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Abstract: The objective of this study was to elucidate the cytotoxic mechanism of 

Compound K, with respect to the involvement of reactive oxygen species (ROS) and the 

mitochondrial involved apoptosis, in HT-29 human colon cancer cells. Compound K 

exhibited a concentration of 50% growth inhibition (IC50) at 20 μg/mL and cytotoxicity in 

a time dependent manner. Compound K produced intracellular ROS in a time dependent 

fashion; however, N-acetylcysteine (NAC) pretreatment resulted in the inhibition of this 

effect and the recovery of cell viability. Compound K induced a mitochondria-dependent 

apoptotic pathway via the modulation of Bax and Bcl-2 expressions, resulting in the 
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disruption of the mitochondrial membrane potential (Δψm). Loss of the Δψm was followed 

by cytochrome c release from the mitochondria, resulting in the activation of caspase-9, -3, 

and concomitant poly ADP-ribosyl polymerase (PARP) cleavage, which are the indicators 

of caspase-dependent apoptosis. The apoptotic effect of Compound K, exerted via the 

activation of c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase 

(MAPK), was abrogated by specific MAPK inhibitors. This study demonstrated that 

Compound K-mediated generation of ROS led to apoptosis through the modulation of a 

mitochondria-dependent apoptotic pathway and MAPK pathway. 

Keywords: Compound K; reactive oxygen species; mitochondrial membrane potential; 

c-Jun NH2-terminal kinase; p38 mitogen-activated protein kinase 

 

1. Introduction 

Reactive oxygen species (ROS) are the by-products of normal cellular oxidative processes, and are 

mainly generated in the mitochondria. They attack lipid membranes, proteins, and DNA, leading to 

serious cell damage, and regulate apoptotic signal transduction
 
[1–3]. Indeed, ROS induce the 

depolarization of the mitochondrial membrane, and lead to increased levels of pro-apoptotic molecules 

in the cytosol [4–6]. Apoptosis is followed by cell shrinkage, nuclear fragmentation, membrane 

blebbing, DNA fragmentation, and finally the breakdown of the cell into apoptotic bodies [7–9]. 

Capases, a family of cysteine-dependent aspartate-directed proteases, play a critical role in the 

initiation and execution of apoptosis [10–12]. Among this family, caspase-9 and -3 are the most crucial 

for the initiation and execution of apoptosis in various cell types [13,14]. Cancer is a disease that 

involves excessive proliferation of cells and insufficient cell suicide via apoptotic process.  

[20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol] (Compound K, Figure 1) is the main metabolite 

of protopanaxadiol-type ginsenoside formed in the intestine after oral administration [15–18]. We 

recently reported that Compound K exhibited cytotoxicity through the induction of apoptosis, arrest at 

the G1 phase of cell cycle, and inhibition of telomerase activity in human leukemia cells [19–21]; that 

the combined treatment of Compound K and radiation enhanced the cell death in human lung cancer 

cells [22]; and that Compound K induced apoptosis in MCF-7 breast cancer cells through the 

modulation of AMP-activated protein kinase [23]. The gastrointestinal tract, especially the colon, is 

constantly exposed to ROS originating from endogenous and exogenous sources [24]. Colorectal 

cancer is the fourth most prevalent carcinoma in western society and the second cause of cancer 

death [25]. And genetic alterations by ROS are the ultimate underlying mechanisms of colorectal 

carcinogenesis [26,27]. Compound K has been shown to exhibit anti-proliferative effects on colon 

cancer cells, which was mediated through apoptosis [28–30]. Despite evidence of its anti-proliferative 

effects in colon cancer, the cytotoxic mechanism of this effect with respect to the involvement of ROS 

and mitochondrial involved apoptosis, has not been investigated. Our study showed that Compound K  
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significantly induced ROS generation, which in turn led to apoptotic signals including mitochondria-

dependent and caspase-dependent processes. 

Figure 1. Chemical structure of Compound K, [20-O-D-glucopyranosyl-20(S)-

protopanaxadiol]. 

 

2. Results and Discussion 

2.1. ROS-Induced Cytotoxic Effect of Compound K on HT-29 Colon Cancer Cells 

Compound K is an active metabolite of ginsenosides and exhibits anti-tumor effects against various 

types of cancer cells
 
[16,17,19–23,28–36].

 
In the present study, we investigated the effects and 

mechanism of action of Compound K in ROS-mediated apoptosis in HT-29 cancer cells. Although it 

had been previously shown that Compound K induced apoptosis via a Ca
2+

/calmodulinactivated 

protein kinase-IV/AMP-activated protein kinase pathway in HT-29 colon cancer cells
 
[28,29], 

Compound K-induced ROS-mediated apoptosis in colon cancer cells had not been investigated. 

