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Particle creation for time travel through a wormhole
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A time machine can be constructed by the relative motion of one mouth of a wormhole. The model

has some remaining problems to be solved. Among the problems, the stability problem arises from the

forming of the Cauchy horizon, where rays of early times will accumulate and diverge. This stability

problem can be solved at the classical level. For quantum stability, Kim and Thorne recently tried to
calculate the vacuum fluctuation of quantized fields by the point-splitting method. It was shown that the

vacuum fluctuations produce a renormalized stress-energy tensor that diverges as one approaches the

Cauchy horizon, which might be cut off by quantum gravity. However, there is a controversy. Hawking

conjectures an observer-independent location for the breakdown in the semiclassical theory. In this pa-

per, we deal with this quantum stability problem using another method: "particle production by an arbi-

trary gravitational field. " When the wormhole forms in the infinite past, the result is finite, while it is

divergent near the Cauchy horizon when the wormhole forms at a finite time. If we adopt the Kim-
Thorne conjecture, then the divergence might be cut off by quantum gravity; therefore, the total energy
cannot prevent the formation of the closed timelike curves when one is within a Planck length.

PACS number(s): 04.20.Cv, 04.60.+n

I. INTRODUCTION

Recently, it was discovered that the generic relative
motions of wormhole mouths will produce closed time-
like curves (CTC's), a time machine [1,2], as well as gen-
eric gravitational redshifts at the wormhole mouths due
to the generic gravitational fields [3]. At least this is so if
the Cauchy horizon at which the CTC's arise is stable.

Among the problems which remain to be solved for the
construction of a time rnachine, the stability problem
arises from the forming of the Cauchy horizon, where
rays in the mouth at early times will accumulate; then,
the total energy near the Cauchy horizon will diverge.
The causality problem was recently considered as a Cau-
chy problem [4,5] and a billiard ball problem [4,6]. This
stability problem can be solved by the zero-measure prop-
erty of the ray and the diverging lens e6'eet of the
wormhole at the classical level; that is, the Cauchy hor-
izon is stable against classical perturbations [1]. But sta-
bility against quantum-field perturbations is less certain.
Recently, Kim and Thorne have tried to calculate the
vacuum fluctuation of quantized fields by the point-
splitting method [7]. It was shown that the vacuum fluc-

tuations produce a renormalized stress-energy tensor
which diverges as one approaches the Cauehy horizon. It
was also recently shown that the divergence of the renor-
malized stress-energy tensor is a general property of
quantum-field theory in a locally static spacetime with a
nonpotential gravitationa1 field describing the time
machine formation [8]. But the divergence might be cut
off by quantum gravity when one is within a Planck
length; therefore, vacuum Auctuations cannot prevent the
formation of CTC's. [7]. However, Hawking [9] has
responded that the criterion for applying quantum gravi-

ty is quite different from that used in Ref. [7]. He conjec-
tures that the location at which semiclassical theory

breaks down is observer independent, whereas Ref. [7] as-
serts that the breakdown location depends on the chosen
reference frame [8]. Of course, there is a controversy
concerning which conjecture is correct for the true quan-
tum theory of gravity.

In this paper we want to analyze this stability problem
at the quantum level using another method, "particle
production by a gravitational field, " to confirm our previ-
ous work [7]. For the case of a wormhole mouth moving
with a constant velocity and a uniform acceleration, the
amount of net energy Aux from the wormhole is calculat-
ed near the Cauchy horizon following the method of
Ford and Parker [10]. The results are divergent as in the
previous case, vacuum fluctuations [7]. When the
wormhole forms in the infinite past, the result is finite,
while it is divergent near the Cauchy horizon when the
wormhole forms at a finite time. But if we adopt only the
Kim-Thorne conjecture, the divergence can be cut off by
quantum gravity; thus, the total energy will be very small
and may be ignored. Some stimulated emission problems
are considered to obtain the energy Auxes. The results
are not so large either, but there are ambiguities for the
initial particle distribution. Thus one can say that the
particle-production energy through the wormhole from
the field P of any state (vacuum or not) at early times is
not so large as to prevent the wormhole from forming the
Cauchy horizon. The time machine is stable against ei-
ther classical perturbations or quantum perturbations un-
der the Kim-Thorne conjecture. Therefore, since one can
overcome the stability problem in these ways, one can try
to construct a time machine if only the other remaining
problems can be solved.

