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On a Stochastic Failure Model under Random Shocks  

Ji Hwan Cha1 
Department of Statistics, Ewha Womans University, 
Seoul, 120-750, Rep. of KOREA  
 
E-mail: jhcha@ewha.ac.kr 
 

Abstract. In most conventional settings, the events caused by an external shock are 
initiated at the moments of its occurrence. In this paper, we study a new classes of 
shock model, where each shock from a nonhomogeneous Poisson processes can trigger 
a failure of a system not immediately, as in classical extreme shock models, but with 
delay of some random time. We derive the corresponding survival and failure rate 
functions. Furthermore, we study the limiting behaviour of the failure rate function 
where it is applicable. 
 
 
 
 

1. Introduction 
Consider an orderly point process (without multiple occurrences) 0),( ≥ttN  of some ‘initiating’ 
events (IEs) with arrival times ...321 <<< TTT . Let each event from this process triggers the 

‘effective event’ (EE), which occurs after a random time (delay) ,...2,1, =iDi , since the occurrence of 

the corresponding IE at iT . Obviously, in contrast to the initial ordered sequence ...321 <<< TTT , 

the EEs ,...2,1},{ =+ iDT ii  are now not necessarily ordered. This setting can be encountered in many 
practical situations, when, e.g., initiating events start the process of developing the non-fatal faults in a 
system and we are interested in the number of these faults in ).,0[ t  Alternatively, effective events can 
result in fatal, terminating faults (failures) and then we are interested in the survival probability of our 
system. Therefore, the latter setting means that the first EE ruins our system. The corresponding 
stochastic survival model will be considered in this paper. When there are no delays, each shock (with 
the specified probability) results in the failure of the survived system and the described model 
obviously reduces to the classical extreme shock model (Gut and Hüsler, 2005; Finkelstein, 2008; Cha 
and Finkelstein, 2009).      
  The IEs can often be interpreted as some external shocks affecting a system, and for convenience, we 
will often use this wording (interchangeably with the “IE”). We will consider the case of the 
nonhomogeneous Poisson process (NHPP) of the IEs. The approach can, in principle, be applied to the 
case of renewal processes, but the corresponding formulas are too cumbersome. However, the 
obtained results for the NHPP case are in simple, closed forms that allow intuitive interpretations and 
proper analyses. 
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  The paper is organized as follows. In Section 2, the corresponding lifetime distribution and the 
failure rate are obtained for the model with delays. In Section 3, the limiting behaviour of the failure 
rate for ∞→t  is analyzed for different limiting properties of the rate of the NHPP of shocks. Finally, 
in Section 4, concluding remarks are given.   
 

2. Lifetime Distribution 
Consider a system subject to the nonhomogeneous Poisson process of IEs 0),( ≥ttN  to be called 
shocks. Let the rate of this process be )(tν  and the corresponding arrival times be denoted as 

...321 TTT << . Assume that the i th shock is ‘harmless’ to the system with probability )( iTq , and 

with probability )( iTp  it triggers the failure process of the system which results in its failure after a 

random time )( iTD , ,...2,1=i  , where )(tD  is a non-negative, semi-continuous random variable with 
the point mass at “0” (at each fixed t ). Note that this ‘point mass’ at 0 opens the possibility of 
‘immediate failure’ of the system at the occurrence of a shock, which is practically very important, 
and, furthermore the case of the ‘full point mass’ of )(tD  at 0 reduces to the ordinary ‘extreme shock 
model’. Obviously, without point mass at 0, we arrive at an absolutely continuous random variable. 
The distributions of )(tD  having point masses at other values could be considered similarly. 

 Let ))((),( xtDPxtG ≤≡ , ),(1),( xtGxtG −≡ , and ),( xtg  be the Cdf, the survival function 
and the pdf for the ‘continuous part’ of )(tD , respectively. Then, in accordance with the terminology 
in the Introduction, the failure in this case is the Effective Event (EE). 
  First of all, we are interested in describing the lifetime of our system ST . The corresponding 
conditional survival function is given by 

),...,,);(),...,(),(;0),(|( )(21)(21 tNtNS JJJTDTDTDtssNtTP ≤≤>  
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  Assume the following conditions regarding ‘conditional independence’: 
(i) Given the shock process, ,...2,1),( =iTD i , are mutually independent. 

