THE GEOGRAPHY OF SIMPLY-CONNECTED SYMPLECTIC MANIFOLDS

MI SUNG CHO and YONG SEUNG CHO, Seoul

(Received February 5, 2000)

Abstract. By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb{Z} \times \mathbb{Z}$ is covered by minimal, simply connected, symplectic 4-manifolds.

Keywords: Seiberg-Witten invariant, geography of symplectic 4-manifold

MSC 2000: 57N13, 58F05

0. Introduction

Let (X,ω) be a simply connected, symplectic 4-manifold with a symplectic form ω . Then X has an almost complex structure compatible with the symplectic structure. The Noether formula says that the number $c_1(X)^2+c_2(X)$ is divisible by 12. The rank $b_2^+(X)$ of the space $H^{2,+}(X;\mathbb{R})$ of self-dual harmonic 2-forms on X is odd because the space X is simply connected. For simplicity we denote $\chi(X)=\frac{1}{2}(1+b_2^+(X))$. A compact symplectic 4-manifold X is called minimal if it contains no symplectically embedded sphere with self-intersection number -1. Let $\mathscr F$ denote the set of all minimal, simply connected, symplectic 4-manifolds.

Define a map $f: \mathscr{F} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ by

$$X \longmapsto (\chi(X), c_1^2(X)).$$

It is known that $\chi(X) > 0$ and $c_1^2(X) \ge 0$ if $X \in \mathcal{F}$ with $b_2^+(X) > 1$ (for details see [14]). It is also well known that a complex surface X is either rational,

This work was supported by grant No. R01-1999-000-00002-0 from the interdisciplinary research program of the KOSEF.

elliptic, or a surface of general type. The simply connected, minimal rationals X are diffeomorphic to \mathbb{CP}^2 , $S^2 \times S^2$ or $\mathbb{CP}^2 \sharp \mathbb{CP}^2$ (the Hirzebruch surfaces). Then $b_2^+(X) = 1$ and $c_1^2(X) = 9$ or 8. Hence f(X) = (1,9) or (1,8). If X is minimal elliptic, then $f(X) = (\chi(X), c_1^2(X)) = (n,0)$ for a natural number $n \in \mathbb{N}$. For surfaces X of general type we know that $c_1^2(X) > 0$ and the two famous inequalities, the Noether inequality and the Bogomolov-Miyaoka-Yau inequality, give constraints for $c_1^2(X)$ in terms of $\chi(X)$:

(*)
$$2\chi(X) - 6 \leqslant c_1^2(X) \leqslant 9\chi(X)$$
.

It is known that most of the points in the region (*) correspond to some minimal surfaces of general type. That is, for any $(a,b) \in \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid 2a-6 \leqslant b \leqslant 9a\}$, there is a minimal surface X of general type such that $(a,b) = (\chi(X), c_1^2(X))$. In this paper we will show that the region under the Noether line $c_1^2 = 2\chi - 6$ can be covered by minimal, simply connected, symplectic 4-manifolds by using the properties of the Seiberg-Witten invariant and the fiber sum.

1. The irreducibility of 4-manifold

In this section we review the definitions and the basic properties of the Seiberg-Witten invariants.

First we recall briefly the Seiberg-Witten invariant for a compact, oriented, Riemannian 4-manifold X with $b_2^+(X) > 1$. A Spin^c-structure s is defined by a triple (W^+, W^-, ϱ) , where W^{\pm} are Hermitian 2-plane bundles and $\varrho \colon T^*X \to \text{Hom}(W^+, W^-)$ satisfies the Clifford relation

$$\varrho^*(e)\varrho(e) = |e|^2 \operatorname{Id}_{W^+}.$$

Let $L = \det(W^+)$ be a determinant line bundle of W^+ . In particular, when X is a symplectic manifold, the Spin^c-structure on X which corresponds to a given complex line bundle L is characterized by the fact that its bundle W^+ is given by

$$W^+ = E \oplus (K^{-1} \otimes E),$$

where K is the canonical bundle of X. A connection A of the line bundle on L with the Levi-Civita connection on T^*X defines a covariant derivative $\nabla_A \colon \Gamma(W^+) \to \Gamma(W^+ \otimes T^*X)$. The composition of the covariant derivative ∇_A and the Cliffold multiplication defines a Dirac operator