In Sec. II a time machine model based on the relative
motion of wormhole mouths [1], the stability problem,
the vacuum fluctuation of quantized fields, and the quan-
tum solution to the stability problem [7] are briefly re-
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viewed. Particle creation by the gravitational field of a
wormhole is considered and the energy fluxes are calcu-
lated in Sec. III. The conclusions and discussion are in
Sec. IV.

II. TIME MACHINE AND STABILITY

As the time machine model, we consider the spacetime
in which two 4 X% cylinders are eliminated from the
Minkowski space and in which the positions of the
cylinders are identified at the same proper times. Since
the length of the throat of the wormhole (the internal dis-
tance between the two mouths of the wormhole, not the
external distance) is very short as the structure of the
wormhole, it is assumed to be zero for an ideal time
machine model by identifying two mouths, i.e., by treat-
ing the two mouths the same. Then simultaneous events
constitute closed curves which will be gradually changed
from closed spacelike curves into closed null curves be-
cause of the time dilation from the motion of one mouth.
After the closed null curves, the so-called Cauchy hor-
izon %, CTC's, the so-called time machine, will exist.

Among the current main issues concerning time
machine construction, the causality problem was recently
considered as a Cauchy problem [4,5] and as a billiard
ball problem [4,6]. The conclusion was that CTC's (time
machines) are benign in the sense that they may not be as
nasty as people have assumed; i.e., going back to the past
and killing oneself is impossible [4].

To understand how the instability problem arises and
is solved, consider the ray from S to the left mouth of
the wormhole. The ray from the left mouth goes into the
right mouth through external spacetime; then, it comes
out from the left mouth again through the throat at the
same moment that it goes into the right mouth because of
the identification of the two mouths. Next, it travels to
the right mouth and comes out from the left mouth
again. By such processes the rays accumulate at %, and
the energy can be divergent, which will prevent CTC's
from forming. However, at the classical level, the energy
of the ray near %, after passing an infinite number of
times through the wormhole, can be summed up as

00 b'=&
2Dj=1

2J 'J
1

Po ~

where f =&(1—v)/(1+v) (1 is the Doppler-effect fac-
tor and b/2D is the diverging lens effect for each ray
which passes the wormhole. Here b is the radius of the
mouth and D is the external distance between the two
mouths just before the onset of the relative motion. We
can always make the sum converge by appropriately ad-
justing b, D, and v so that b/2D (&1 even though,
1/f &1.

To investigate the quantum stability near &, we shall
now evaluate the order of magnitude of the divergence of
the vacuum polarization strength. For detailed calcula-
tions and exact expressions, see Ref. [7]. The geodetic in-
tervals between x' and x are o.+N-D ht and the Van
Vleck —Morette determinant is

'N or (N —1)

g1/2
+N

where N is chosen if x is far from both mouths and N —1

if x is near either mouth. Here the time ht to & depends
on the chosen observer. Then the orders of magnitude of
the regularized Hadamard function G,",z, which is defined
by eliminating its flat-spacetime, vacuum-state value from
the Hadamard function [11], and of the regularized
stress-energy tensor T" obtained from G'„'~ are

g1/2
G(1) +N b

o N D

N or (N —1)
1

Ddt '

N or (N —1)
bpPV ~
D

1

D(b, t)'
(4)

Apparently, this stress-energy tensor is divergent for
x~&, that is, b,t~0. Since the Van Vleck —Morette
determinant plays the role of the amplitude of the ray, we
hoped that it might give rise to the diverging lens effect
as in the classical case. However, even though the Ha-
damard function is regularized by eliminating its flat-
spacetime, vacuum expectation value, the geodetic inter-
val tends to zero when the ray approaches the & having
nullness.

