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Abstract

BoundaryS matrices for the boundary tricritical Ising field theory (TIM), both with and without
supersymmetry, have previously been proposed. Here we provide support for theseS matrices by
showing that the corresponding boundary entropies are consistent with the expected boundary flows.
We develop the fusion procedure for boundary RSOS models, with which we derive exact inversion
identities for the TIM. We confirm the TBA description of nonsupersymmetric boundary flows of
Lesage et al. and we obtain corresponding descriptions of supersymmetric boundary flows.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

A well-known (but nevertheless, remarkable) feature of integrable quantum field
theories in 1+ 1 dimensions is that their exact bulk [1] and boundary [2] scattering
matrices can be found. However, such results are generally not obtained in a systematic
way from the action; rather, one often relies on general principles (factorizability, unitarity,
crossing, bootstrap, etc.) and educated guesses about symmetry, mass spectrum, etc.
A case in point is the tricritical Ising field theory—i.e., the tricritical Ising conformal
field theory (CFT) [3–5] perturbed by theΦ(1,3) operator [6]. We shall refer to this
field theory as the “tricritical Ising model” or TIM for short. The bulkS matrix was
proposed in [7], and boundaryS matrices were proposed in [8,9]. This field theory has
several notable properties, which render it a very attractive toy model: it is unitary; it is
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supersymmetric; and it is one of the simplest examples of a model of massive kinks, whose
scattering matrices are of RSOS [10,11] type. Moreover, the bulk and boundary soliton
S matrices [12–14] of theN = 1 supersymmetric sine-Gordon model [15,16] contain the
corresponding TIMS matrices as one of the factors.

A thermodynamic Bethe ansatz (TBA) analysis [17] can provide a nontrivial check on
a given bulk [18,19] or boundary [20–22] scattering matrix. Indeed, theS matrices serve
as the input of the “TBA machinery”, whose output consists of certain data (central charge
[3,4], boundary entropy [23,24]) which characterizes the corresponding CFT. For the TIM,
a TBA check of the proposed bulkS matrix [7] was performed in [19].

One of the principal aims of this paper is to perform an analogous TBA check of the
boundaryS matrices which have been proposed in [8,9]. Such an analysis is technically
nontrivial, since neither the bulk nor boundaryS matrices are diagonal. As in the bulk case
[19], the key step is the derivation of an exact inversion identity which is obeyed by an
appropriate transfer matrix. For the boundary case considered here, the transfer matrix is
of the “double-row” type [25].

A second aim of this paper is to develop the techniques for deriving the necessary
inversion identity. We do this in an extended appendix, building on earlier work on fusion
for vertex [26–28] and RSOS [29–31] models. The main idea is to formulate an RSOS
open-chain fusion formula, and to show that the TIM fused transfer matrix is proportional
to the identity matrix.

A third aim of this paper is to derive TBA descriptions of TIM massless boundary flows.
Let us recall [8,9,23] that the tricritical Ising CFT has a discrete set of (super) conformal
boundary conditions. Boundary perturbations can lead to flows among these boundary
conditions [8,9,32–35]. A TBA description of the nonsupersymmetric flows was proposed
in [32] on the basis of an analogy with the Kondo problem. Here we give a derivation of that
TBA result, as well as the results for supersymmetric flows not considered in [32], directly
from the TIM scattering theory. (An alternative approach based on a lattice formulation of
the TIM is considered in [35]. However, it seems that this approach cannot generate the
boundary entropies.)

We emphasize that detailed analyses such as ours of boundary integrable quantum field
theories may have various important physical applications. For instance, such models can
be used to describe quantum impurity problems in strongly correlated condensed matter
systems (see, e.g., [32,33,36]). Moreover, such models have applications to D-branes and
open string theory (see, e.g., [37,38]). In both the condensed matter and string theory
applications, the concept of boundary flow plays a fundamental role.

