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Abstract: A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT), 

for taste masking of sildenafil (SDN). To further improve the taste-masking efficiency and 

enhance the drug-release rate, we coated the nanohybrid of SDN–MMT with a basic polymer, 

polyvinylacetal diethylaminoacetate (AEA). Powder X-ray diffraction and Fourier transform 

infrared experiments showed that SDN was successfully intercalated into the interlayer space 

of MMT. The AEA-coated SDN–MMT nanohybrid showed drug release was much suppressed 

at neutral pH (release rate, 4.70 ± 0.53%), suggesting a potential for drug taste masking at the 

buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid 

(pH = 1.2) and compared the drug-release profiles of AEA-coated SDN–MMT and Viagra®, 

an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-

coated SDN–MMT during the first 2 hours while almost 100% of drug was released from 

Viagra®. However, an in vivo experiment showed that the AEA-coated SDN–MMT exhibited 

higher drug exposure than Viagra®. For the AEA-coated SDN–MMT, the area under the plasma 

 concentration–time curve from 0 hours to infinity (AUC
0-∞) and maximum concentration (C

max
) 

were 78.8 ± 2.32 µg ⋅ hour/mL and 12.4 ± 0.673 µg/mL, respectively, both of which were larger 

than those obtained with Viagra® (AUC
0-∞ = 69.2 ± 3.19 µg ⋅ hour/mL; C

max
 = 10.5 ± 0.641 µg/mL). 

Therefore, we concluded that the MMT-based nanohybrid is a promising delivery system for 

taste masking of SDN with possibly improved drug exposure.

Keywords: montmorillonite, nanohybrids, polyvinylacetal diethylaminoacetate, sildenafil 

citrate, taste masking

Introduction
There have been many attempts to explore new nanohybrids with the desired 

physicochemical and biological properties, such as inorganic–organic nanohybrids with 

two-dimensional limited high-temperature superconductivity,1 bio–inorganic nanohy-

brids with enhanced gene delivery characteristics,2–4 intravenous injectable drug-delivery 

systems,5 and various therapeutic agent-delivery systems with high efficiency.6–13 Among 

various inorganic nanohybrids, the most widely studied for pharmaceutical applica-

tion were smectite clays as formulation additives. For taste masking in this study, we 

employed a smectite clay material that can swell and encase a drug.

The unpleasant taste of drugs has been one of the major limitations for designing 

oral drug formulations since swallowing a tablet may be the only option for the 

drug to bypass taste perception in the buccal cavity. However, such methods for drug 

administration still require the patients’ cooperation to a large extent and may be 

inconvenient, especially for drugs needing punctual or sudden dosing schedules.
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For this reason, sildenafil (SDN) citrate may be a drug 

that needs a delivery strategy other than a tablet formulation 

for swallowing. SDN, an inhibitor of cyclic guanosine mono-

phosphate-specific phosphodiesterase type 5, has been used 

for treatment of erectile dysfunction and is already approved 

as a tablet dosage form for oral delivery (Viagra®; Pfizer, 

New York, NY). The nature of this specific drug therapy 

implies that the dosing moments are mostly unexpected or 

sudden, and for patient convenience, an easier administration 

method other than swallowing is needed. Redesigns of the 

formulations, such as chewable or dissolvable tablets,14–17 or 

rapidly dissolving film,18–20 would be desirable, but may not 

be practical for SDN delivery due to its unpleasant taste.21

Therefore, taste masking of SDN may be needed for orally 

disintegrating formulations to ensure patient compliance and 

improve acceptability of medication. Previously, numerous 

attempts have been made in the field of taste masking, where 

most approaches were based on encapsulation of drugs with 

polymeric materials, such as cellulose, Eudragit® (Evonik 

Industries AG, Essen, Germany), or polyethylene glycol, 

among others.22–24 The purpose of encapsulation was primarily 

focused on suppressed release of drugs in biological fluids 

with no (or almost no) free drug molecules available at the 

buccal cavity. However, for those conventional approaches, the 

diffusion barrier formed by polymeric materials would still be 

in effect while the formulations pass through the gastrointestinal 

tract, where the drug release would be undesirably suppressed. 

This is not beneficial, especially for SDN delivery, since the 

drug requires rapid systemic absorption for its own therapeutic 

purpose. To resolve this problem, the delivery profile of SDN 

should be specifically tailored: the drug release should be 

highly suppressed at the buccal cavity and then released rapidly 

in the gastrointestinal fluid.

Some previous studies utilized polymers with pH-

dependent solubility as an encapsulant, where the barrier 

polymer dissolves only at low pH, with controlled release 

of the drug in the gastric cavity, not in the buccal cavity.25–27 

Although this selective delivery profile may benefit from 

both taste masking and rapid drug release to some extent, 

the formulations may not yet be optimized for the follow-

ing reasons. The drug molecules may be distributed on the 

surface of the polymeric encapsulant slightly, which may 

still cause a bitter taste. The delayed dissolution of polymers 

may still inhibit rapid onset of drug release and the systemic 

absorption of drugs may be retarded altogether.

