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Index theory for the nonrelativistic Chem-Simons solitons
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We have demonstrated that the nonrelativistic Chem-Simons solitons have 4n parameters by ex-
plicit parameter counting, zero-mode calculation, and index theory, where 2n is the flux number of
the soliton solutions. Despite the presence of the continuum mode, we have shown that the number
of zero modes for the nonrelativistic Chem-Simons solitons is the same as the index.

I. INTRODUCTION

Solitons exist in U(1)-invariant gauge theories in 2+ 1

space-time dimensions with a Chem-Simons term. In
particular it was recently shown that a self-coupled
charged scalar field interacting with a pure Chem-Simons
gauge field admits a Bogomol'nyi-type lower bound on
its energy, which makes it possible to obtain both topo-
logical and nontopological soliton solutions. ' Especial-
ly in the nonrelativistic limit Jackiw and Pi (JP) were
able to obtain exact analytic soliton solutions by reducing
the equations to the well-known Liouville equation.

In this work we shall use index theory to count the
number of parameters entering the JP general soliton
solution with a given flux. The system we are studying is
governed by the Hamiltonian

r D *0 — *,g&0

where 1( is the charged scalar field,

This can be combined with Eq. (1.3) to arrive at the Liou-
ville equation

2

V lnp= —ap, a=
/K/

'

which holds away from the zeros of p. The soliton-type
solutions of these equations have been studied in detail by
JP.

In Sec. II we shall explicitly count the degrees of free-
dom of the soliton solutions presented by JP and show
that n-soliton solutions depend on 4n parameters, inter-
preted as 2n locations, n scales, and n phases, with one
overall phase being irrelevant. In Sec. III we shall use an
index theorem to count the parameters abstractly,
confirming that 4n is indeed the correct number. In Sec.
IV we determine the 4n zero modes that describe the
infinitesimal deformations of the spherically symmetric
n-soliton solution. These modes are obtained by solving
for the deformations which preserve the self-duality con-
dition. In the last section we discuss subtle points that
arise when the index theorem is applied on an open
infinite manifold.

Df=(V eA)g, — (1.2)

8 =V X A = ——g' tI) = ——p .e, e

K
(1.3)

The Hamiltonian achieves its minimum when g satisfies
the static self-dual equation

and A is the vector field which is determined by the
Chem-Simons equation

II. EXPLICIT PARAMETER COUNTING
FOR THE n-SOLITON SOLUTION

The matter density that solves the Liouville equation
can be presented in the form

If'(z) I'

(I+If( )I'i' '

(2.1)
(D, +iD2)/=0 .

Decomposing tit into phase and amplitude

i co 1/2
7

the self-dual equation yields

e A =V'co+ —,
' V' X lnp .

(1.4)

(1.5)

z =re'

where f (z) is an arbitrary analytic function. It is antici-
pated that an n-soliton solution depends on 4n parame-
ters, since each soliton needs two parameters for position:
one for scale and one for phase. We can thus expect that
the most general solution for f (z) which describes an n

soliton configuration is
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Equivalently, we may write

n

f(z)= g
Zi

(2.2b)

The locations of poles z; describe the positions and C;
determines the scales and phases of solitons.

One may wonder whether the f (z) given in (2.2) is the
most general solution. In fact, a solution that depends on
(4n +2) parameters can also describe the n-soliton
configuration

n C.
f(z)=f0+ g

Z Zi
(2.3}

However, we can show that the additional two parame-
ters are not independent of the others.

For convenience, we first write f(z) of (2.3) in a
different form as

n —1

akz

f (z) =fo+
(z —z;)

(2.4)

a„1zn '+an 2zn + . +a2Z +a1Z+a0f (z)=
(z —z, )(z —z2 ) (z —z„)

(2.2a)

on 4n parameters. By use of the index. theory, we now
show that this is indeed the maximum number.

III. PARAMETER COUNTING
FROM INDEX THEORY

I(D)=dim(KerD) —dim(KerD')

=dim(KerD'D) —dim(KerDD') . (3.1)

If the adjoint operator D' has a vanishing kernel, the in-
dex is equal to the dimension of KerD.

Infinitesimal fluctuations preserving self-duality satisfy
the equations

In this section using index theory we shall count pa-
rameters by methods similar to those which have been
used in other self-dual systems. If an arbitrary self-dual
solution for A and P is given, variation of a parameter
yields a set of differential equations for the infinitesimal
fluctuation fields. If we require that the fluctuation fields
preserve the self-duality equation, the modes must lie in
the kernel of a matrix linear differential operator D. One
can then determine the number of independent parame-
ters from the dimension of D.