The outline of this article is as follows. In Section 2, we review the bulk and boundaryS

matrices [7–9] which will serve as inputs for our TBA calculation. There are two boundary
S matrices that are not supersymmetric; and there are two boundaryS matrices which do
have supersymmetry, which we call NS and R. We also briefly review the classification of
(super) conformal boundary conditions, certain pairs of which are connected by boundary
flows. In Section 3, we carry out the first step of the TBA program, which consists of
constructing the so-called Yang matrix [39] and relating it to a commuting transfer matrix.
For the problem at hand, we require a boundary RSOS version of the Yang matrix, which
is an interesting generalization of the known case of periodic boundary conditions. In
Section 4, we use an exact inversion identity to determine the eigenvalues of the transfer
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matrix in terms of roots of certain Bethe ansatz equations. We restrict our attention here to
the NS case. In Section 5 we use these results to derive the TBA equations and boundary
entropy. Moreover, we find massless scaling limits which correspond to boundary flows,
both for the NS case and the nonsupersymmetric cases. In Section 6 we briefly discuss the
R case, which is closely related (in fact, dual) to the NS case. Our conclusions are presented
in Section 7. In an Appendix B, we give a brief account of the fusion procedure for RSOS
models with boundary, and provide the derivation of the TIM inversion identity.

2. TIM scattering theory

We briefly review in this section some pertinent results on the TIM scattering theory. We
first define the bulk model as a perturbed bulk CFT, and give the bulkS matrix [7]. We then
enumerate the possible (super) conformal boundary conditions, and give the boundaryS

matrices which have been proposed [8,9] to describe certain perturbations of some of these
boundary conditions. Two of the boundaryS matrices do not have supersymmetry, and two
of them do. Many of the notations used in this paper are introduced in this section.

2.1. Bulk

The bulk TIM is defined by the “action” [7]

(2.1)A=AM(4/5)+ λ

∞∫
−∞

dy

∞∫
−∞

dx Φ(3/5,3/5)(x, y), λ < 0,

whereAM(4/5) is the action for the tricritical Ising CFT (i.e., the minimal unitary model
M(4/5) with central chargec = 7/10), andΦ(3/5,3/5) is the spinless(1,3) primary field
of this CFT with dimensions(3/5,3/5). Moreover,λ is a bulk parameter with dimension
length−4/5. We restrict our attention to the caseλ < 0, for which there is a three-fold
vacuum degeneracy, and the spectrum consists of massive (massm > 0) kinksKa,b(θ)

that separate neighboring vacua,a, b ∈ {−1,0,1} with |a − b| = 1. Multi-kink states

Ka1,b1(θ1)Ka2,b2(θ2) · · ·
must obey the adjacency conditionsb1 = a2, etc.

The two-kinkS matrixScda b(θ) is defined by the relation (see Fig. 1)

(2.2)Ka,c(θ1)Kc,b(θ2)=
∑
d

Sc da b(θ1 − θ2)Ka,d(θ2)Kd,b(θ1).

The nonzero matrix elements are given by [7,19]1

Sσ σ ′
0 0 (θ)= e−iγ θσ (θ)�S σ σ ′

0 0 (θ),

(2.3)S0 0
σ σ ′(θ)= eiγ θσ (θ)�S 0 0

σ σ ′(θ),

1 It is noted in [7] that thisS matrix is essentially the solution of the star-triangle equation corresponding to
the critical Ising lattice model [10,11].
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Fig. 1. BulkS matrix Sc da b(θ1 − θ2).

whereσ,σ ′ ∈ {−1,+1}, γ = 1
2π ln 2, and the “reduced” matrix elements�S cd

a b(θ) are given
by

�S σ σ
0 0 (θ)= cosh

θ

4
, �S σ −σ

0 0 (θ)=−i sinh
θ

4
,

(2.4)�S 0 0
σ σ (θ)=

√
2cosh

1

4
(θ − iπ), �S 0 0

σ −σ (θ)=
√

2cosh
1

4
(θ + iπ).

