFSDP(4) 5 × 5 4,528 306,784 19 3,128 71,805 9

Tables 1 and 2 show that SSDP(4) and SFSDP(4) do not attain small values of
rmsd for the problems of bd3 with ρ = 0.1, and Table 4 displays how rmsd is improved
as κ increases to 5, 6, and 8. See also Figure 2.

ESDP(5) and SFSDP(4) are compared for the problems with 2000 sensors in
Table 5. We notice that SFSDP(4) obtained smaller rmsd values in shorter cpu time
than ESDP(5) for the tested problems.

5.2. Problems with noisy distances. For numerical experiments in this sub-
section, the noisy distances are generated by (28), where σ = 0.1 is used in Tables 6
and 7. In most problems in Tables 6 and 7, we observe the following.
(g) ESDP(5) and/or ESDP(10) spent more cpu time solving SDP relaxation prob-

lems using SeDuMi than SFSDP(4). The values of rmsd from the three
methods are similar.
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Table 4

Numerical results on SSDP and SFSDP with κ = 5, 6, and 8 applied to randomly generated
2-dimensional problems with 500 sensors and σ = 0.0.

Anchor κ = 5 κ = 6 κ = 8
location rmsd cpu rmsd cpu rmsd cpu

SSDP bd3 4.9e-1(4.5e-1) 381.7 3.1e-1(1.1e-1) 658.5 1.3e-1(7.2e-3) 1767.5
SFSDP bd3 2.1e-1(1.3e-1) 31.0 5.6e-2(1.5e-2) 50.9 2.9e-2(1.5e-2) 90.9
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Fig. 2. SSDP(8) after applying nsqnonlin for 500 sensors, 3 anchors on the boundary, and
ρ = 0.1.

Table 5

Numerical results on 2-dimensional problems with randomly generated 2000 sensors in [0, 1] ×
[0, 1] and exact distances (σ = 0.0).

Anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(5) bd3 (6.3e-01) 299.4 (5.8e-01) 319.0 (3.9e-01) 273.1
SFSDP(4) bd3 1.7e-01 (6.3e-02) 110.8 5.8e-03 (7.6e-08) 69.0 (1.8e-08) 72.5

ESDP(5) corner4 (9.8e-03) 425.6 (8.9e-03) 449.1 (6.7e-04) 377.0
SFSDP(4) corner4 5.4e-04 (4.2e-07) 105.7 1.7e-04 (3.0e-08) 45.8 (7.6e-09) 46.3

ESDP(5) 5 × 5 (1.8e-03) 343.2 (3.5e-07) 163.0 (6.7e-08) 138.2
SFSDP(4) 5 × 5 3.3e-04 (5.4e-08) 57.0 4.4e-06 (1.2e-12) 25.8 (2.1e-13) 22.7

ESDP(5) rand100 (3.3e-03) 314.6 (2.8e-07) 198.4 (3.0e-08) 282.4
SFSDP(4) rand100 2.9e-04 (1.2e-07) 30.7 1.3e-06 (3.0e-11) 24.2 (3.2e-11) 24.1

(h) The difference in cpu time between ESDP(5) and SFSDP(4) is larger for the
problems of 2000 sensors shown in Table 7 than those of Table 6.

From the numerical results in sections 5.1 and 5.2, we confirm that the technique
described in section 3.3 for exploiting sparsity in the SDP relaxation problems (13)
and (14) is very effective; in particular, we observe the computational advantage of
SFSDP(4) in getting accurate solutions more quickly than ESDP(5) or ESDP(10)
for the problems with exact distances. In addition, for the problems with noisy
distances, the computational performance of SFSDP(4) is superior to that of the other
methods.
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Table 6

Numerical results on 2-dimensional problems with randomly generated 1000 sensors in [0, 1] ×
[0, 1] and noisy distances (σ = 0.1).

Anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(5) bd3 (6.3e-01) 90.9 (6.3e-01) 65.3 (6.3e-01) 52.2
ESDP(10) bd3 (6.3e-01) 308.6 (6.6e-01) 297.2 (6.0e-01) 181.7
SFSDP(4) bd3 4.7e-01 (4.4e-01) 39.2 4.1e-01 (3.5e-01) 22.7 (2.7e-01) 24.0

ESDP(5) corner4 (2.2e-02) 118.1 (2.3e-02) 79.2 (2.9e-02) 59.9
ESDP(10) corner4 (1.4e-02) 347.1 (1.3e-02) 381.4 (1.5e-02) 192.7
SFSDP(4) corner4 5.4e-02 (1.1e-02) 38.1 5.4e-02 (1.6e-02) 24.8 (2.4e-02) 23.4