$$D_A \colon \Gamma(W^+) \longrightarrow \Gamma(W^-).$$

For a connection A of L and a section $\Phi \in \Gamma(W^+)$ of W^+ , the equations

$$\begin{cases} D_A \Phi = 0, \\ F_A^+ = \frac{1}{4} \tau (\Phi \otimes \Phi^*) \end{cases}$$

are called the Seiberg-Witten equations. Here F_A^+ is the self-dual part of the curvature of A and $\tau \colon \operatorname{End}(W^+) \to \Gamma^+(T^*X) \otimes \mathbb{C}$ is the adjoint of the Cliffold multiplication. The gauge group $\mathscr{G} = C^\infty(X,U(1))$ of the complex line bundle L acts on the space of solutions of the SW-equations. The quotient of the space of solutions by the gauge group is called the moduli space of the line bundle L. Then the moduli space is generically a compact smooth manifold with the dimension

$$\frac{1}{4}(c_1^2(L) - (2e(X) + 3\sigma(X))),$$

where e(X) is the Euler characteristic and $\sigma(X)$ is the signature of X. The moduli space defines a diffeomorphic invariant on X which is the so called Seiberg-Witten invariant $SW_X(L)$: $\mathrm{Spin}^c(X) \to \mathbb{Z}$. Here $\mathrm{Spin}^c(X)$ is the set of isomorphism classes of Spin^c -structures on X. For details, see [12].

Definition 1.1. A cohomology class $c = c_1(L) \in H^2(X; \mathbb{Z})$ is called a basic class if $SW_X(L) \neq 0$. The manifold X is said to be of simple type if $c^2 = 2e(X) + 3\sigma(X)$ for every basic class $c \in H^2(X; \mathbb{Z})$.

Theorem 1.2 [16]. Let (X, ω) be a symplectic 4-manifold with its orientation given by the volume form $\omega \wedge \omega$, and let $b_2^+(X) \geq 2$. If K is the canonical line bundle of X associated to ω , then its Seiberg-Witten invariant $SW_X(K) = \pm 1$ is non-zero.

Theorem 1.3 [16]. Every compact symplectic 4-manifold X with $b_2^+(X) \ge 2$ is of simple type.

A smooth 4-manifold X is said to be irreducible if the space X cannot be decomposed into a smooth connected sum $X = X_1 \sharp X_2$ with non-spheres.

Proposition 1.4. Let X be a simply connected 4-manifold with nontrivial Seiberg-Witten invariants. If for any basic classes K_i , K_j on X

$$(K_i - K_i)^2 \neq -4$$
,

then the space X is irreducible.

Proof. Since $SW_X \not\equiv 0$, there is a basic class of X. Assume that X is reducible. Then $X = X_1 \sharp X_2$ and one of the X_i 's, say X_2 , has negative definite intersection form. By Donaldson there is an element $e \in H^2(X_2)$ such that $e \cdot e = -1$. If K is a basic class of X_1 , then $K \pm e$ are also basic classes on X, where $e \in H^2(X_2)$ with $e \cdot e = -1$. Therefore $\{(K + e) - (K - e)\}^2 = (2e)^2 = -4$ gives a contradiction. \square

Corollary 1.5. Let X be a simply connected 4-manifold satisfying the assumption of Proposition 1.4. Then X is minimal.

2. Fiber sums of elliptic surfaces

Let X be a closed, oriented, smooth 4-manifold with a basic class $c_1(L) \in H^2(X; \mathbb{Z})$ and let x_0 be a fixed point in X.

Definition 2.1. The space

$$\hat{\mathcal{M}}_X(L) = \{ (A, \psi, \varphi) \mid F_A^+ = \frac{1}{4} \tau(\psi \otimes \psi^*), \ D_A \psi = 0, \ |\varphi| = 1, \ \varphi \in W^+|_{x_0} \} / \mathscr{G}$$

is called the framed Seiberg-Witten moduli space. Here $\mathscr G$ is the gauge group $C^\infty(X,U(1))$ of the complex line bundle L.

Let M be a 3-manifold embedded respectively in X and Y with zero self-intersections. If there is only the trivial solution of Seiberg-Witten equations on $\mathbb{R} \times M$, then $\hat{\mathcal{M}}(X \cup Y)$ satisfies a gluing law in the limit as the length of the neck goes to infinity ([1]).