Finally, σ(θ) is a function which obeys

(2.5)σ(θ)= σ(iπ − θ), σ (θ)σ (−θ)= 1

cosh(θ/2)
,

and has no poles in the physical strip 0� Im θ < π . A useful integral representation for
this function is

(2.6)σ(θ)= −i√
2sinh((θ − iπ)/4)

exp

(
i

∞∫
0

dt

t

sin(θt/π)sinh(3t/2)

sinh(2t)cosh(t/2)

)
.

This is a “reduction” of the well-known integral representation for the factorU(θ) of the
sine-GordonS matrix [1] with 8π/γ ′ = 1/4.

Zamolodchikov has shown in [7] that thisS matrix “commutes” with supersymmetry
chargesQ and�Q, which obey theN = 1 supersymmetry algebra with topological charge.
TheS matrix also commutes with the spin-reversal operatorΓ , which is defined by

ΓKa1,a2(θ1)Ka2,a3(θ2) · · ·KaN,aN+1(θN)

(2.7)=K−a1,−a2(θ1)K−a2,−a3(θ2) · · ·K−aN ,−aN+1(θN).

Further properties of theS matrix are listed in Appendix A.
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2.2. Boundary

Although the three vacua−1,0,+1 are degenerate in the bulk, these vacua do not
necessarily remain degenerate at the boundary. Chim [8] has identified the six conformal
boundary conditions (CBC) [23] of the tricritical Ising CFT as follows: for theboundary
conditions (−), (0), (+), the order parameter is fixed at the boundary to the vacua
−1,0,+1, respectively. For the boundary condition(−0), the vacua−1 and 0 are
degenerate at the boundary; hence, the order parameter at the boundary may be in either
of these two vacua. Similarly, for the boundary condition(0+), the 0 and+1 vacua
are degenerate at the boundary. Finally, for the boundary condition(d), all three vacua
−1,0,+1 are degenerate at the boundary (as well as in the bulk); i.e., the order parameter
at the boundary may be in any of the three vacua. The correspondingg factors [24] are
given by [8]

g(d) =
√

2η2C, g(−0) = g(0+) = η2C,

(2.8)g(0) =
√

2C, g(−) = g(+) = C,

where

(2.9)C =
√

sin(π/5)√
5

, η=
√

sin(2π/5)

sin(π/5)
.

It is argued in [9] that the conformal boundary conditions(−)& (+), (−0)& (0+), (0) and
(d) are in fact superconformal. Notice that the first two of these superconformal boundary
conditions correspond to superpositions of “pure” Cardy states.

We shall consider separately integrable perturbations of both conformal and supercon-
formal boundary conditions, resulting in models without and with supersymmetry, respec-
tively. We assume [8] that also in the perturbed theory the boundary can have (at most)
three possible states, corresponding to the three different vacua, which are created by the
boundary operatorBa with a ∈ {−1,0,1}. Multi-kink states have the form

Ka1,a2(θ1)Ka2,a3(θ2) · · ·KaN,a(θN)Ba.

The kink boundaryS matrixR
c

a
b
(θ) is defined by the relation (see Fig. 2)

(2.10)Ka,b(θ)Bb =
∑
c

R
c

a
b
(θ)Ka,c(−θ)Bc.

2.2.1. Non-supersymmetric cases
Chim [8] has considered the TIM on the half-linex � 0 corresponding to an integrable

perturbation of the CBC(−0). The model is defined by the action

A=AM(4/5)+(−0)+ λ

∞∫
−∞

dy

0∫
−∞

dxΦ(3/5,3/5)(x, y)− h

∞∫
−∞

dy φ(3/5),(−0)(y),

(2.11)λ < 0.
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Fig. 2. BoundaryS matrixR
c

a
b
(θ).

The last term is the boundary perturbation. It involves the boundary primary field
φ(3/5),(−0) with dimension&(1,3) = 3/5 which acts on the CBC(−0).2 Moreover,h is
a boundary parameter which has dimensions length−2/5.