In this study, we prepared a bentonite-based nanohybrid 

coated with an acid-soluble polymer to better achieve both 

taste masking and rapid delivery of SDN. Bentonite, mainly 

composed of montmorillonite (MMT), consists of tetrahedral 

sheets of SiO
4
 units and octahedral sheets of Al3+ ions.28,29 The 

isomorphous substitution of Al3+ with Mg2+ can generate a 

negative surface charge on bentonite. To balance the excess 

negative charge, the interlayer cations are stabilized within 

the layers and as a result, bentonite possesses cation- exchange 

capacity (CEC). Therefore, the cationic drug SDN could be 

encased in the layered space of MMT with strong ionic bond-

ing, producing an SDN–MMT nanohybrid with taste-masking 

functionality. The nanohybrid was also coated with an acid-

soluble polymer, polyvinylacetal diethylaminoacetate (AEA), 

to further prevent drug release in the buccal cavity and aid 

rapid release in the stomach. For the latter, we reported that 

the presence of a large molecule possessing the same polarity 

as the intercalated compound facilitated the diffusion of the 

intercalated compound by enlarging the entrance of layered 

structures of MMT.30–32 The carrier material, MMT clay, 

employed in this work is approved by the US Food and Drug 

Administration (FDA) as a diluting agent for oral delivery 

and is widely used in medicine and pharmacology.33,34 The 

polymer used for coating, AEA, is also accepted as a food 

additive by the FDA.35

In this study, we developed an SDN–MMT nanohybrid 

with taste-masking functionality and compared its drug-release 

profile with that of Viagra®, an SDN medication available on 

the market. We aimed to prove that our SDN–MMT nanohybrid 

formulation was advantageous in its therapeutic efficacy as well 

as in administration strategy. Our SDN–MMT nanohybrid was 

characterized with powder X-ray diffraction (PXRD), Fourier 

transform infrared (FT-IR) spectra, and thermogravimetry 

(TG) analysis to examine the properties of SDN intercalated 

in MMT. The release profiles of SDN with both noncoated and 

AEA-coated SDN–MMT nanohybrids were also examined in 

simulated biological fluids, using high-performance liquid 

chromatography (HPLC). To assess the drug bioavailability, 

the SDN–MMT formulations were compared with Viagra® 

through both in vitro and in vivo experiments.

Material and methods
Materials
Montmorillonite (MMT, Kunipia-F; CEC = 110 mequiv/100 g) 

and polyvinylacetal diethylaminoacetate (AEA) were obtained 

from Kunimine Industries Co, Ltd (Tokyo, Japan) and 

 Sankyo (Tokyo, Japan), respectively and used without further 

purification. Sildenafil (SDN) was a kind gift from Daewoong 

(Seoul, Korea). Acetonitrile, methanol, and glacial acetic acid 

of high performance liquid chromatography (HPLC) grade 

were purchased from JT Baker (Cleveland, OH).
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Preparation of SDN–MMT  
and AEA-coated SDN–MMT
The SDN–MMT nanohybrid was prepared by ion exchange 

reaction. Briefly, 20 g MMT was dispersed in 2 L deionized 

water for 3 hours at room temperature to give a 1.0 wt% 

MMT suspension. To prepare an SDN solution, 14.7 g SDN, 

which is equivalent to the CEC of 20 g MMT, was first 

dissolved in 1200 mL of a 1% phosphoric acid solution, and 

800 mL ethanol was added afterwards. The resulting solution 

was then mixed with the MMT suspension and stirred for 

4 hours at room temperature to facilitate an ion exchange 

reaction. The solid product, SDN–MMT, was then filtered and 

washed twice with 50% ethanol solution and pure ethanol, 

respectively, to remove the residual drug. The resulting 

SDN–MMT slurry (200 g) was dispersed again in a mixture 

of methylene chloride (MC) and ethanol (MC: ethanol, 

200 mL: 400 mL, v/v) and spray-dried with an SD-1000 spray 

dryer (Eyela, Tokyo, Japan) under the following conditions: 

inlet temperature, 80°C; blower speed, 0.30 m3/minute, and 

atomizing pressure, 125 ± 5 kPa.

To prepare the AEA-coated SDN–MMT, the SDN–

MMT slurry (200 g) was dispersed in a mixture of MC and 

ethanol (MC: ethanol, 200 mL: 400 mL, v/v), where 10 g 

AEA was dissolved. The resulting suspension was then 

spray-dried with a spray dryer under the same conditions 

stated above.

Characterization of nanohybrids
The PXRD patterns of both SDN–MMT and AEA-coated 

SDN–MMT were collected using a Rigaku D/MAX-2200 

Ultima diffractometer (Rigaku International Corporation, 

Tokyo, Japan) equipped with Ni-filtered Cu-Kα radiation 

(λ = 1.5418 Å). The patterns were recorded at 40 kV and 

30 mA. TG analysis was performed at a heating rate of 

5°C/minute from room temperature to 1000°C under ambient 

atmosphere (SDT Q600; TA Instruments, New Castle, DE). 