Let $X_{\infty}=X \underset{M}{\cup} ([0,\infty)\times M),\ M_{\infty}=\mathbb{R}\times M,$ and $Y_{\infty}=Y \underset{M}{\cup} ([0,\infty)\times M).$ For R large enough applying the neck-streching argument, we have

$$\hat{\mathcal{M}}(X \underset{M}{\cup} [0, R] \times M \underset{M}{\cup} Y) \cong \hat{\mathcal{M}}(X_{\infty}) \underset{\hat{\mathcal{M}}(M_{\infty})}{\times} \hat{\mathcal{M}}(Y_{\infty}).$$

Let E(1) be the elliptic surface over \mathbb{CP}^1 which is diffeomorphic to $\mathbb{CP}^2 \sharp 9\overline{\mathbb{CP}^2}$. By repeating the fiber sums we have

$$E(n) = E(n-1) \underset{f}{\sharp} E(1)$$
 for $n \geqslant 2$,

where f is a generic fiber. That is,

$$E(n) = (E(n-1)\backslash N(f)) \underset{\partial (N(f))}{\cup} (E(1)\backslash N(f)),$$

where N(f) is a tubular neighbourhood of a generic fiber f lying in a cusp neighbourhood.

There is only the trivial solution on $\mathbb{R} \times T^3$ because it has zero scalar curvature. Let $X = E(n-1)\backslash N(f)$, $Y = E(1)\backslash N(f)$ and $M = \mathbb{R}^3$. Then by the definition above E(n), $X_{\infty} = (E(n-1)\backslash N(f)) \cup [0,\infty) \times T^3$, $Y_{\infty} = (E(1)\backslash N(f)) \cup [0,\infty) \times T^3$, and $M_{\infty} = \mathbb{R} \times T^3$. Since there is only the trivial (static) solution on $\mathbb{R} \times T^3$, we have

$$\hat{\mathcal{M}}(E(n)) \cong \hat{\mathcal{M}}(E(n-1)) \underset{\hat{\mathcal{M}}(\mathbb{R} \times T^3)}{\times} \hat{\mathcal{M}}(E(1)).$$

In [12] it is shown that

$$\mathcal{M}_L(E(1)) = \mathcal{M}_L(\mathbb{C}P^2 \sharp 9\overline{\mathbb{C}P^2}) \cong \begin{cases} \{(A,0)\} & \text{if } c_1(L) \cdot [\omega_g] > 0, \\ \{(A,\psi) \mid \psi \not\equiv 0\} & \text{if } c_1(L) \cdot [\omega_g] < 0, \end{cases}$$

where ω_g is the symplectic form depending on a generic g on E(1). If K is a basic class of E(n-1), then

$$\hat{\mathcal{M}}_{K+f}(E(n)) \cong \hat{\mathcal{M}}_{K}(E(n-1)) \underset{\hat{\mathcal{M}}(\mathbb{R} \times T^{3})}{\times} \hat{\mathcal{M}}_{f}(E(1))$$
$$\cong \hat{\mathcal{M}}_{K}(E(n-1) \times \mathcal{M}_{f}(E(1)))$$
$$\cong \hat{\mathcal{M}}_{K}(E(n-1)).$$

Similarly, we get $\hat{\mathcal{M}}_{K-f}(E(n)) \cong \hat{\mathcal{M}}_K(E(n-1))$. So we have

Lemma 2.1. For $n \geqslant 3$

$$\mathcal{M}_{K+f}(E(n)) \cong \mathcal{M}_{K-f}(E(n)) \cong \mathcal{M}(E(n-1)).$$

Theorem 2.2. The basic classes of E(n) are of the form

$$\{kf \mid k = -(n-2), -(n-4), \dots, n-4, n-2\}, (n \ge 2).$$

Proof. We prove Theorem 2.2 by induction on n,

- (1) n=2, in [2] the only basic class of E(2) is 0.
- (2) Assume that the set of basic classes of E(n-1) is

$$\{kf \mid k = -((n-1)-2), -((n-1)-4), \dots, (n-1)-4, (n-1)-2\}$$

= \{kf \cong k = -(n-3), -(n-5), \dots, (n-5), (n-3)\}.