Now the physical effects of the divergent T" will be
considered, where

' N or (N —I)
b PTi V~
D D

mP

(ht)'

in cgs units (still c =1). The metric perturbation due to
the curvature fluctuation produced by the scalar-field
stress energy is on the order of

5L vp b=5g PV

N or (N —1)
lP

D
lP

ht

On any time scale ht and in any classical time, quantum
gravity produces fluctuations of the metric with magni-
tude

QG ) l
5g„ (7)

This shows that 5go„&5g„„ for b, t -lt, . The quantum-
gravity fluctuations dominate over the scalar field's vacu-
um fluctuations throughout the region considered. Thus
an observer will not notice at all the tidal effects of the
divergent vacuum polarization.

Hawking [9], in response to this, has conjectured that
the spacetime near & remains classical until Db, t-l~~
and, correspondingly, until 5g„—1 on the grounds that
the location at which semiclassical theory breaks down
should be observer independent. And he has argued that,
as a result, the vacuum polarization divergence will
prevent the formation of CTC's. The above discussion
based on Ref. [7] (Kim-Thorne conjecture) asserts that
since this At is frame dependent, the breakdown occur-
ring at ht -lP can be true only in some preferred refer-
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ence frame. There is a preferred reference frame in
which the argument of Ref. [7] gives Hawking's location.
This is a frame in which the observer is moving so rapidly
that he or she sees the D Lorentz contracted to I~. The
difference between the Hawking conjecture and that of
Ref. [7] is so huge (a factor 10 where the semiclassical
theory breaks down when D —1 m) that there might be
some hope of seeing which (if either) is correct for vari-
ous candidate quantum theories of gravity.

III. PARTICLE PRODUCTION

A. Particle production

by an arbitrary gravitational 6eld

This method [10] is applied to the particle-production
problem in any spherically symmetric, asymptotically Aat

spacetime which has a one-to-one inapping between J
and 2+, being considered only in site. Using the geome-
trical approximation, we can determine the energy Aux

through the gravitational field. An incoming null ray
V =t +r =const, originating on J, propagates through
the geometry becoming an outgoing null ray from
U = t —r =const and arriving on J+ at a value
U =F( V). Conversely, one can trace a null ray from U
on .J+ to V = G ( U) on,V, where the function G is the
inverse of F.

A solution of the two-dimensional massless scalar-field
wave equation /=0 (the minimally coupled case) can be

P= 1 dao(a„F„+a"F*),
0

where

~

G ( U)
~

must be small for large r at late times so that the
outgoing wave packet arrives in the asymptotic region at
late times.

B. Wormhole cases

1. Constant-velocity case

Consider the Minkowski spacetime from which two
cylinders have been eliminated and identify the positions
which have the same proper times, since the wormhole*s
throat is assumed to be an extremely short one. Let the
event of the point where the left mouth meets the line be-

tween the centers of the two mouths be P=(0,0,0,0) and
that of the point where the right mouth meets the line be
Q=(O, D, O, O) when the wormhole forms. By moving the
right mouth with constant velocity v, the world lines of P
and Q are (t,0, 0,0) and (yt, D —yvt, 0,0), respectively, at
later times t )0 (see Fig. 1).

This model should be made such that the ray in this
wormhole can travel through the throat as if it were
confined. Thus we must consider the head-on traversal
case in which the positions of the mouths where the rays
come in and go out are x&0 and y =z =0 as in the two-
dimensional model. If it is not so, rays which have en-
tered one mouth can escape from the wormhole sometime
after passing through the throat a finite number of times.
The latter is not applicable to our problem since the rays
must remain in the wormhole until they approach &;
then, they come out to J+. Just in this case, we can deal

F (
{c!Jv+ {cdG{U)

)
V'4ir~ r

(9)

The first term of Eq. (9) is the incoming wave at early
times, and the second term is the outgoing wave at late
times in accordance with propagation by geometrical op-
tics. Any positive-frequency solution of the scalar wave
equation which is incoming on 2 can be written as a
wave packet from the F„. The annihilation operator a is
defined as a„~O) =0 for all cu. The state ~0) defined in

the in state is the state containing no field particles at ear-

ly times, while a ~0 )„„,WO in the out state, which means

particle creation.
The total power radiated at late times across a sphere

of radius r at late times with the stress-energy tensor T„
by the field P which satisfies the field equation is

2

(to, xo)

1 3 G"
24~ 2 G'

G lf I

(10)

since the average energy Aux of particles radiated to 2+
is given formally by (O~T", ~0). One can also write Eq.
(10) in terms of the function F and obtain the formula for
the conformally coupled case.