Several anticancer agents used in the treatment of cancer have been shown to cause increased cellular 

ROS generation [37–39]. Compound K inhibited HT-29 cell growth in a dose-dependent manner at 10, 

20, 30, and 40 μg/mL at 48 h, and the concentration effecting 50% growth inhibition (IC50) was 

20 μg/mL (Figure 2A). Compound K at 20 μg/mL also inhibited HT-29 cell growth in a 

time-dependent manner (Figure 2B), but did not exhibit cytotoxicity in FHC normal colon cells 

compared to HT-29 cells at day 2 (Figure 2C). Intracellular ROS, as signaling intermediates, are 

involved in cell death signal transduction pathways. Compound K induced ROS generation as 

compared to control in a time-dependent manner (Figure 3A), and NAC, a distinct antioxidant and 

ROS scavenger, exerted a scavenging effect on the ROS generated by Compound K (Figure 3B). 

Subsequently, NAC significantly abolished the Compound K-triggered cell death; cell survival was 

increased to 81% in NAC-pretreated, Compound K-treated cells, compared to 53% in cells treated only 

with Compound K (Figure 3C). This result suggests that the ROS generated by Compound K induces 

the cell death. 
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Figure 2. Cytotoxic effect of Compound K in human colon cells. Cell viability (A) at the 

indicated concentrations of Compound K at 48 h in HT-29 cancer cells; (B) at the indicated 

times with Compound K at 20 μg/mL in HT-29 cells; (C) at 20 μg/mL of Compound K in 

FHC normal colon cells and HT-29 colon cancer cells was assessed using MTT test. 

*Significantly different from control (p < 0.05). 
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Figure 3. Intracellular ROS generation induced by Compound K treatment.  

(A) Intracellular ROS generated by Compound K were detected at indicated times by a 

spectrofluorometer after DCF-DA treatment. (B) After treatment with NAC and/or 

Compound K, intracellular ROS were detected at 24 h by spectrofluorometer after 

DCF-DA treatment. (C) After treatment with NAC and/or Compound K, cell viability was 

assessed by MTT assay. *Significantly different from control (p < 0.05), and 

**significantly different from Compound K-treated cells (p < 0.05). 
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2.2. Induction of Apoptosis by Compound K via a Mitochondria-Dependent Pathway  

Such increases in intracellular ROS cause loss of mitochondria membrane permeability, resulting in 

the induction of apoptosis
 
[40,41]. We investigated whether the cytotoxicity of Compound K was 

associated with the induction of apoptosis. Sub G1-hypodiploid cells, which are an indicator of 

apoptosis, increased in Compound K-treated cells as compared to control cells (Figure 4A). Apoptotic 

pathway requires the alteration of the mitochondrial membrane potential (Δψm), which leads to 

mitochondrial membrane permeabilization and is followed by a release of cytochrome c and caspases 

activation
 
[4,42]. Compound K-treated cells exhibited a loss of Δψm, as substantiated by an increase 

of fluorescence intensity in fluorescence (FL-1) using the JC-1 dye (Figure 4B). In non-apoptotic 

cells, the monomer form of JC-1 accumulates as aggregates in the mitochondria, which then emits red 

fluorescence; whereas in apoptotic cells, JC-1 does not accumulate and remains a monomer, emitting 

green fluorescence. The control cells exhibited strong red fluorescence in the mitochondria; however, 

Compound K-treated cells resulted in a decreased red fluorescence in the mitochondria and increased 

green fluorescence, suggesting that Compound K treatment disrupted the mitochondrial Δψ (Figure 

4C). During the apoptotic process, Bcl-2, an anti-apoptotic regulator, prevents the opening of the 

mitochondrial membrane pores, whereas Bax, an apoptotic regulator, induces it
 
[43]. Compound K was 

shown to increase Bax expression while decreasing that of Bcl-2 expression. Therefore,  

Compound K-induced loss of the Δψm may have been a result of an up-regulation of Bcl-2 and a 

down-regulation of Bax. The pore opening induces the loss of the Δψm, which in turn induces the 

release of cytochrome c from the mitochondria [44,45]. Compound K induced the release of 

cytochrome c from mitochondria into cytosol (Figure 4D). The mitochondrial membrane disruption by 

Compound K activated caspase-9 (37 and 39 kDa) and caspase-3 (19 and 17 kDa), a target of  

caspase-9, which was further demonstrated by PARP cleavage (89 kDa) (Figure 4D). These results 

suggest that Compound K induced apoptosis via a caspase--dependent pathway in the mitochondria. 