ESDP(5) 5 × 5 (1.0e-02) 49.1 (1.1e-02) 40.1 (1.3e-02) 40.1
ESDP(10) 5 × 5 (6.3e-03) 295.5 (8.9e-03) 337.1 (1.1e-02) 192.0
SFSDP(4) 5 × 5 1.8e-02 (8.2e-03) 29.0 2.4e-02 (1.5e-02) 16.0 (2.0e-02) 16.0

ESDP(5) rand100 (3.1e-02) 53.0 (1.1e-02) 49.2 (1.1e-02) 51.8
ESDP(10) rand100 (8.2e-03) 200.6 (6.3e-03) 406.2 (7.6e-03) 277.1
SFSDP(4) rand100 2.2e-02 (1.4e-02) 28.2 3.2e-02 (1.4e-02) 15.7 (2.4e-02) 15.7

Table 7

Numerical results on 2-dimensional problems with randomly generated 2000 sensors in [0, 1] ×
[0, 1] and noisy distances (σ = 0.1).

Anchor ρ=0.1 ρ=0.2 ρ=0.3
SDP(λ|κ) location rmsd cpu rmsd cpu rmsd cpu
ESDP(5) bd3 (6.3e-01) 373.1 (6.3e-01) 184.2 (6.3e-01) 154.2
SFSDP(4) bd3 4.5e-01 (4.3e-01) 87.6 4.2e-01 (3.3e-01) 58.8 (2.4e-01) 58.2

ESDP(5) corner4 (1.6e-02) 511.1 (2.2e-02) 209.1 (3.0e-02) 167.1
SFSDP(4) corner4 4.9e-02 (8.0e-03) 86.9 5.4e-02 (1.6e-02) 60.5 (2.2e-02) 60.5

ESDP(5) 5 × 5 (9.4e-03) 322.9 (1.1e-02) 176.8 (1.3e-02) 173.3
SFSDP(4) 5 × 5 1.8e-02 (7.6e-03) 65.9 2.4e-02 (1.4e-02) 41.6 (2.0e-02) 39.6

ESDP(5) rand100 (1.1e-02) 351.4 (7.6e-03) 270.7 (8.0e-03) 357.6
SFSDP(4) rand100 1.9e-02 (1.2e-02) 41.6 2.8e-02 (1.4e-02) 38.2 (2.2e-02) 40.5

Table 8

Numerical results on SFSDP(4) applied to 2-dimensional problems with randomly generated
4000 sensors in [0, 1] × [0, 1].

Anchor ρ=0.06 ρ=0.08 ρ=0.1
σ location rmsd cpu rmsd cpu rmsd cpu
0.0 corner4 5.4e-04 (2.5e-06) 948.7 7.6e-04 (4.4e-07) 368.3 (7.6e-07) 205.7
0.0 5 × 5 5.4e-04 (1.7e-07) 530.5 1.7e-04 (8.9e-08) 200.4 (1.0e-07) 134.1
0.0 rand100 1.9e-03 (1.4e-07) 204.1 6.1e-04 (1.0e-07) 113.1 (8.2e-08) 84.5

0.1 corner4 5.1e-02 (5.2e-03) 607.4 5.0e-02 (7.0e-03) 337.1 (8.2e-03) 214.2
0.1 5 × 5 1.5e-02 (4.6e-03) 523.0 1.6e-02 (6.0e-03) 241.9 (7.6e-03) 182.6
0.1 rand100 2.0e-02 (1.0e-02) 240.4 2.1e-02 (1.0e-02) 150.5 (1.2e-02) 123.9

5.3. Problems with 4000 sensors. Table 8 shows numerical results on
SFSDP(4) applied to problems with 4000 sensors and ρ = 0.06, 0.08, 0.1. We observe
that highly accurate rmsd is obtained in all cases and that SeDuMi cpu time varies
from 80 to 1000 seconds.

5.4. 3-dimensional problems with 1000 sensors. Solving 3-dimensional prob-
lems is far more difficult than solving 2-dimensional problems. Thus, we show only
numerical results on problems with 1000 sensors in Table 9. From Table 9, we notice
the following:
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Table 9

Numerical results on SFSDP(4) applied to 3-dimensional problems with randomly generated
1000 sensors in [0, 1]3.