FT-IR spectra (Figure S1) were recorded with a JASCO FT/

IR-6100 spectrophotometer (JASCO, Easton, MA) by the 

standard KBr disk method. The particle size (Figure S2) of 

SDN–MMT and AEA-coated SDN–MMT were obtained 

with dynamic light-scattering method (ZetaSizer; Nano 

ZetaSizer, Malvern Instruments, Malvern, UK).

Determination of SDN content
To determine the amount of SDN, SDN needs to be 

 completely extracted from the SDN–MMT nanohybrids. 

Thus, the solution was first prepared with an aqueous solution 

buffered at pH 4.5 (KH
2
PO

4
), acetonitrile and phosphoric acid 

(400:600:1, v/v/v). Then, each of the samples containing the 

equivalent amount of 6 mg SDN was dispersed in 100 mL 

of the resulting solution and sonicated for 40 minutes. The 

suspension was filtered by a polypropylene membrane with 

a pore size of 0.45 µm (Pall, Port Washington, NY), which 

was then measured with HPLC (1100 Series Instrument; 

Agilent Technologies, Santa Clara, CA) using a column, 

Zorbax Eclipse XDB-C18 (4.6 mm × 250 mm, 5 µm; Agilent 

Technologies). The mobile phase was prepared with an aque-

ous solution buffered at pH 4.5 (KH
2
PO

4
) and acetonitrile 

(40:60, v/v). The samples were analyzed under the following 

conditions: flow rate, 1 mL/minute; injection volume, 10 µL; 

column temperature, 35°C; and UV wavelength, 230 nm.

In vitro drug release experiment
The in vitro drug release tests were conducted with intact 

SDN, SDN–MMT, AEA-coated SDN–MMT, and Viagra®, 

following the paddle-stirring method using a DST-810 

dissolution tester (LabFine, Seoul, Korea).36 The bath 

temperature was maintained at 37°C ± 0.5°C and the 

impeller was set at 50 rpm. Each sample containing the 

equivalent amount of 50 mg SDN was dissolved in 900 mL 

of the release media, the aliquot of which was sampled 

at scheduled intervals. The aliquot was then filtered with 

a polypropylene membrane with a pore size of 0.45 µm 

(Pall), which was measured with the HPLC as described 

above in ‘Determination of SDN content’. In this work, 

two distinct release media were employed to simulate the 

buccal and gastric cavities, respectively. To simulate the 

buccal condition and evaluate the taste-masking ability of 

the nanohybrids, the release test was performed at neutral 

pH for 2 minutes, following the International Pharmaceutical 

Federation/American Association of Pharmaceutical Sciences 

guidelines.37 To simulate the gastric conditions, the release 

test was performed at pH 1.2 for 2 hours.

In vivo experiment
Preparation of standard solutions and animals
The stock solution of SDN was prepared at a concentration 

of 50 µg/mL in methanol and was further diluted to 

0.1∼4.0 µg/mL for plasma calibration standards. The solutions 

of six different concentrations, covering the expected ranges 

of 2∼200 ng/mL, were prepared. Six male beagle dogs, 

8.5 months old and weighing 12∼15 kg, were purchased from 

Central Lab Animal (Seoul, Korea). The animals were fasted 

overnight with free access to water. Viagra® or AEA-coated 

SDN–MMT was orally administered to each dog at a dose of 

20 mg/kg (n = 3). The SDN dose was selected on the basis 
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of the pharmacological and pharmacokinetic data published 

previously.38 The Viagra® tablets were ground into powder, 

which was weighed to match the dose of SDN. OASIS HLB 

96-well plates (10 mg; Waters Corporation, Milford, MA) 

were utilized for solid-phase extraction (SPE) of the analytes 

in plasma samples. In all instances, animals were humanely 

handled in accordance with Institutional Animal Care and 

Use Committee guidelines.

Analytical method development
Blood sampling and HPLC-ESI-MS/MS analyses
Approximately 5 mL of blood was collected from a right 

front leg vein at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, 16, and 24 hours 

after oral dosing. The cannula was filled with heparinized 

saline (500 IU mL−1) to prevent blood clotting, and then the 

blood samples were taken after centrifugation and stored 

at −70°C until analysis.

An OASIS HLB 96-well SPE plate (Waters Corporation) 

was used for the extraction of the analyte from the plasma 

samples. Aliquots of 200 µL of 6% perchloric acid were 

added into the 300 µL of blank or plasma sample in a 

1.5 mL microtube to precipitate the protein. The mixture 

was vortexed for 10 seconds, then centrifuged at 15,000 × g 

for 10 minutes. The supernatant was immediately loaded 

onto each well of OASIS HLB plate, previously conditioned 

with 600 µL of methanol followed by 600 µL of water. The 

whole wells were washed with 600 µL of water and then air-

dried for about 30 seconds. The attached analyte was eluted 

twice with 200 µL of 5% methanolic ammonium hydroxide 

(conc NH
4
OH/methanol, 5:95, v/v), then evaporated to 

dryness at room temperature by vacuum centrifugation. The 

residues were reconstituted to 200 µL with methanol, and 

a twentieth (10 µL) of the solution was subjected to HPLC-

electrospray ionization mass spectrometry/mass spectrometry 

(ESI-MS/MS) analysis.