Then by Lemma 2.1, the set of basic classes of E(n) is

$$\{kf \mid k = -(n-2), -(n-4), \dots, n-4, n-2\}.$$

3. RATIONAL BLOW-UP

The elliptic surface E(1) can be constructed by blowing up \mathbb{CP}^2 at 9 intersection points of a generic pencil of cubic curves. The fiber class of E(1) is $f = 3h - e_1 - e_2 - \ldots - e_9$ where 3h is the class of the cubic in $H_2(\mathbb{CP}^2; \mathbb{Z})$. The nine exceptional curves e_i are disjoint sections of the elliptic fibration

$$E(1) \longrightarrow \mathbb{CP}^1$$
.

The elliptic surface E(n) can be obtained as the fiber sum of n copies of E(1) and these sums can be made so that the sections glue together to give nine disjoint sections of E(n), each of square -n.

Consider E(4) with nine disjoint sections of square -4. Each of the nine sections gives an embedded configuration C_2 . Therefore E(4) contains disjoint nine configuration space C_2 . Let Y_i denote the space obtained by the rational blow downs of the first i-th sections, $1 \le i \le 9$. For $i \le 8$, Y_i is simply connected. In [11] Gompf showed that all these manifolds admit symplectic structures. Therefore Y_i $(1 \le i \le 8)$ is a simply connected symplectic 4-manifold.

To find the basic classes of Y_i we can use the rational blow-down formula of Fintushel and Stern [9].

Theorem 3.1 (Rational blow-down [9]). Let the rational blow-up Y of Z denote $Y = X \cup C_p$ and let the rational blow-down Z of Y denote $Z = X \cup B_p$ where B_p is a rational ball. If $K_Y \in H^2(Y; \mathbb{Z})$ and $K_Z \in H^2(Z; \mathbb{Z})$ are characteristic elements so that $K_Y^2 \geq 2e(Y) + 3\sigma(Y)$ and $i_Y^*K_Y = i_Z^*K_Z$ where $i_Y \colon X \to Y$ and $i_Z \colon X \to Z$, then

$$SW_Y(K_Y) = SW_Z(K_Z).$$

Proposition 3.2. The basic classes of Y_i are of the form

$$\pm (2f + e_1 + e_2 + \ldots + e_i)$$
 $i = 1, \ldots, 8$

where e_j is the hyperplane class in the j-th copy of the \mathbb{CP}^2 's $(1 \leq j \leq i)$.

Proof. First, consider the basic classes of Y_1 and consider the configuration C_2 in \mathbb{CP}^2 where the sphere represents $2e_1 = u_1$ where e_1 is the hyperplane class in \mathbb{CP}^2 . Let $Y = E(4) = X \cup C_2$ and $Z = X \cup B_2 = Y_1$. Let $i: X \to Y$ be the inclusion. Over the rational coefficient, the cohomology splits into

$$H^2(Y) = H^2(X) \oplus H^2(C_2).$$

It follows that i^*K is just the projection of K into $H^2(X)$. In other words,

$$i^*K = K + a_1u_1$$

where a_1 is the unique rational number such that $i_Y^* K \cdot u_1 = 0$. With the rational coefficient,

$$H^2(Y_1) = H^2(X) \oplus H^2(B_2) \cong H^2(X).$$

Since the basic classes of Y are $0, \pm 2f$, we can consider

$$i_Y^*(0), \quad i_Y^*(+2f) \quad \text{and} \quad i_Y^*(-2f)$$

as the candidates for the basic classes of Y_1 by the rational blow-down formula of Theorem 3.1. Since $u_1^2 = -4$ and $K_{E(4)} \cdot u_1 = 2$, by simple calculation, we obtain

$$i_Y^*(0) = 0, \ i_Y^*(2f) = 2f + e_1 \text{ and } i_Y^*(-2f) = -2f - e_1 = -(2f + e_1).$$

Since Y_1 is a symplectic manifold with $b_2^+ > 1$, Y is of simple type by Theorem 1.3. Therefore $i_Y^*(0)$ is not a basic class of Y_1 because of $c_1^2(Y_1) = 1$. By Theorem 1.2, $\pm (2f + e_1)$ are the only basic classes of Y_1 .