Anchor ρ=0.3 ρ=0.4 ρ=0.5
σ location rmsd cpu rmsd cpu rmsd cpu
0.0 corner8 1.2e-03 (5.7e-09) 200.0 5.1e-04 (7.3e-09) 44.3 (4.4e-09) 28.8
0.0 3 × 3 × 3 3.5e-04 (8.5e-10) 66.6 2.8e-05 (3.0e-11) 20.2 (3.8e-14) 13.8
0.0 rand100 5.7e-05 (7.3e-12) 16.5 1.8e-06 (1.3e-12) 14.2 (2.2e-14) 14.1

0.1 corner8 1.0e-01 (3.5e-02) 172.8 1.1e-01 (4.4e-02) 53.0 (5.4e-02) 38.9
0.1 3 × 3 × 3 6.6e-02 (3.1e-02) 77.1 6.6e-02 (4.1e-02) 30.9 (4.7e-02) 24.6
0.1 rand100 6.6e-02 (3.1e-02) 28.6 9.5e-02 (4.1e-02) 25.3 (6.0e-02) 15.7
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Fig. 3. SFSDP(4) before and after applying lsqnonlin for 1000 sensors, 8 anchors at the corner,
σ = 0.1, and ρ = 0.3.

(i) When the number of anchors is small (corner8) and/or the radio range ρ is
small (ρ = 0.3), it takes longer cpu time for SeDuMi to solve SDP relaxation
problems.

(j) For problems with no noise (σ = 0.0), SFSDP(4) attains very small rmsd values;
however, as the noisy factor σ grows, the values of rmsd increase. See Figure 3.
In Figure 3, we also observe the effectiveness of lsqnonlin in improving rmsd.

6. Concluding remarks. We have formulated the sensor network localization
problem with exact distances as a QOP (4) and proposed applying the sparse SDP
relaxation [31] with the relaxation order 1 to the QOPs. We have shown that the
sparse SDP relaxation is equivalent to the dense relaxation [19] with the same re-
laxation order 1 and that it is at least as strong as the Biswas–Ye SDP relaxation
[2] theoretically. We have also derived a sparse variant of the Biswas–Ye SDP relax-
ation. For the solutions of the QOPs derived from the problems with exact distances,
a MATLAB package SparsePOP is applied and a MATLAB function “lsqnonlin” is
used for refining the obtained solution. Numerical results demonstrate that exploiting
sparsity in the methods is very effective in computing accurate solutions in less cpu
time. In particular, SFSDP provides comparable or better accuracy in less cpu time
than all the other SDP relaxations for most of the tested problems.

We have applied SparsePOP to the QOPs (4) to construct their sparse SDP
relaxation problems with the relaxation order 1. We should, however, note that
SparsePOP is designed for solving general sparse POPs. Thus, its application to the
QOPs (4) is not very efficient. For better computational efficiency, it is necessary
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to develop codes specialized for generating sparse SDP relaxation problems with the
relaxation order 1 from the QOP (4).
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[14] A. Howard, M. Matarić, and G. Sukhatme, Relaxation on a mesh: A formalism for gen-
eralized localization, in the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Wailea, Hawaii, 2001, pp. 1055–1060.

[15] K. Kobayashi, S. Kim, and M. Kojima, Correlative sparsity in primal-dual interior-point
methods for LP, SDP and SOCP, Appl. Math. Optim., 58 (2008), pp. 69–88.

[16] K. Kobayashi, K. Nakata, and M. Kojima, A conversion of an SDP having free variables
into the standard form SDP, Comput. Optim. Appl., 36 (2007), pp. 289–307.

[17] M. Kojima, Conversion methods for large scale SDPs to exploit their structured sparsity,
in The MIT Computation for Design and Optimization Program Distinguished Speaker
Series, Massachusetts Institute of Technology, Boston, MA, 2008; also available online
from http://www.is.titech.ac.jp/∼kojima/articles/MIT2008.pdf.

[18] M. Kojima, S. Kim, and H. Waki, Elimination of free variables for solving linear optimization
problems efficiently, in SIAM Conference on Optimization, Boston, MA, 2008; also available
online from http://www.is.titech.ac.jp/∼kojima/articles/SIOPT2008.pdf.

[19] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J.
Optim., 11 (2001), pp. 796–817.

[20] J. B. Lasserre, Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM
J. Optim., 17 (2006), pp. 822–843.

[21] T.-C. Lian, T.-C. Wang, and Y. Ye, A gradient search method to round the semidefinite
programming relaxation solution for ad hoc wireless sensor network localization, Tech-
nical report, Department of Management Science and Engineering, Stanford University,
Stanford, CA, 2004.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLOITING SPARSITY FOR SNL 215
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