All HPLC-ESI-MS/MS experiments were carried out using 

a Waters/Micromass Quattro micro/MS interface consisting 

of a Waters 2695 separation module connected directly to a 

Micromass Quattro micro/MS (Waters Corporation). Separa-

tion was performed on a 30 mm × 2.1 mm Xterra MS C18 

(3.5 µm; Waters Corporation) reversed-phase column. The 

analytes were eluted at a flow rate of 180 µL/minute with an 

isocratic system of 24% (v/v) aqueous acetonitrile with 0.1% 

acetic acid for 7 minutes. The column effluent was directed 

to the ESI-MS, which was operated in the positive ion mode 

without splitting. The instrument was tuned by the direct 

infusion of a stock solution of SDN (2 µg/mL in methanol) in 

the ion source at 40 µL/minute. The optimization parameters 

of the ESI-MS/MS system were based on the maximum 

generation, first of the protonated molecular (parent) ions, 

and then of the corresponding fragment (product) ions. The 

following tuning parameters were retained for the optimum 

ESI-MS/MS detection of SDN: the capillary voltage and 

cone voltage were 2 kV and 35 V, respectively; the source 

and desolvation temperatures were 130°C and 250°C, 

respectively; the desolvation gas and cone gas flow rates 

were 500 L/hour and 50 L/hour, respectively. The collision 

energy in the MS/MS mode, concurring with full argon-

induced fragmentation of the parent molecules, was found 

to be 0.27 V. The quantification of SDN was conducted 

using MS/MS in multiple reaction monitoring (MRM) mode. 

This was done by choosing the two mass ions set to detect 

a transition of the parent ion to the product ion specific to 

SDN (474.7 . 99.9). The molecular structures and major 

fragmentation pattern for SDN are shown in Figure 1.

HPLC-ESI-MS/MS analytical method validation  
for SDN in in vivo samples
Linearity of calibration was assessed by analyzing six 

standards ranging from 2∼200 ng/mL in plasma. The 

calibration curve was based on drug peak area and was 

analyzed by weighted linear regression using the Sigmaplot 

program (v. 8.0; SPSS Inc, Chicago, IL). The correlation 

coefficient was calculated. The limit of quantification 

(LOQ) was defined as the drug concentration producing at 

least ten times the response compared to the blank response 

(S/N . 10). Quality control (QC) samples were prepared at 

low (5 ng/mL), medium (50 ng/mL), and high concentration 

(150 ng/mL) in the same way as the plasma calibration 

samples. Intra- and Interday precision and accuracy were 

assessed by analyzing the above-mentioned QC samples 

with five replicates on three different days, and they were 

presented as relative standard deviations (RSD). Recoveries 

of the analytes spiked into plasma samples at three different 

concentrations (2, 20, and 100 ng/mL) were calculated by 

comparing the peak area of the extracted sample to that of 

the unextracted standard solution prepared with the same 

solvent, and each experiment at the same concentrations was 

done in triplicate. Stability of SDN was conducted using QC 

samples after three freeze–thaw cycles, at room temperature, 

and after post-preparation procedures.

Pharmacokinetic study
Pharmacokinetic parameters were determined from the 

plasma SDN concentration–time data by noncompartmental 

analysis using WinNonlin Professional software (v. 2.0; 
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Pharsight Co, Mountain View, CA). The pharmacokinetic 

parameters estimated from the data were area under the 

plasma concentration–time curve from 0 hours to infinity 

(AUC
0-∞), elimination half-life (t

1/2
), apparent volume of 

distribution (V
d
/F), and total clearance (Cl/F). The maximum 

plasma concentration (C
max

) and the time required to reach 

C
max

 (T
max

) were determined from the individual plasma 

concentration–time curve by visual inspection.

Statistical analysis
All the results were presented as means ± standard deviations. 

An unpaired Student’s t-test was used to determine significant 

differences between the SDN and AEA-coated nanohybrid 

data. Differences were considered to be significant when 

P , 0.05.

Stability test
The shelf-life of SDN for SDN–MMT and AEA-coated 

SDN–MMT nanohybrids were examined through an 

accelerated stability test.39 Each of the samples was put in 

a glass vial and sealed, which was then placed in a constant 

temperature and humidity chamber (LH-1000; New Power 

Engineering, Seoul, Korea) for 6 months. The temperature 

and humidity were maintained at 40°C and 75%, respectively. 

The amount of nondegraded SDN was measured with HPLC 

as described above in “Determination of SDN content”. 

For each of the samples, the fraction of nondegraded SDN 

was calculated by percentage based on the SDN content 

measured initially before the stability test.