Therefore the main issue for particle production by a
gravitational field is to find the explicit form of the func-
tion G(U) or F( V); then, we can calculate the energy
Aux. The restriction for applying this method is that

FIG. 1. Particle production when the right mouth moves

with constant velocity v. The events (t, ,x; ) and t,-', x,') are iden-

tical. The right mouth disappears just before forming the Cau-

chy horizon at t, .
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with the particle-production problem near &. Thus,
based on the above arguments, a two-dimensional model
is appropriate for particle production and Eq. (10) will be
more useful than others.

As a model for particle production from the wormhole,
one can consider the ray from 2 which reflects at the
origin at the time to before wormhole formation and goes
into the right mouth. That is to say, the retarded time V
should be in the range —D ~ V &0. The reason is that
the wormhole forms at t =0 ( D&—V) and that there is
no wormhole, but only a reflection at the origin before
that time ( V &0). The equality comes from the assump-
tion that at wormhole formation the reflection does not
exist, but the identification does.

Next, the ray comes out from the left mouth through
the throat because of the identification, and it goes into
the right mouth again. This process repeats again and
again until the ray approaches &. When it is near &, the
right mouth suddenly disappears in order for the ray to
escape from the wormhole to J+ [12]. There, particle
production will be detected. Thus the ray escapes to 2+
for the time U & t„where t, is the formation time of &.
Even if the right mouth can exist for U & t„after the for-
mation of & the ray can be confined in the wormhole be-
cause of its time travel to the past or future. For U & t,
there is no ray to J+. However, escape is possible for
U & t, in the four-dimensional case, which does not ad-
mit head-on traversals with arbitrary incident angles in
general. But we will not deal with these cases because the
rays can time travel to the past or future for U & t„and
this will not be strongly relevant to the stability of%.

With the identification of the two proper times of the
two mouths, then

t =yt;

x =D —yvt, ,

where (t;,x; ) is the position at which the ray meets the
left mouth on the world line of the left mouth and (t,x )

is the corresponding position for the right mouth. The
y=(l —v /c )

' is the well-known factor of special re-
lativity. Of course, x; =0 in our case because the
refiection occurs at P=(t, 0,0,0). The Cauchy horizon &
is determined by the equation —t, +yt, =D —yvt„' thus,
t, =Df /(1 f). The relatio—n of t„with t„,is

or

V=G(U)=r,
t —U

C

(16)

One can find the restriction on n in terms of U from the
relation of Eq. (16) so that the value of n is the smallest
integer such that

1 ——& f".U
(17)

n

which is a linear function of U. Therefore
G'=1/f"=const and G"=G"'= =0, which gives
no particle production in this case.

If, however, the wormhole forms at a finite time (by to-
pology change) rather than in the infinite past, then n is
not a constant any more, but a function of U. Since
—D ~ V=to&0,

(n —1) &
ln(1 —U/t, )

&n .

Thus

D& U&0,—G(U)= U,

0& U& fD, G(U)=t, 1 ——+—,1 U

fD U& fD+f D, G(U)=t, 1 — + f'
(20)

The function G ( U) is a discrete function that has jumps
at

m

X„=D(f+f + +f )=fD

If the wormhole forms in the inj7nite past and the ray
U = Uo has no real quanta at very early times, then the
wormhole has no beginning. There is no point at which U
reached the start of the wormhole. It means that
n =const (independent of U) and that

t„,=y(1+v)t„—D,
and this relation shows

(1 f")fD—
0 1—

(12)

(13)

which means that G', G", . . . do not exist at X (see Fig.
2). One cannot adopt the formula of Eq. (11) under this

G(U)

We can check this expression for t„as n ~ ~ such that it
becomes t, : .YI A2 X3X4 .. . t,

lim t„=D
n ~" 1— (14)

Since x; =0, U„=t„, and V = to, the relation of U with
Vis

U„t,=f"(V t,)— — FIG. 2. Function G(U) when the wormhole forms at finite
time. There are jumps at U =X
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state of the function G(U). To treat the smoothed func-
tion instead of this pathological function, one can modify
the function G ( U) with the proper constant similar to
the topologist's sine curve. It is tuned as