To repeat the above process, let $Y = Y_1 = X \cup C_2$ and $Z = X \cup B_2 = Y_2$. Here the configuration $C_2 \subset \mathbb{CP}^2$ in which the sphere represents $2e_2 = u_1$ where e_2 is the hyperplane class in \mathbb{CP}^2 .

Repeating the above method, the basic classes of Y_2 are

$$\pm (2f + e_1 + e_2).$$

Similarly, if we repeat the above process i-2 times, then the basic classes of Y_i are

$$\pm (2f + e_1 + e_2 + \ldots + e_i)$$
 $i = 1, \ldots, 8$

where e_j is the hyperplane class in the j-th copy of the \mathbb{CP}^2 's.

Lemma 3.3 [9]. For $n \ge 4$, the elliptic surface E(n) contains a pair of disjoint configurations C_{n-2} in which the spheres u_j $(1 \le j \le n-1)$ are sections of E(n) and for $1 \le j \le n-2$, $u_j \cdot f = 0$. Furthermore, the rational blow-down of this pair of configurations is the Horikawa surface H(n).

The first case n=4 gives the example $H(4)=Y_2$. The Horikawa surfaces H(n) lie on the Noether line $2\chi-6=c_1^2$.

Proposition 3.4. The basic classes of H(n) are of the form

$$\pm((n-2)f + e_1 + e_2 + \ldots + e_{n-3} + e_1' + e_2' + \ldots + e_{n-3}')$$

where e_1, \ldots, e_{n-3} and e_1', \ldots, e_{n-3}' are the exceptional classes in H(n).

Proof. By Lemma 3.3, the Horikawa surface H(n) is the rational blow-down of the <u>pair</u> of configurations C_{n-3} in E(n). The configurations C_{n-3} embed into $(n-3)\mathbb{CP}^2$ representing the elements

$$u_1 = 2e_1 + e_2 + \ldots + e_{n-3}, \ u_2 = e_2 - e_1, \ \ldots, \ u_{n-3} = e_{n-3} - e_{n-4},$$

where e_i is the hyperplane class in the *i*-th copy of the \mathbb{CP}^2 's $(1 \le i \le n-3)$. Also the other configurations C_{n-3} embed into $(n-3)\overline{\mathbb{CP}^2}$ representing the elements

$$u_1' = 2e_1' + e_2' + \ldots + e_{n-3}', \ u_2' = e_2' - e_1', \ \ldots, \ u_{n-3}' = e_{n-3}' - e_{n-4}',$$

where e_i is the hyperplane class in the *i*-th copy of the \mathbb{CP}^2 's $(1 \leq i \leq n-3)$. By Theorem 2.2, the basic classes of E(n) are of the form

$$\{kf \mid k = -(n-2), -(n-4), \dots, n-4, n-2\}.$$

Let $Y = E(n) = X \cup C_{n-3}$ and $Z = X \cup B_{n-3} \equiv Y(n)$. Let $i: X \to E(n)$ be the inclusion. Over the rational coefficient, the cohomology splits into

$$H^{2}(E(n)) = H^{2}(X) \oplus H^{2}(C_{n-3}).$$

It follows that i^*K is just the restriction of the canonical class $K \in H^2(E(n))$ into $H^2(X)$. In other words,

$$i^*K = K + a_1u_1 + a_2u_2 + \ldots + a_{n-3}u_{n-3},$$

where a_j are the unique rational numbers such that $i^*K \cdot u_j = 0$ for all $1 \le j \le n-3$. With the rational coefficients we have

$$H^2(Y(n)) = H^2(X) \oplus H^2(B_{n-3}) = H^2(X).$$

Since the basic classes of E(n) are kf $(k = -(n-2), -(n-4), \dots, n-4, n-2)$, we can consider $i^*(kf)$ $(k = -(n-2), -(n-4), \dots, n-4, n-2)$ as the candidates for the basic classes of Y(n).