Further, Compound K-induced decreases in the Bcl-2 protein and corresponding increases in the Bax 

protein, results in the opening of mitochondrial membrane pores, facilitating the release of cytochrome 

c from mitochondria into cytosol. Cytochrome c is bound to the outer surface of the inner membrane 

phospholipids. An early process in the release of cytochrome c is its dissociation from the inner 

membrane. Mitochondrial ROS have been shown to promote cytochrome c release to the cytosol by 

dissociation from these membrane phospholipids
 
[46,47]. Therefore, Compound K-mediated ROS 

production may target membrane phospholipids resulting in dissociation of cytochrome c.  
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Figure 4. Induction of mitochondria-dependent and caspase-dependent apoptosis by 

Compound K treatment. (A) Apoptotic sub-G1 cells were detected by flow cytometry after 

PI staining. (B) Δψm was analyzed by flow cytometry and (C) confocal microscopy after 

staining cells with JC-1 dye. (D) Cell lysates were electrophoresed and Bax, Bcl-2, 

cytochrome c, active caspase-9, active caspase-3, and cleaved PARP proteins were detected 

using their corresponding antibodies. 
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Figure 4. Cont. 

 

2.3. Induction of Apoptosis by Compound K via JNK and p38 MAPK Activation 

Various studies have suggested a possible mechanism for the JNK and p38 MAPK pathway, as 

related to mitochondrial depolarization and apoptosis induction
 
[48]. The activated MAPK family 

members including the phosphorylated form of p38, JNK, and ERK are common components of the 

apoptotic process
 
[49–51]. Some reports have shown that ROS acted as upstream regulators, resulting 

in the activation of p38 MAPK and JNK
 

[52,53]. Intracellular ROS are also upstream of 

AMP-activated protein kinase (AMPK) activation [54]. AMPK is highly sensitive to oxidative stress 

because increased cellular ROS change the AMP level, which leads to rapid AMPK activation. The 

involvement of AMPK in the inhibition of carcinogenesis can modulate the regulation of COX-2 [55]. 

Our previous study demonstrated that Compound K exhibited apoptosis by ROS-mediated AMPK 

activation in MCF-7 breast cancer cells [23]. In the present study, Compound K induced the activation 

of JNK and p38 MAPK in a time-dependent manner (Figure 5A). We then examined whether a 

specific inhibitor of JNK and p38 MAPK could attenuate cell death through activation of JNK and p38 

MAPK signaling by Compound K. Results revealed that SP600125 (an inhibitor of JNK) and 

SB203580 (an inhibitor of p38 MAPK) attenuated the cytotoxic effect of Compound K (Figure 5B). 

Likewise, siJNK and sip38-transfected cells abolished the cytotoxic effect of Compound K (Figure 5C). 

Our results revealed that phospho p38 MAPK and phospho JNK were notably increased after 

Compound K treatment. In contrast, Compound K treatment reduced the level of phospho ERK 

expression (data not shown). This suggested that activation of p38 MAPK and JNK was related to 

Compound K-induced apoptotic cell death. These results indicate that JNK and p38 MAPK may play a 

role in Compound K-induced cytotoxicity in HT-29 cells. 
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Figure 5. Effect of Compound K on the MAPK signaling pathway. (A) Cell lysates were 

electrophoresed and were immunoblotted using anti-JNK, -phospho JNK, -p38, and 

-phospho p38 antibodies. (B) After treatment with MAPK inhibitors or/and Compound K, 

cell viability was assessed by MTT assay. (C) After transfection of siRNA against MAPK, 

and/or Compound K, cell viability was assessed by MTT assay. *Significantly different 

from control (p < 0.05), and **significantly different from Compound K-treated 

cells (p < 0.05). 
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3. Experimental Section 

3.1. Chemicals  

Compound K was provided by professor Dong Hyun Kim (Kyung Hee University, Seoul, Korea). 

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] bromide (MTT), 2′,7′-dichlorodihydro-

fluorescein diacetate (DCF-DA), N-acetylcysteine (NAC), propidium iodide, SP600125, and 

SB203580 were purchased from Sigma Chemical Co. (St. Louis, MO, USA). 5,5′,6,6′-Tetrachloro-

1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine chloride (JC-1) was purchased from Molecular Probes 

(Eugene, OR, USA). The primary anti-Bcl-2, -Bax, -cytochrome c, -caspase-9, -caspase-3, -poly  

ADP-ribosyl polymerase (PARP), -c-Jun NH2-terminal kinase (JNK), -phospho JNK, -p38, 

and -phospho p38 antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA). 

3.2. Cells and Cell Culture 

Human colon adenocarcinoma (HT-29) and normal colon cells (FHC), from the American type 

culture collection (Rockville, MD, USA), were maintained at 37 °C in an incubator with a humidified 

atmosphere of 5% CO2 and cultured in RPMI 1640 medium containing 10% heat-inactivated fetal calf 

serum, streptomycin (100 μg/mL), and penicillin (100 units/mL).  