The index is defined as

If we define new parameters ak and z;

(Di +iD2 )5g ie g(5—A '+i 5 A )=0,
eVX5A=a5(g'g)=0 .

(3.2)

(3.3)

Y Y

p(r) =
1+ Y

X

2

where

n 1

g (z —z, )= g (z —z, )+f" g N„z",
k=1

the p(r) can be presented as

(2.5)

In order to remove gauge degrees of freedom from Eqs.
(3.2} and (3.3) we impose a gauge condition. There are
two convenient gauges: the Coulomb gauge and the
background gauge. In our case it is particularly con-
venient to work with the Coulomb gauge in order to ob-
tain exact solutions for normalizable zero eigenmodes of
D when the background is spherically symmetric. The
background gauge condition requires that the fluctua-
tions that we consider be orthogonal to those that are
merely gauge transformations whose gauge parameter
vanishes at spatial infinity. Our gauge condition is to
take

n —1

Y= g a„z",
Ic =0

eV 5 A+ (y*5$—P5q'}=—0 .
2

(3.4)

X= g(z —z, ).

f (z)= k=1

(z —z, )

The p(r) in (2.5) is the same as that obtained from
n —1

akz

The Coulomb gauge and the background gauge corre-
spond to e=0 and e= 1 in Eq. (3.4), respectively.

For either value of e, there will be one surviving gauge
mode which is not eliminated by condition (3.4), as long
as g(r) =0. This is the global U(1) mode of the mul-

f~co
tisoliton solution, and corresponds to the irrelevant,
overall phase factor mentioned previously.

If we write g=t/i&+i/2, the equations (3.2) through
(3.4) take the matrix form

This is the same form as (2.2a); therefore, f0 in (2.3) does
not introduce new parameters beyond those contained in
(2.2}. Thus the known n-soliton solutions depend at most

Dg=0,
where

(3.5)
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V, +ed —V~+eA '

V2 —eA ' V&+ed

2ag, 2afz V —V2 1

V) V2

(3.6)

5 2

eSA'

e5A

(3.7)

The index of D can be defined in terms of a spatial in-

tegral as

1
( 2 z I. (1 1V2 42V1)( 3+( P2V2 1 1V1)441

4n
l Ql =p(r) =

EKr

rp

rp

r

2
n

(3.14)

Equation (3.10) shows that square-integrable bound-state
solutions for Pz do not exist for e=0,1, and thus /&=0.
Then P& and P2 are determined by (3.12}and (3.13}from
(}I(3 in (3.11).

For the radially symmetric n-soliton solution which
corresponds to f (z)=C„z " in (2.1):

MI(D)= Tr
D D+M

MTr
DD *+M (3.8)

where lC„l =ro2". In this case Eq. (3.11) possesses one
square-integrable mode:

where "Tr" denotes a functional trace, and M is an arbi-
trary parameter on which I(D) does not depend. It is
convenient to calculate I(D) in the limit M2~ oo.

Though Eq. (3.1) requires the index to be integer, the
formula (3.8) does not necessarily yield an integer when
the problem is considered on an unbounded space, as in
our application. In such a space the differential operator
D can have a continuous spectrum in addition to normal-
izable zero eigenmodes. ' If the continuum spectrum is
separated by a finite gap from the zero eigenvalues, the
continuum does not cause any problem. When $~0 at
infinity, the continuum extends to zero and can affect the
calculation of the index. Analysis of this, in the case that
I(D) is nonintegral, indicates that the true index is the
highest integer less than I(D). However, I(D) can come
out an integer even on an open space. In that case the in-
dex may still be one integer less than I(D), depending on
the normalizability properties of the zero modes. In our
case I(D) is an integer, but all relevant modes are nor-
malizable so that I(D}coincides with the index. We shall
elaborate on this in the last section.

For the calculation of the index, we shall first show
that KerD* =0. The eigenvalue equation for zero modes
ofD* is

rp

2n (3.15)

rp

However, P, and (t(2 are not square integrable, as can be
seen from the expression for the norm density

Pf+(t'z= —(V(t 3) (3.16)

Simple power counting shows that (I)f+Pz is not integr-
able with P3 given in (3.15).

Since KerD' vanishes, the index I(D) indeed counts
the zero modes if we treat carefully the continuum. We
now evaluate the index I(D).