The boundaryS matrix which has been proposed [8] for this model has the following
nonzero matrix elements

R
−1

0−1
(θ, ξ)= P(θ, ξ)�R −1

0−1
(θ, ξ),

(2.12)R
0

σ
0
(θ, ξ)=M(θ, ξ)�R 0

σ
0
(θ, ξ),

where the reduced matrix elements�R c
a
b
(θ, ξ) are given by

�R −1
0−1

(θ, ξ)= 1,

(2.13)�R 0±1
0
(θ, ξ)= cos

ξ

2
± i sinh

θ

2
.

The parameterξ is related in some way to the boundary parameterh appearing in the action
(2.11). The functionP(θ, ξ) is given by

(2.14)P(θ, ξ)= PCDD(θ, ξ)Pmin(θ),

wherePCDD(θ, ξ) is the CDD factor

(2.15)PCDD(θ, ξ)= sinξ − i sinhθ

sinξ + i sinhθ
,

2 In general, boundary operatorsφa andφb which act on conformal boundary conditionsa andb commute;
i.e., their operator product expansion with each other is zero. Such operators have recently been studied in [40].
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which has a pole atθ = iξ , andPmin(θ) is the minimal solution of the equations

Pmin(θ)Pmin(−θ)= 1,

(2.16)Pmin

(
iπ

2
− θ

)
=√

2e2iγ θ cosh

(
θ

2
− iπ

4

)
σ(2θ)Pmin

(
iπ

2
+ θ

)
,

with no poles in the physical strip 0� Imθ < π
2 . We find that it has the integral

representation

(2.17)Pmin(θ)= expi

(
−γ θ + 1

8

∞∫
0

dt

t

sin(2θt
π
)

cosh2 t cosh2 t
2

)
.

Finally, the functionM(θ, ξ) is given by

(2.18)M(θ, ξ)= e2iγ θσ (θ − iξ)σ (θ + iξ)P (θ, ξ).

There is a similar model corresponding to a perturbation of the CBC(0+). The
boundaryS matrix for this case is the same as the one given above, except that

R
−1

0−1
(θ, ξ)= 0, and

(2.19)R
1

0
1
(θ, ξ)= P(θ, ξ)�R 1

0
1
(θ, ξ),

with �R 1
0
1
(θ, ξ)= 1. Neither of these two models has supersymmetry.

2.2.2. Supersymmetric cases
Supersymmetric perturbations of the tricritical Ising boundary CFT with two different

superconformal boundary conditions (namely,(−0)& (0+) and(d)) are considered in [9].
We refer to these two cases as NS and R, respectively, since these are the sectors to which
the corresponding boundary states belong.

(a)NS case
The NS case corresponds to a perturbation of the boundary condition(−0)& (0+), with

action

A=AM(4/5)+(−0)&(0+)+ λ

∞∫
−∞

dy

0∫
−∞

dx Φ(3/5,3/5)(x, y)

(2.20)− h

∞∫
−∞

dy
(
φ(3/5),(−0)(y)− φ(3/5),(0+)(y)

)
, λ < 0.

The proposed boundaryS matrix is the “direct sum” of the boundaryS matrices given in
Section 2.2.1 for the perturbations of(−0) and(0+). That is, the nonzero matrix elements
are given by

R
σ

0
σ
(θ, ξ)= P(θ, ξ)�R σ

0
σ
(θ, ξ),

(2.21)R
0

σ
0
(θ, ξ)=M(θ, ξ)�R 0

σ
0
(θ, ξ),
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where

�R σ
0
σ
(θ, ξ)= 1,

(2.22)�R 0±1
0
(θ, ξ)= cos

ξ

2
± i sinh

θ

2
,

and the functionsP(θ, ξ) andM(θ, ξ) are given by Eqs. (2.14) and (2.18), respectively.
This boundaryS matrix “commutes” with the supersymmetry charge

(2.23)Q̂=Q+ �Q+ 2 cos

(
ξ

2

)√
mΓ,

whereΓ is the spin-reversal operator (2.7).