(ii) Given the shock process, iJ , ,...2,1=i , are mutually independent. (It means that whether each 
shock triggers the failure process of the system or not is ‘independently determined’).  
(iii) Given the shock process, ,...}2,1),({ =iTD i  and ,...}2,1,{ =iJi , are mutually independent.  
 
  Integrating out all conditional random quantities in (1) under the basic assumptions described above 
results in the following theorem.  
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Theorem 1. Suppose that 0)0( >+ν . Then 
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and the failure rate function of the system is  
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Proof. 
The proof is omitted due to the page limit. 
 
Remark 1. It has been recognized that many queuing systems are most appropriately described by 
nonstationary queuing models, in which “both the arrival and service rates” are functions of time. 
Therefore, there is a growing literature on methods for calculating time-dependent performance 
measures in these models. It can be seen that in a queuing context, when )(),( xGxtG = , our 
system’s failure time can be interpreted as the first departure time in the ∞//GMt  system that starts 
empty (Ross, 1996). The model considered in this section is a time variant of it and, accordingly, the 
failure time can be interpreted in terms of the first departure time from the corresponding ∞// tt GM  
system that starts empty. 
 
Remark 2. Speaking formally, the split of effects to effective and ineffective shocks does not add any 
mathematical complexity due to the NHPP nature of the arrival process. This means that the result 
would be the same if we had only one type of effects and the NHPP with the rate function )()( tvtp . 
However, from the practical point of view and keeping in mind that we are generalizing here the 
classical extreme shock model with two types of effects, this splitting seems to be reasonable. 
Furthermore, we can consider the case of multi-type delayed consequences of shocks ( 1>n ), where 
the shock that occurs at time t  causes the delayed (with distribution ),( xtGi ) effect of type i  with 

probability )(tpi , whereas the probability of ‘no effect’ is ∑
=

−
n

i
i tp

1

)(1 . Obviously, this model is the 

same as the single-type model with ∑
=
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3. Limiting behaviour  
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In this subsection, we study the limiting behavior of the failure rate )(tSλ . Without loss of generality, 
assume that )(tp  and )(tν  are continuous functions with 0)( >tp , for all 0≥t . We further assume 
that 

DDtD ≡∞→ )()(  in distribution as ∞→t , 

where )(tD , 0>t , and D  are semi-continuous random variables with supports  ),0[ ∞  and point 
masses at “0”, and  

),0(
),(
xg
xtg

 is bounded for all 0, ≥xt .                                       (2) 

Obviously, (2) is a rather weak condition. The simplest example of a continuous random variable is  

}))(/1(exp{))(/1(),( xttxtg µµ −= , 0≥x ,                            (3) 

where )(tµ  is continuous and decreasing with 

µµ →)(t , as ∞→t . 

Observe that the distribution which corresponds to the pdf in (3) is an exponential distribution for each 
fixed t . 
 
Theorem 2. In addition to the assumptions of Theorem 1, let )()(lim ∞≡∞→ ptpt  and 

∞≤∞≡∞→ )()(lim νν tt  exist. Then 

)()()(lim ∞∞≡∞→ νλ ptSt . 

Proof. 
The proof is omitted due to the page limit. 

4. Concluding remarks  
One can find a lot of different shock models in the vast literature on this topic (see, e.g., Nakagawa, 
2007 and references therein). These models usually deal with systems that are subject to shocks of 
random magnitudes at random times.  

In this paper, we study a new shock model. The model generalizes the extreme shock model to the 
case when each shock from a nonhomogeneous Poisson processes can be fatal only after some time 
delay. We derive the corresponding survival probabilities and failure rates in a rather simple, 
meaningful form that allows probabilistic analysis and prompts for further generalizations.  
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