Results and discussion
Powder X-ray diffraction analysis
Figure 2 shows the PXRD patterns of intact SDN, pristine 

MMT, SDN–MMT, and AEA-coated SDN–MMT. For 

pristine MMT, the characteristic peak of (001) was clearly 

seen at 6.9° (Figure 2B), which was shifted to 3.8° for both 

SDN–MMT and AEA-coated SDN–MMT nanohybrids 

(Figure 2C and D). This could be ascribed to the expanded 

basal spacing of MMT from 12.5 Å to 22.8 Å after 

intercalation of SDN. There was no difference in the PXRD 

patterns between the SDN–MMT and the AEA-coated 

SDN–MMT nanohybrids, implying that SDN still resided 

in the interlayer space of the MMT after the AEA coating. 

The peaks of intact SDN (namely, crystalline SDN) were not 

observed with SDN–MMT and AEA-coated SDN–MMT 

nanohybrids, indicating that SDN molecules were distributed 

in the MMT interlayer space with a molecular level as 

reported previously in other nanohybrid systems.32,40

Subtracting the layer thickness of MMT (9.3 Å) from 

the basal spacing of SDN–MMT, the gallery height was 

estimated to be 13.5 Å. Considering that the longitudinal 

and lateral molecular dimension of SDN are 5 Å and 16 Å, 

respectively, it became very likely that the SDN molecules 

should be stabilized in a double-layer arrangement. To 
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explain this, the steric limitations between the intercalated 

SDN and charged sites of MMT layers were examined. 

The steric limitations are generally expressed by the 

equivalent area (A
e
) of clay lattices and the area demand 

(A
c
) of intercalated molecules. The A

e
 can be estimated 

from the equation A
e
 = ab/2ξ, where a and b are lattice 

parameters and ξ is the layer charge. The A
e
 of MMT 

was estimated to be 28.85 Å2, calculated using a negative 

charge density, 0.27e-/46.5 Å2.41 The area demand (A
c
) of 

SDN was about 136 Å2, calculated from the molecular 

model in Figure 3B. Thus, since A
c
 is larger than 2A

e
, SDN 

molecules should have a tilted bilayer arrangement to avoid 

steric hindrance.31,42 The protonation sites of SDN should 

be only at N22 as shown in Figure 1 since protonation in 

combined rings of pyrimidine and pyrazole is unlikely 

due to resonance and steric effects.43 As a result, the SDN 
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Figure 2 Powder X-ray diffraction patterns of (A) sildenafil citrate, (B) montmorillonite (MMT), (C) sildenafil–montmorillonite (SDN–MMT), and (D) polyvinylacetal 
diethylaminoacetate (AEA)-coated SDN–MMT.
Note: *Quartz.
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Figure 3 Schematic descriptions for (A) sildenafil–montmorillonite (SDN–MMT) and (B) sildenafil (SDN) molecules drawn by ChemBio3D Ultra 12.0 program (Cambridge 
Soft, Cambridge, MA).
Notes: carbon, gray; nitrogen, blue; oxygen, red; sulfur, yellow; hydrogen, white.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1640

Lee et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

molecules should be arranged in the interlayer space of 

MMT as depicted in Figure 3A.

Thermogravimetric analysis
Figure 4 depicts the TG curves of pristine MMT, intact SDN, 

and SDN–MMT. For pristine MMT, the first weight loss up 

to 100°C was due to the evaporation of water adsorbed on 

the MMT surface (Figure 4C). The weight loss observed at 

600°C was attributed to dehydroxylation and phase transition 

of MMT. The intact SDN exhibited three consecutive weight 

losses (Figure 4A). The first weight loss at 188°C was due 

to the decomposition of citrate and the second weight loss 

at 270°C was ascribed to the decomposition of the SDN 

molecule itself. The intact SDN was completely decomposed 

above 326°C, corresponding to the last weight loss. For 

SDN–MMT (Figure 4B), the weight loss due to dehydration 

was seen up to 200°C. The following weight loss from 250°C 

to 750°C was due to the decomposition of intercalated SDN. 

Interestingly, the decomposition temperature of SDN in 

the nanohybrid (250°C) was lower than that of intact SDN 

(270°C).This result could be due to the molecular distribution 

of SDN upon intercalation, which would possibly lead to the 

enhancement of SDN solubility.31,44

SDN content in nanohybrids
The SDN content of the SDN–MMT and AEA-coated 

SDN–MMT nanohybrids was 30.61% ± 0.55% and 

16.59% ± 0.44%, respectively. The decrease in SDN content 

with AEA-coated SDN–MMT was due to incorporation of 

the AEA polymer through the coating process employed in 

this work (MMT:AEA = 1:1 w/w).

In vitro drug release test
We prepared our nanohybrid system to mask the taste of SDN. 

To assess this quality, we conducted an in vitro drug-release 

experiment in deionized water for 2 minutes, mimicking 

the condition in the buccal cavity.37 As shown in Table 1, 

for intact SDN, more than 73% of the drug was dissolved 

rapidly into the release media as expected. Almost half of 

SDN was released from Viagra® during the first 2 minutes 

since the tablet is designed to rapidly release the drug in the 

biological fluid. In contrast, the nanohybrids (ie, SDN–MMT 

and AEA-coated SDN–MMT) exhibited greatly suppressed 

release under the test condition employed in this work. The 

SDN release from the nanohybrids was more than tenfold 

less than that from intact SDN and Viagra®: the SDN–MMT 

exhibited no release, and for AEA-coated SDN–MMT, only 

a slight portion of the drug (,5%) was released during the 

first 2 minutes. The strong ionic interaction between the SDN 

molecules and the MMT interlayers appeared to hinder free-

ing the drug molecules, resulting in very low drug release. 