First, let $i^*(f) = f + a_1u_1 + a_2u_2 + \ldots + a_{n-3}u_{n-3}$. Since $i^*(f) \cdot u_j = 0$ for all $1 \le j \le n-3$, we have

$$i^*(f) \cdot u_1 = 0 \Rightarrow 1 - na_1 + a_2 = 0,$$

 $i^*(f) \cdot u_2 = 0 \Rightarrow a_1 - 2a_2 + a_3 = 0,$
 $i^*(f) \cdot u_3 = 0 \Rightarrow a_2 - 2a_3 + a_4 = 0,$
 \vdots
 $i^*(f) \cdot u_{n-3} = 0 \Rightarrow a_{n-4} - 2a_{n-2} = 0.$

Then we get

$$a_1 = \frac{n-3}{(n-2)^2}, \ a_2 = \frac{n-4}{(n-2)^2}, \dots, \ a_{n-4} = \frac{2}{(n-2)^2}, \ a_{n-3} = \frac{1}{(n-2)^2}.$$

Therefore,

$$i^*(f) = f + a_1 u_1 + \dots + a_{n-3} u_{n-3}$$

$$= f + \frac{n-3}{(n-2)^2} u_1 + \dots + \frac{1}{(n-2)^2} u_{n-3}$$

$$= f + \frac{1}{n-2} e_1 + \frac{1}{n-2} e_2 + \dots + \frac{1}{n-2} e_{n-3}.$$

Similarly $i^*(kf) = k(f + \frac{1}{n-2}e_1 + \frac{1}{n-2}e_2 + \ldots + \frac{1}{n-2}e_{n-3})$ for all k = -(n-2), $-(n-4), \ldots, n-4, n-2$. Since Y(n) is a symplectic manifold with $b_2^+ > 1$, Y(n) is of simple type. And by Theorem 1.2, $\pm ((n-2)f + e_1 + e_2 + \ldots + e_{n-3})$ are the only basic classes of Y(n) and $(\pm ((n-2)f + e_1 + e_2 + \ldots + e_{n-3}))^2 = n-3$.

To repeat the above process, let $Y = Y(n) = X \cup C_{n-3}$ and $Z = X \cup B_{n-3} = H(n)$. The basic classes H(n) are

$$\pm((n-2)f + e_1 + \ldots + e_{n-3} + e_1' + \ldots + e_{n-3}')$$

and

$$\pm ((n-2)f + e_1 + \ldots + e_{n-3} + e_1' + \ldots + e_{n-3}')^2 = 2n - 6.$$

Remark. In the proof of Proposition 3.4, Y(n) $(n \ge 4)$ is a simply connected, symplectic 4-manifold and Y(n) are not homotopy equivalent to any complex surface.

4. Main theorem

Let X be a simply connected, symplectic 4-manifold. Let X contain a torus f with square 0 lying in a cusp neighbourhood. Taking the fiber sum of X with the regular elliptic surface E(n) along f, the fiber sum $X \not \sharp E(n)$ is a simply connected, symplectic 4-manifold. We know the following relation:

$$(\chi(X \underset{f}{\sharp} E(n)), c_1^2(X \underset{f}{\sharp} E(n))) = (\chi(X) + n, c_1^2(X)).$$

Denote $D \equiv \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid 0 < b < 2a - 6\}.$

Theorem 4.1. If $(a,b) \in D$ is a point in the region under the Noether line, then there is a minimal, simply connected, symplectic 4-manifold X such that $(\chi(X), c_1^2(X)) = (a, b)$.

Proof. First, to prove Theorem 4.1 we only have to show that for every b > 0, there is a simply connected symplectic manifold X which contains a torus f with square 0 lying in a cusp neighbourhood.

Suppose that b is even. Then by Lemma 3.3, the Horikawa surface H(n) satisfies the above statement. That is, the Horikawa surface H(n) is the simply connected, symplectic manifold which contains a torus f with square $f \cdot f = 0$ lying in a cusp neighbourhood. And H(n) lies on the Noether-line $2\chi - 6 = c_1^2 = b$.

Suppose that b is odd. If $b \le 7$, then the manifolds Y_b (b=1,3,5,7) are the simply connected, symplectic manifolds which contain a torus f with square $f \cdot f = 0$ lying in a cusp neighbourhood. If $b \ge 9$, then the manifold $Y_7 \sharp H(n)$ $(n \ge 4)$ lies on the line $2\chi - 7 = c_1^2$ and is simply connected, symplectic 4-manifold which contains a torus f with square $f \cdot f = 0$ lying in a cusp neighbourhood.