(b) R case
For the R case, which corresponds to a perturbation of the boundary condition(d), the

action is given by the image of (2.20) under duality transformation. The proposed boundary
S matrix has the following nonzero matrix elements

R
σ

0
σ
(θ, ξ)=N(θ, ξ)�R σ

0
σ
(θ, ξ),

R
−σ

0
σ

(θ, ξ)=N(θ, ξ)�R −σ
0
σ

(θ, ξ),

(2.24)R
0

σ
0
(θ, ξ)=R(θ, ξ)�R 0

σ
0
(θ, ξ),

where the reduced matrix elements�R c
a
b
(θ, ξ) are given by

�R σ
0
σ
(θ, ξ)= cos

ξ

2
, �R −1

0+1
(θ, ξ)=−ir sinh

θ

2
,

(2.25)�R +1
0−1

(θ, ξ)=− i

r
sinh

θ

2
, �R 0

σ
0
(θ, ξ)= 1,

andr is a parameter which presumably is related in some way to the boundary parameterh,
as isξ . Moreover, the functionsN(θ, ξ) andR(θ, ξ) are given by

(2.26)N(θ, ξ)= e−2iγ θM(θ, ξ), R(θ, ξ)= e2iγ θP (θ, ξ).

This boundaryS matrix “commutes” with the supersymmetry charge

(2.27)Q̂=Q− �Q+ 4ir

1− r2
cos

(
ξ

2

)√
mΓ.

In contrast to the NS case, here the matrixR
c

a
b
(θ, ξ) does not vanish forb �= c; i.e., it is

not “diagonal”.
The parameterr can be set to unity by an appropriate gauge transformation [2] of the

kink operators, which corresponds to adding a total derivative term to the boundary action
that restores spin-reversal symmetry. This limiting case, for which the supersymmetry
charge (2.27) reduces toΓ , was considered earlier in [8].
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3. Yang matrix and transfer matrix

The first step of the TBA program is to formulate the “Yang matrix” [39] and relate it
to an appropriate commuting transfer matrix. Since it is not obvious how to do this for the
case of boundaries, we begin by reviewing the case [19] of periodic boundary conditions.3

3.1. Closed-chain transfer matrix

Following [19], we considerN kinks of massm with real rapiditiesθ1, . . . , θN and
two-kink S matrix Scda b(θ) in a periodic box of lengthL� 1

m
. We impose the periodicity

condition

eiLmsinhθ1Ka1,a2(θ1)Ka2,a3(θ2) · · ·KaN−1,aN (θN−1)KaN,a1(θN)

(3.1)=Ka2,a3(θ2) · · ·KaN,a1(θN)Ka1,a2(θ1).

Commuting the kink operatorKa1,a2(θ1) on the LHS past the others using the relation
(2.2), we obtain

eiLmsinhθ1
∑

d2,...,dN

{
S a2d2
a1a3

(θ1 − θ2)S
a3 d3
d2 a4

(θ1 − θ3) · · ·S aN−1 dN−1
dN−2 aN

(θ1 − θN−1)

× S
aN dN
dN−1 a1

(θ1 − θN)Ka1,d2(θ2)Kd2,d3(θ3) · · ·
×KaN−1,dN (θN)KdN,a1(θ1)

}
(3.2)=Ka2,a3(θ2) · · ·KaN,a1(θN)Ka1,a2(θ1).

Multiplying both sides by the “wavefunction”Ψ a1···aN , summing overa1, . . . , aN , and
relabeling indices appropriately, we obtain the Yang equation for kink 1

(3.3)eiLmsinhθ1
∑

a′1,...,a′N

Y(1)
a1···aN
a′1···a′NΨ

a′1···a′N = Ψ a1···aN ,

whereY(1) is the Yang matrix

Y(1)
a1···aN
a′1···a′N = δ

a2
a′1
S
a′2a3

a2a
′
3
(θ1 − θ2)S

a′3a4

a3a
′
4
(θ1 − θ3) · · ·S a′N−1 aN

aN−1 a
′
N

(θ1 − θN−1)

(3.4)× S
a′N a1
aN a2(θ1 − θN).

There are similar equations, and corresponding matricesY(k), for the other kinksk =
2,3, . . . ,N .