A slight drug release (,5%) from AEA-coated SDN–MMT 

could be due to slight dissolution and ionization of the AEA 

even in the neutral media to deintercalate the drug in the 

MMT to some extent.

In addition to taste masking, the SDN needs to be released 

rapidly in the gastric cavity for satisfactory therapeutic 

efficacy. Thus, we examined the drug-release profiles of 

SDN–MMT and AEA-coated SDN–MMT nanohybrids 

in a simulated gastric condition and compared them with 

those of intact SDN and Viagra® (Figure 5; Table S4). The 

drug release from intact SDN and Viagra® was very rapid as 

expected. More than 90% of SDN was released in 10 minutes 

and 99% during the first 2 hours, which could be attributed 

to high solubility of SDN in acidic fluid.45 However, the drug 
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Figure 4 Thermogravimetric curves of (A) sildenafil citrate, (B) sildenafil–
montmorillonite (SDN–MMT), and (C) montmorillonite (MMT).

Table 1 In vitro drug dissolution profiles under a simulated buccal 
condition

Samples % drug releasea

1 minute 2 minutes

Viagra® 17.17 ± 4.2 48.78 ± 5.49
Sildenafil citrate 53.31 ± 7.47 73.66 ± 4.61
Noncoated nanohybrid 0.00 0.00
AEA-coated nanohybrid  0.66 ± 0.64  4.70 ± 0.53

Notes: aValues are mean ± SD; n = 3.
Abbreviations: AEA, polyvinylacetal diethylaminoacetate; SD, standard deviation.
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was hardly released from SDN–MMT (,3%) again due to 

the strong ionic interaction between the intercalated SDN 

and MMT. In spite of its excellent taste-masking properties 

(Table 1; Table S3), the SDN–MMT by itself may not be 

useful for effective delivery of SDN. On the other hand, 

drug release increased dramatically with the AEA-coated 

SDN–MMT nanohybrid. About 75% of SDN was released in 

10 minutes and up to 90% during the first 2 hours, which was 

only 10% less than Viagra®. The cationic macromolecule, 

AEA, when dissolved and ionized selectively at low pH, 

could replace the intercalated drug molecules effectively 

and enlarge the interlayer spacing to facilitate drug diffusion 

out towards the release media.31 This result is meaningful 

in a sense that AEA-coated SDN–MMT nanohybrids could 

provide both taste masking and effective in vitro release of 

SDN relatively similar to proven medications like Viagra®.

SDN analytical method validation
Under the HPLC-ESI-MS/MS conditions described in the 

experimental section, no interfering peak was detected 

in the plasma samples. MRM in a positive mode was 

used to quantify SDN (see Supplementary information). 

Figure S3 shows the typical product ion spectra of SDN, and 

the typical chromatograms of SDN detected with the MRM 

mode of HPLC-ESI-MS/MS are demonstrated in Figure S4. 

The calibration curve for SDN was generated by linear regres-

sion of peak area ratios against the injected amount of the 

analyte. The curves show good linearity over the calibration 

ranges in plasma (R2 = 0.9999). The LOQ, defined as a signal-

to-noise ratio of 10, was estimated at 1.2 ng/mL.

The intra- and interday precision and accuracy using the 

QC samples are shown in Table S1. The precisions (RSDs) 

are all less than 5%, and accuracy ranged from 91.7% to 

96.2% for intraday and 91.0% to 93.6% for interday, respec-

tively. This indicates the method is accurate and precise 

enough to apply in pharmacokinetic study.

The mean recoveries of SDN spikes in plasma at three 

different concentrations ranged from 91.4% to 93.6%, and 

the percentage of RSDs were all less than 7% (n = 3) (see 

Table S2 for supplementary information), demonstrating 

that the employed OASIS HLB method for SPE coupled 

with HPLC-ESI-MS/MS analysis seems to be suitable for 

detection of SDN in plasma samples. The stabilities of 

SDN spikes in plasma were studied under different storage 

conditions including three cycles of freeze-thawing, room 

temperature for 5 hours, and post-preparation for overnight. 

The deviation of the mean quantification data was within 

5% in all stability tests for QC samples, and there seems no 

significant effect (P , 0.5) on the quantification of SDN in 

the plasma samples.