It is straightforward to show that

D'D = —V'I —L, ,

DD = —V I —L2,
and

tr(L
& L2 }=4e8, — (3.17)

where "tr" denotes the matrix trace. We now expand the
two terms in (3.8) about M j( —V' +M ) and take the
limit M ~~. The result is

—V)+ed

V2+eA '

—V —eA 1

1

—V)+ed
2ag) eg2

2afz —eg, =0.—
V2

—V)

V, —V'2 Q4

(3.9)

Ml(D)= ((m Jd r(4eB) x x) .
M~ oo (

—V+M )
(3.18)

M d p M
( —V+M ) (2m) (p +M )

The factor (x lM2/( —V +M ) x ) is easily evaluated in
momentum space,

It is straightforward to reduce these four coupled first-
order linear differential equations to the following
second-order equations:

(3.10)
The I(D) is then

(3.19}

(V'+2a
I pl')y, =0,

1
41 p l( P2V2 Pl 1)4'3 (PIV2+42V1)4'4)

(3.11)

(3.12}

I(D)=—fd'r 8

=4n,
which is an integer.

(3.20)
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5p54' = 02—5~+ 4i
2p

(4.1a)

IV. EXPLICIT ZERO MODES

In this section, we solve Eq. (3.6) exactly with the radi-
ally symmetric n-soliton background. Equation (3.5) im-
plies

where

E
U =2, for F=; U = ——,for F =5' .

p a
Setting

F =F ( A cosm 8+B sinm 8} (4.5)

56=Pi5~+6 5p (4.1b) and inserting into Eq. (4.4) yields

e5A '= V;5'+ —,'e"V, 5p (4.1c)

where 5' and 5p/p are determined by the equations

d d 2 4un2

df dP' +T
(4.6)

(V +2a 1(~ ) =0, (4.2)

where ro has been scaled to unity. Equation (4.6} can be
cast into the hypergeometric equation. Changing vari-
able

V+-0
p

2 (4.4)F=0,
n'n

Tp+
r

(V' —e~l(~')5co=O . (4.3)

With the radially symmetric solution for ~P~ presented
in (3.14) we have to solve the equations

4n

1

p2n+ 1

and setting

F=
2n)m/n

yields

2d1m m mu(u —1) + 2 —+1 u — —+1
du n 11

d&m m m+ ——+1 —v y =0,
du n n

(4.7)

whose solutions are recognized as hypergeometric func-
tions.

For U=2, i.e., for (5p/p), solutions become polyno-
mials. We can obtain the solutions for (5p/p) and 5co

in the form

5' =mA r +B r™. (4.10)

(5p/p) can also be obtained directly by deforming the
solution of the Liouville equation as given in (2.1):

5p=a, p +c.c.p5f (4.11)
(4.8a)(5p/p) = Am f (r)+ A f (r),

5' =B F (r)+B F (r), (4.8b) For the spherically symmetric solutions, inserting

where f=cz ", 5f =az (4.12)

1 1 ea=
2 4 a

1/2
1 1 eb= —+
2 4 a

@=0 or 1.

m

f (r)= [(m+n)+(m n)r "],—
2n+ 1

m 1F (r) =r 2F& a, b;1 ——;
7g 7

' 1/2

(4.9a)

(4.9b)

into (4.11) immediately yields (4.8a) and (4.9a) for (5p/p).
For m =0, +n, the two sets of independent solutions(f,F } and (f,F ) in (4.7) coincide, respectively,

apart for overall constant factors. In these cases we then
need second solutions in order to obtain the most general
solutions. We have found them, but they never make the
Auctuation fields normalizable, so we rule them out. We
may then write the most general solution for (5p/p) in
the form

[Note that the F (r) is real for arbitrary value of a since

the properties of hypergeometric functions depend only
on the value of ab and (a +b) which are real in our case,
ab =e/a and a +b= 1.] Taking e=O in (4.9b) yields the
Coulomb gauge solutions

5p Qo

P =5po+5p„+ g [f (r)P"'(8)+f (r)P' ' (8)],
p m =1

mXn

(4.13)

where
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P"(8)= A "cosm e+ B "sinm e,
5po= Aofo(r ),
5p„=f„(r)(A„cosn 8+B„cosn8) .