3.3. Cell Viability Assay 

The effect of Compound K on the viability of the cells was determined by the MTT assay, which is 

based on the reduction of a tetrazolium salt by mitochondrial succinatedehydrogenase in viable cells 

[56]. The cells were seeded in a 96 well plate at a density of 1  10
5
 cells/mL, treated with Compound 

K, and after incubating for 48 h, 50 μL of the MTT stock solution (2 mg/mL) was added to each well 

to attain a total reaction volume of 250 μL. After an incubation of 4 h, the supernatants were aspirated. 

The formazan crystals in each well were then dissolved in 150 μL dimethylsulfoxide, and the 

absorbance at 540 nm was read on a scanning multi-well spectrophotometer.  

3.4. Measurement of Intracellular Reactive Oxygen Species (ROS) 

The DCF-DA method was used to detect the levels of intracellular ROS
 
[42]. Cells were seeded 

onto a 96 well plate at 2  10
4
 cells/well. The day after plating, the cells were treated with NAC 

(2 mM) for 30 min and then treated with Compound K for 24 h. After the addition of 25 mM of the 

DCF-DA solution for 20 min, the fluorescence of 2′,7′-dichlorofluorescein was measured using a 

Perkin Elmer LS-5B spectrofluorometer. 

3.5. Detection of Sub-G1 Hypodiploid Cells 

The amount of apoptotic sub-G1 hypodiploid cells was determined by flow cytometry [57]. Cells 

were treated with Compound K for 48 h. Harvested cells were then washed twice with phosphate 

buffered saline (PBS) and fixed in 70% ethanol for 30 min at 4 °C. Subsequently, the cells were 
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incubated in 50 mg/mL propidium iodide solution and 50 μg/mL RNase A in the dark for 30 min at 

37 °C. A flow cytometric analysis was performed using a FACS Calibur flow cytometer (Becton 

Dickinson, Mountain View, CA, USA). The sub-G1 hypodiploid cells were assessed based on 

histograms generated by Cell Quest and Mod-Fit computer programs. 

3.6. Analysis of Mitochondrial Membrane Potential (Δψm) 

Cells were stained with JC-1 (10 μg/mL), and were then analyzed using flow cytometry
 
[58]. In 

addition, for image analysis, the JC-1-stained cells were mounted with mounting medium (DAKO, 

Carpinteria, CA, USA). Microscopic images were collected using the Laser Scanning Microscope 5 

PASCAL program (Carl Zeiss, Jena, Germany) on a confocal microscope. 

3.7. Western Blot Analysis  

Harvested cells were washed in PBS, lysed in a lysis buffer [120 mM NaCl, 40 mM Tris (pH 8), 

0.1% NP 40] and then centrifuged at 13,000 × g for 15 min. Aliquots of the lysates (50 μg of protein) 

were boiled at 95 °C for 5 min and electrophoresed on SDS–polyacrylamide gels. Gels were 

transferred onto nitrocellulose membranes for blotting (Bio-Rad, CA, USA), and the membranes were 

then incubated with primary antibodies. The membranes were further incubated with secondary 

immunoglobulin G-horseradish peroxidase conjugates, and then underwent enhanced 

chemiluminescence using a Western blotting detection kit (Amersham, Buckinghamshire, UK). The 

protein bands were visualized using luminescent image analyzer. 

3.8. Transient Transfection of Small RNA Interference (siRNA) 

Cells were seeded at 1.5 × 10
5
 cells/well in 24 well plate and allowed to reach approximately 50% 

confluence on the day of transfection. The siRNA construct used were obtained as mismatched siRNA 

control (siControl, Santa Cruz Biotechnology, Santa Cruz, CA, USA), siRNA against JNK, and p38 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA). Cells were transfected with 10–50 nM siRNA 

using lipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA) based on the manufacturer’s instruction. 

At 24 h after transfection, the cells were treated with Compound K for 48 h and examined by either 

Western blot analysis or MTT assay.  

3.9. Statistical Analysis  

All the measurements were performed in triplicate and all values were represented as the mean 

standard error (SE). Results were subjected to an analysis of the variance (ANOVA) using the Tukey 

test for analysis of the differences. Statistical significance was set at p > 0.05. 
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4. Conclusions 

This study demonstrated that Compound K-mediated generation of ROS led to apoptosis through 

activation of p38 MAPK and JNK, which modulate the expression of Bcl-2 and Bax, and then trigger 

loss of mitochondrial membrane potential, cytochrome c release, and caspase activation. 
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