Pharmacokinetics of SDN after oral 
administration of Viagra® and AEA-coated 
SDN–MMT to dogs
Figure 6 shows the mean plasma concentration–time curve 

of SDN after oral administration of Viagra® and AEA-coated 
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Figure 5 Release profiles of sildenafil from (A) sildenafil–montmorillonite (SDN–MMT), (B) polyvinylacetal diethylaminoacetate (AEA)-coated SDN–MMT, (C) Viagra®, and 
(D) sildenafil citrate.
Note: The release experiments were performed at pH = 1.2.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1642

Lee et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

SDN–MMT to the beagle dogs. The relevant pharmacokinetic 

parameters are presented in Table 2. The AUC
0-∞ and C

max
 

of SDN significantly increased in AEA-coated SDN–MMT 

nanohybrid compared with Viagra® (P , 0.05). Such a dif-

ference in drug exposure could be explained by individual 

pharmacokinetics variability, but the AUC
0-∞ and C

max
 values 

were still statistically meaningful between two groups, even 

though the number of the animals studied was small (n = 3). 

The increased drug exposure observed in AEA-coated SDN–

MMT seems to be most likely due to the decreased oral 

clearance of SDN (4.34 L/hour in Viagra® vs 3.81 L/hour 

in AEA-coated SDN–MMT; P , 0.05). According to the 

in vitro drug-release profiles (Figure 5), after the initial burst 

release (∼80%), 10% of drug was released slowly for the 

remaining 110 minutes. After 2 hours, the remaining 10% 

of drug was still entrapped in the AEA-coated SDN–MMT 

nanohybrid, which was not released under a simulated in 

vitro condition. However, many different types of cations 

possibly present in the living body may continuously replace 

the entrapped drug molecules to facilitate drug diffusion 

out.46–48 Therefore, the remaining 10% of SDN would be 

released in a sustained manner after the nanohybrid passed 

the gastric cavity. In the intestine, the polymeric barrier of 

AEA would not be present due to its complete dissolution 

in a gastric fluid.

Viagra® released almost all drug in 10 minutes, which 

would allow high systemic absorption at the early stage, 

resulting in a faster T
max

 (1 hour), while the absorption of 

SDN was delayed in the AEA-coated SDN–MMT because 

the drug entrapped in the interlayer of MMT was released 

slowly during its passage through the gastrointestinal tract 

(T
max

 = 2.33 hours). For the specific drug, SDN, a faster onset 

of pharmacodynamic response (ie, a faster T
max

) would be 

still desirable. For this reason, our nanohybrid systems need 

to be further improved to achieve faster drug release at an 

early stage in addition to taste masking of the drug. In this 

sense, we envision using more AEA or employing other cat-

ionic macromolecules for coating our nanohybrid systems to 

facilitate deintercalation of the drug and enhance drug release 

in the gastric cavity.32

Stability of SDN
The drug molecules in nanohybrids could be more sensitive 

to degradation due to their distribution at a molecular level, 
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Figure 6 Mean plasma concentration–time curves of sildenafil after oral administration of Viagra® (●) and polyvinylacetal diethylaminoacetate (AEA)-coated hybrid (○) to 
the beagle dogs.

Table 2 Pharmacokinetic parameters of SDN after oral 
administration of Viagra® and AEA-coated nanohybrids to the 
beagle dogs

Parameters Viagra®a AEA-coated nanohybrida

AUC0-∞ (µg ⋅ hour/mL) 69.2 ± 3.19 78.8 ± 2.32*
Cmax (µg/mL) 10.5 ± 0.641 12.4 ± 0.673*
Tmax (hours) 1.00 2.33 ± 0.577
t1/2 (hours) 5.00 ± 0.074 4.13 ± 0.785
Vd/F (L) 31.3 ± 1.19 22.7 ± 4.49*
Cl/F (L/hour) 4.34 ± 0.205 3.81 ± 0.112*

Notes: aValues are mean ± SD; n = 3; *P , 0.05 compared with Viagra®.
Abbreviations: AEA, polyvinylacetal diethylaminoacetate; AUC0-∞, area under 
the plasma concentration-time curve from 0 hours to infinity; Cl/F, total clearance; 
Cmax, maximum plasma concentration; SD, standard deviation; SDN, sildenafil; Tmax, time 
required to reach Cmax; t1/2, elimination half-life; Vd/F, apparent volume of distribution.
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giving a higher chance of interaction with the surrounding 

environment. Therefore, we assessed the shelf-life of 

SDN–MMT and AEA-coated SDN–MMT nanohybrids under 

an accelerated stability test condition (temperature, 40°C; 

humidity, 75%).49 As shown in Table 3, the changes in 

nondegraded SDN content during 6 months were minimal 

(,±5%) for all samples, indicating that the SDN molecules 

could be well protected in the interlayer space of MMT due 

to their strong ionic interaction.

Conclusion
In this study, we suggest nanohybrids as a potential oral 

disintegrating formulation for delivery of SDN, a drug for 

treatment of erectile dysfunction. For this purpose, the drug 

was intercalated into MMT by cation exchange reaction to 

produce an SDN–MMT nanohybrid for taste masking of SDN. 