Therefore, for every b>0, there is a simply connected manifold X (= $H(n), Y_b$ (b=1,3,5,7), $Y_7 \sharp H(n)$ ($n \geqslant 4$)) which contains a torus f with square $f \cdot f = 0$ lying in a cusp neighbourhood.

To complete the proof of Theorem 4.1, we have to show that $X \not\equiv E(n)$ is irreducible when X is either H(n), Y_b , or $Y_7 \not\equiv H(n)$. By Proposition 3.2 and Proposition 3.4, the basic classes of X are only $\pm K_X$ when X is H(n) or Y_i . Therefore the set of basic classes of $X \not\equiv E(n)$ is

$$\{\pm K_X + kf \mid k = -(n-2), -(n-4), \dots, n-4, n-2\}.$$

The differences of two basic classes are $k_1 f$ or $\pm (2K_X + k_2 f)$ for some integers k_1 , k_2 . The squares of these are

$$(k_1 f)^2 = 0,$$

 $(\pm (2K_X + k_2 f))^2 = 4K_X^2 > 0.$

Therefore, by Proposition 1.4, $X \sharp_f E(n)$ is irreducible when X is H(n) or Y_i .

Similarly, the basic classes of $Y_7 \sharp H(n)$ are $\pm (K_{Y_7} \pm K_{H(n)})$. Therefore the set of basic classes of $(Y_7 \sharp H(n)) \sharp E(m)$ is

$$\{\pm(K_{Y_7}\pm K_{H(n)})+kf\mid k=-(m-2),-(m-4),\ldots,m-4,m-2\}.$$

Then the differences of two basic classes are $k_1 f$ or $\pm (2(K_{Y_7} \pm K_{H(n)}) + k_2 f)$ for some integers k_1 , k_2 . The squares of these are

$$(k_1 f)^2 = 0,$$

$$(\pm (2(K_{Y_7} \pm K_{H(n)}) + k_2 f))^2 = 4(K_{Y_7} \pm K_{H(n)})^2 > 0.$$

Therefore, by Proposition 1.4, $(Y_7 \sharp H(n))\sharp E(m)$ is irreducible.

References

- [1] D. Auckly: Surgery, knots and the Seiberg-Witten equations. Preprint.
- [2] D. Auckly: Homotopy K3 surfaces and gluing results in Seiberg-Witten theory. Preprint.
- [3] W. Barth, C. Peter and A. Van de Ven: Compact Complex Surfaces. Ergebnisse der Mathematik. Springer-Verlag, Berlin, 1984.
- [4] M. S. Cho and Y. S. Cho: Genus minimizing in symplectic 4-manifolds. Chinese Ann. Math. Ser. B 21 (2000), 115–120.
- [5] Y. S. Cho: Finite group actions on the moduli space of self-dual connections I. Trans. Amer. Math. Soc. 323 (1991), 233–261.
- [6] Y. S. Cho: Cyclic group actions in gauge theory. Differential Geom. Appl. (1996), 87–99.
- [7] Y. S. Cho: Seiberg-Witten invariants on non-symplectic 4-manifolds. Osaka J. Math. 34 (1997), 169–173.
- [8] Y. S. Cho: Finite group actions and Gromov-Witten invariants. Preprint.
- [9] R. Fintushel and R. Stern: Surgery in cusp neighborhoods and the geography of Irreducible 4-manifolds. Invent. Math. 117 (1994), 455–523.
- [10] R. Fintushel and R. Stern: Rational blowdowns of smooth 4-manifolds. Preprint.
- [11] R. Gompf: A new construction of symplectic manifolds. Ann. Math. 142 (1995), 527-595.
- [12] P. Kronheimer and T. Mrowka: The genus of embedded surfaces in the projective plane. Math. Res. Lett. (1994), 794–808.
- [13] U. Persson: Chern invariants of surfaces of general type. Composito Math. 43 (1981), 3–58.

- [14] D. Salamon: Spin geometry and Seiberg-Witten invariants. University of Warwick (1995).
- [15] A. Stipsicz: A note on the geography of symplectic manifolds. Preprint.
- [16] C. H. Taubes: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1 (1994), 809–822.

 $Authors'\ address:$ Department of Mathematics, Ewha Women's University, Seoul 120-750, Korea, e-mail: yescho@ewha.ac.kr.