2' ln(1 —U/t, )
G(U)= ——cos

2 inf 2
(21)

P(U)= 1 1 3——2(1 —0) —0 coth ( U)2

24m. (r, —U)2 2

+—g cot h (U)
2

which is an oscillatory function between —D and 0, and
G (X ) =0. The two most important things relating to
the particle production for the function G(U) are the
contracting period of the repeating oblique line, which
depends on the value of ln(1 —U/t, )/Inf, and the in-

clination of G ( U). As one model for approximating
G(U), we can assume a sinusoidal function with a con-
tracting period such as Eq. (21). Though Eq. (21) is
somewhat far from G ( U) near the origin, it approaches
very near to G(U) when U~t, . Of course, the exact
G ( U) can be represented as the Fourier series of a
sawtooth wave, but the basis function of the series is also
of the type of Eq. (21), i.e., a sinusoidal function whose
argument is 2m ln(1 —U/t, )/lnf.

Using this modified function, the net flux (two-
dimensional case) is

2. Uniformly accelerated case

1
x ' =D — (—coshgt —1 ) .J

g
J

(25}

The null curve at t = t„where the Cauchy horizon forms,
shows

—sinhgt, t, =D———(coshgt, —1) .1 . 1
(26)

We can determine the time t, such that

exp(gt, ) gt, =gD—+ I .

The relation of t„with t„,is

gt„=in [gt„,+(1+gD) ) .

(27)

(28)

Since Eq. (28) is very complicated, it is not easy to
solve the equation and to obtain a rigorous expression for
t„=G ( U}. Hence we now consider the extremely low ac-
celeration case g «1. Then, by neglecting higher-order

Using the same procedures as for the constant-velocity
case, except the world line Q (see Fig. 3), the net flux

from a wormhole, one of whose mouths moves with a
uniform acceleration g (hyperbolic motion ) [2], can be
calculated using Eq. (10). With the coincidence of the
two positions which have the same proper times,

1t'= —sinhgt

(22)

where g= —2n. /lnf and h(U)= —gin(1 —U/t, ). The
fourth term in the square brackets is greater than the
third term for large gcoth (U), though g can be smaller
than unity. Then the flux may be set as a positive one.
The net flux is divergent when U~t„and it looks as if
an attempt to form the Cauchy horizon will lead to
strong back reaction. The particle production may pre-
clude a civilization from forming a wormhole at a finite
time and moving one mouth to produce a Cauchy hor-
izon.

However, the order of magnitude of the net energy flux
is similar to the case of vacuum fluctuation [6]:

(23)

where At = U —t, is frame dependent. Thus, using the
Kim- Thorne criterion under which the semiclassical
theory breaks down, the net energy out of the mouth is

(24)

which is very small, and the net energy out of the mouth
can be cut orby quantum gravity on the same basis as
vacuum fluctuations (see Sec. II). Hence the net energy
out of the mouth has no significant effect on the
wormhole.

FIG. 3. Particle production when the right mouth moves

with uniform acceleration g. The thick lines are the world lines

of the two events P and 6. The right oblique line is the asymp-

tote of 6.
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small terms,

~ —1gU+gt +2
G(U)=t, +(U t,—}(gU+gt, +2) g

i=1

(29)

and F is defined as Eq. (9). The n-particle state is

1 2 J
I nk nk

1 2 J

C

1/2
2D

(30)

—(l l2 l. . .j l)
—ll2( t

) n(gt )
n. . . (

t )n~O)
1 2 l

1 2 I

(36)

When the wormhole forms at infinite past, n and U; can
be considered as constants independent of U. Thus

G(U) =t, +(U —t, )(gU+gt, +2)h,
where 6 is a positive constant. Hence the net flux is

2

P(U)=
16~ (U+t, +2/g)+(U t, )—

(31)

(32)

1 1

16m ( U+ 1/g)
(33)

hm P(U)= 1

U t, 16m
(
1+v'2gD

(34)

Therefore there is a positive Pnite jfux which means no
instability in the formation of the Cauchy horizon for this
uniformly accelerated motion. This result is as stable and
as convergent as the former case of wormhole formation
in the infinite past with constant velocity. However, be-
cause wormhole formation by topology change at a finite
time yields much more complicated results for the case of
accelerated motion than for the case of constant velocity,
we will not treat the accelerated-motion case any further.