In order to improve the release rate in the simulated gastric 

fluid, the SDN–MMT nanohybrid was further coated with 

AEA, a cationic polymer, which exhibited suppressed release 

under a simulated buccal condition. For in vitro drug release in 

a simulated gastric fluid, AEA-coated SDN–MMT exhibited 

relatively fast drug release, ie, 80% during the first 10 minutes 

and 10% during the remaining 110 minutes. However, the 

total percentage of drug release was about 10% lower than 

Viagra®. The in vivo pharmacokinetic study revealed that the 

AUC
0-∞ and C

max
 values of SDN were significantly increased 

with AEA-coated SDN–MMT nanohybrid compared with 

Viagra®. Therefore, we conclude that the nanohybrid system 

suggested in this work has potential for taste masking of SDN 

as well as possibly increased drug exposure.
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Table S4 Release profiles of sildenafil from (A) SDN–MMT, (B) AEA-coated SDN–MMT, (C) Viagra®, and (D) sildenafil citrate. The 
release experiments were performed at pH = 1.2

Samples % drug releasea

10  
minutes

20  
minutes

40  
minutes

60  
minutes

90  
minutes

120  
minutes

(A) SDN–MMT 0.00  
(±0.00)

0.00  
(±0.00)

0.51  
(±0.44)

1.33  
(±0.06)

1.92  
(±0.34)

2.58  
(±0.26)

(B) AEA-coated SDN–MMT 78.40  
(±1.10)

84.22  
(±0.43)

87.93  
(±0.51)

89.36  
(±0.71)

90.52  
(±0.59)

91.43  
(±0.69)

(C) Viagra® 93.56  
(±7.60)

94.03  
(±7.21)

95.39  
(±5.87)

96.43  
(±4.73)

98.00  
(±3.42)

99.12  
(±2.55)

(D) Sildenafil citrate 97.49  
(±1.06)

98.11  
(±0.75)

98.33  
(±0.30)

99.10  
(±0.45)

99.30  
(±0.30)

100.11  
(±0.22)

Notes: aValues are mean ± SD; n = 3.
Abbreviations: AEA, polyvinylacetal diethylaminoacetate; SD, standard deviation; SDN–MMT, sildenafil–montmorillonite.

Supplementary information

Table S1 Accuracy and precision of SDN analyses in plasma 
samples

SDN  
(n = 15)

Concentration (ng/mL) RSD  
(%)

Accuracy  
(%)Added Found (mean ± SD)

Intraday
5.00   4.73 ± 0.19 3.8 94.6
50.00  45.87 ± 2.32 4.6 91.7
150.00 144.32 ± 6.01 4.0 96.2
Interday
5.00   4.55 ± 0.22 4.4 91.0
50.00  46.31 ± 2.20 4.4 92.6
150.00 140.40 ± 6.82 4.5 93.6

Abbreviations: SD, standard deviation; SDN, sildenafil; RSD, relative standard 
deviation.

Table S2 Recovery of SDN spiked into plasma samples

SDN  
(n = 3)

Concentration (ng/mL) Recovery  
(%)Expected Found (mean ± SD)

2.00  1.83 ± 0.13 91.5
20.00 18.28 ± 1.28 91.4
100.00 93.62 ± 6.08 93.6

Abbreviations: SD, standard deviation; SDN, sildenafil.

Table S3 In vitro drug dissolution profiles under a simulated buccal and gastric fluid condition

Conditions % drug releasea

Viagra® Sildenafil citrate SDN–MMT AEA-coated SDN–MMT

pH 7.0  
(buccal cavity,  
2 minutes)

48.78 ± 5.49  73.66 ± 4.61 0.00 ± 0.00  4.70 ± 0.53

pH 1.2  
(gastric fluid,  
120 minutes)

99.12 ± 2.55 100.11 ± 0.22 2.58 ± 0.26 91.43 ± 0.69

Notes: aValues are mean ± SD; n = 3.
Abbreviations: AEA, polyvinylacetal diethylaminoacetate; SD, standard deviation; SDN–MMT, sildenafil–montmorillonite.
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Figure S1 Fourier transform infrared spectra of (A) sildenafil citrate, (B) montmorillonite (MMT), (C) sildenafil–montmorillonite (SDN–MMT), and (D) polyvinylacetal 
diethylaminoacetate (AEA)-coated SDN–MMT.
Notes: The circles (•) and the dashed vertical lines show the characteristic peaks seen with intact SDN and MMT.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1647

Nanohybrids for taste masking of sildenafil

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

50A

40

30

20

10

0

10 100 1000

Size (D, nm)

V
o

lu
m

e 
(%

)

10000

50B

40

30

20

10

0

10 100 1000

Size (D, nm)

V
o

lu
m

e 
(%

)

10000

Figure S2 The particle size distribution of (A) sildenafil–montmorillonite (SDN–MMT) and (B) polyvinylacetal diethylaminoacetate (AEA)-coated SDN–MMT.
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Figure S3 Typical electrospray ionization mass spectrometry/mass spectrometry spectra of authentic sildenafil.
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Figure S4 Representative chromatograms of (A) sildenafil detected in a plasma sample collected for 2 hours after sildenafil administration, and (B) blank plasma sample 
collected just before sildenafil administration.
Abbreviations: ES, electrospray; MRM, multiple reaction monitoring; TIC, total ion count.
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