(4.15)

(4.16) C 1

(4.14) where

r —+l r-Pl

n n

For later use, we record the asymptotic behaviors of
f (r):

2nf &„(r) —(m +n)r 1 — r "+ ~r
r~O m+n

I —+a F —+bm I
n n

m 17lr —+l r ——
n n

(4.21)

2n
(m n)r —1+ r "+ ~r

r —+ 00 m —n

(4.17)

Cm
2

1 (a)l (b)

The most general solution for 5co can be written in the
form

5' —5coo+5'„
f & „(r) —(n m—)r 1—

r~O

(
—m n)r — 1—

2n
p + s ~ o ~p

271 —2n
T

m+n

+ g [F (r)Q'"(8)+F (r)Q"'(8)],
m=1
m~n

where

(4.22)

+ ~r, (4.18)

2nr "(1 r "+ . )~—rr~ oo
(4.19)

f „(r) —2nr "(1 r "+ —)~r"
r~O

Q "(8)= C"cosm 8+D "sinm 8,
5')0= CpFp( r)

5'�„=F„(r )( C„cosn 8+D„cosn 8 ) .

(4.23)

(4.24a)

(4.24b)

F (r) —(C2C2 —Ci Ci™)r[1+O(r" ))~r
r~O

The types of asymptotic behavior of F (r) and F (r)
are

Note that the asymptotic behavior of f „(r) at large r
switches from its behavior at the origin, while the
f ~„(r)'s behave in the same manner at the origin and at
infinity. This switching in f „ is the reason why the
continuum modes do not contribute to our evaluation of
the index. This point will be discussed in detail in the
next section.

Before writing down the most general solution for 5',
we first define a set of new function F (r)'s:

„—m l+ ab
r~ oo 1+—m

n

r
—2n+O(r —4n) —m

—Ci r [1+O(r ")]~r
r —+ oc

F —r [C +C r +O(r "+ )]~r™
r~O

(4.25)

F (r)=C2™F (r) CPF— (4.20)
(4.26)

From the square integrability of the fluctuation fields

f d r[(e5A') +(5$, ) +(5/2) ]

= J d r (1+2a)p +V; 5co5'J — e'~ V 5c~o+ ej"Vk— (4.27)

P"=( A "cosm 8+B "sinm 8),
Q"= ( B"'cosm 8+ A "'si—nm 8),
Q' '=(B' 'cosme —A' 'sinme),

(4.28)

for m =0 the constants Ao and Co defined in Eqs. (4.15)

and from the asymptotic behavior of the relevant func-
tions, we obtain the conditions, for 1~ m & n —1, Q"
and P"must be matched as

and (4.24) inay remain arbitrary, for m =n two constants
A„and B„can be arbitrary while C„and D„must be set
to zero. We thus have 4n independent parameters:
4n —4 from l ~m ~n —l, 2 from m =0, and 2 from
m =n. Note that our parameter counting includes the
global U(l) mode, which is seen from Eq. (4.24a) where
the 5coo does not vanish at infinity.

One interesting point in our zero-mode calculation is
that the maximum angular momentum state (m =n) is
included as a normalizable eigenmode. This is in contrast
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with related studies of zero modes on the plane ' where
the highest angular momentum state is unnormalizable
and produces a mismatch between the index and number
of zero modes.

V. DISCUSSIONS AND CONCLUSIONS

(D, +iDz )5/=0, (5.1)

where we set 5 A
&

=5 A 2
=0. Its normalizable solutions

for 5f agree with the asymptotic part of the full solutions
given in (4.13) except the highest angular momentum
mode, the m =n case. The exact solutions include this
state as a normalizable mode, while the asymptotic Eq.
(5.1) leaves it as an unnormalizable one.

The asymptotic equation (5.1) and its adjoint equation

The Atiyah-Singer index theory requires that the man-
ifold on which the differential operators act is compact.
In our case the manifold is a two-dimensional Euclidean
space, and thus the operator D has a continuous spec-
trum in addition to the discrete set of eigenvalues. This
continuum extends to zero when P ~ 0 and affects the

f—+ 00

calculation of the index, which now requires a subtle
treatment.

Since the continuum correction arises from the zero ei-
genvalue end of the continuum spectrum we can evaluate
it by studying the asymptotic behavior of Eq. (3.5).
Neglecting all terms which fall faster than I /r yields the
simple equation

( D—, +iD2 )5$"=0 (5.2)
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are essentially equivalent to the equations studied by An-
sourian and Kiskis. The solutions of our asymptotic
equations agree completely with theirs including the un-
normalizable mode (m =n state) in the asymptotic be-
havior. They found that the index is larger than the
number of normalizable solutions by one unit when the
index is an integer. In our case the mode in question is
normalizable in the full equation (3.5). Therefore the
number of normalizable zero modes agrees with the in-
dex.

By comparing the Coulomb gauge solution for 5co

given in (4.10) with the background gauge solution given
in (4.8b) we see that the computations and results are
much simpler in the Coulomb gauge, while the physically
relevant information such as the asymptotic behavior and
the number of normalizable zero modes are the same in
both gauge conditions.
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