3. Stimulated emission

Compared with the constant-velocity case of Eq. (22), the
term U+ t, +2/g in the denominator of Eq. (32) is an ad-
ditional term due to the acceleration g. This term will
prevent the net flux from being divergent for U~t, . If
g~0 (the constant-velocity case), then P( U)~0; i.e., no
particle production occurs. Of course, this result is con-
sistent with the case of a wormhole formed at infinitely
early times and moving with constant velocity [G( U) is a
linear function].

When U approaches t, (Cauchy horizon), the net flux
of Eq. (33) becomes finite, and

The first term of Eq. (35) is just the spontaneous emission
(0~ T„,~O) [cf. Eq. (10)], and the second term represents
the stimulated emission and scattering [13,14] due to ini-
tial particles.

Since the model in our case is two dimensional (l and
m are meaningless}, the quantum number which will be
substituted for k; in the massless case is co, and using the
same procedures as for the spontaneous-emission case
[10] in Sec. III A, the additional term in Eq. (35) simply
becomes

Idion(co)[F, F'"+F "F*„,] . (37)

f drown(co)e'"'=it (e) .
0

(38)

With this it(e), one can set up an approximate formula
for the energy flux P in terms of G and its derivatives in
the limit of infinitesimally small e, and

P= lim[G'(U)G'(U+e)&(a) &(e)], —1

4m' 0
(39)

where a =G ( U +e) G( U). —
Stimulated emission can be applied to various particle

distributions n (co) of the initial state, but it seems that
this stimulated-emission term does not affect seriously
our result on particle production.

The sum on i in Eq. (35) is changed into the integral on co

in Eq. (37). The only difference from the previous
spontaneous-emission case is n(co) in the integrand. In
Eq. (37), n (co) depends on the particle distribution of the
initial state. Thus, when n (co} is constant for all co, then
the additional term simply becomes n (0~ T,"~0), n times
the spontaneous emission, and seems to have no other
special effect on our stability problem. For example, one
particle state gives the particle creation of 2(O~T& ~0).
For an arbitrary distribution n (co), one should calculate
the Fourier transform of con (co) for a positive-definite co

as

So far, spontaneous emission has been treated only in
the vacuum in state which contains no particle. Thus, if
the in state is not a vacuum, i.e., contains particles, there
may be stimulated emission added to the spontaneous
emission.

In general, the expectation value of the stress-energy
tensor for an in state with particles is given as [11,13,14]

( nk, nk, . . . ~T
~ nk, nk

= g T„„[Fk,Fk ]+2+'nT„„[Fk,Fk ], (35)
k

t t

where T„[P,P] is defined as

IV. CONCLUSIONS

In this paper the quantum stability of the Cauchy hor-
izon when the wormhole can be described by the time
machine model is investigated. The particle creation by
the gravitational field of the wormhole is considered and
the ability of the energy flux to break the Cauchy horizon
is examined when the initial in state is a vacuum and
when it is a nonvacuum state with particles. Three cases
near the Cauchy horizon are examined: the constant-
velocity, uniform-acceleration, and stimulated-emission
cases. In the case of wormhole formation in the infinite
past, the net flux is zero near the Cauchy horizon when
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the mouth moves with constant velocity, and it is finite
when the mouth moves with uniform acceleration. Thus
fluxes cannot be divergent as one approaches the Cauchy
horizon. The Cauchy horizon is safe under quantum per-
turbations. In the case of wormhole formation in the
finite past by topology change, the particle production
can be divergent near the Cauchy horizon, but the
amounts of the energy fluxes within a Planck scale of the
Cauchy horizon are still small compared with the fluctua-
tions of the quantum theory of gravity and are the same
order of magnitude as vacuum fluctuations. Therefore,
under the Kim-Thorne conjecture, the Cauchy horizon is
also stable at the quantum level as well as at the classical
level.

One can try such problems as particle creation for a

ray after the Cauchy horizon. One can also extend this
problem using other quantum natures which might also
give other results for the range in which the quantum
theory of gravity is or is not available.
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