The objective is to diagonalizeY(k). The key to this problem is to relateY(k) to
an inhomogeneous closed-chain transfer matrix, for which there are well-developed
diagonalization techniques. To this end, we consider the transfer matrix

τ
a1···aN
a′1···a′N (θ |θ1, . . . , θN )

(3.5)= S
a′1 a2

a1 a
′
2
(θ − θ1)S

a′2 a3

a2 a
′
3
(θ − θ2) · · ·S a′N−1 aN

aN−1 a
′
N

(θ − θN−1)S
a′N a1

aN a′1
(θ − θN),

3 The analysis presented here for RSOS-typeS matrices is parallel to the one given in [22] for vertex-typeS

matrices.
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with inhomogeneitiesθ1, . . . , θN . Because theS matrix satisfies the Yang–Baxter equation
(A.5), the transfer matrix commutes for different values ofθ4

(3.6)
[
τ (θ |θ1, . . . , θN), τ (θ

′|θ1, . . . , θN)
]= 0.

Let us now evaluate this transfer matrix atθ = θ1. Using the fact that theS matrix at
zero rapidity is given by (A.6), we immediately obtainτ (θ1|θ1, . . . , θN )= Y(1). In general,
we have

(3.7)Y(k) = τ (θk|θ1, . . . , θN ), k = 1, . . . ,N.

This is the sought-after relation. In order to diagonalize the Yang matricesY(k), it suffices to
diagonalize the commuting closed-chain transfer matrixτ (θ |θ1, . . . , θN ). That calculation,
as well as the corresponding bulk TBA analysis, is described for the TIM in [19].

3.2. Open-chain transfer matrix

We turn now to the case with boundaries, which is our primary interest here. We
therefore considerN kinks of massm with real, positive rapiditiesθ1, . . . , θN in an interval
of lengthL� 1

m
, with bulkS matrixScda b(θ) and boundaryS matrixR

c
a
b
(θ, ξ). In analogy

with (3.1), we propose the formal relation

e2iLmsinhθ1B+
a1
Ka1,a2(θ1)Ka2,a3(θ2) · · ·KaN−1,aN (θN−1)KaN,aN+1(θN)B

−
aN+1

(3.8)= B+
a1
Ka1,a2(θ1)Ka2,a3(θ2) · · ·KaN−1,aN (θN−1)KaN,aN+1(θN)B

−
aN+1

,

where now there are two boundary operatorsB±
a corresponding to the left and right

boundaries, with (cf. Eq. (2.10))5

(3.9)Ka,b(θ)B
−
b =

∑
c

R
c

a
b
(θ, ξ−)Ka,c(−θ)B−

c ,

(3.10)B+
b Kb,a(θ)=

∑
c

B+
c Kc,a(−θ)R

c
a
b
(−θ, ξ+).

Note that for each boundary operatorB±
a there is a corresponding boundary parameterξ±.

By moving the kink operator with rapidityθ1 on the LHS of (3.8) to the far right using
(2.2), reflecting it from the right boundary using (3.9), moving it to the far left using again
(2.2), and finally reflecting it from the left boundary using (3.10), we arrive at the Yang
equation for kink 1

(3.11)e2iLmsinhθ1
∑

a′1,...,a′N+1

Y(1)
a1···aN+1
a′1···a′N+1

Ψ a′1···a′N+1 = Ψ a1···aN+1,

4 Our convention for matrix multiplication is given by

(AB)
a1···aN
a′1···a′N

=
∑

a′′1 ,...,a′′N

A
a′′1 ···a′′N
a′1···a′N

B
a1···aN
a′′1 ···a′′N

.

5 The relations (3.9) and (3.10) are consistent in that both lead to the same boundary Yang–Baxter equation
(A.10).
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where the Yang matrixY(1) is given by

Y(1)
a1···aN+1
a′1···a′N+1

=
∑

d2,...,dN

{
R

a1
a2
a′1
(θ1, ξ+)S

a′2 d2

a′1 a′3
(θ1 − θ2) · · ·S a′N dN

dN−1 a
′
N+1

(θ1 − θN)

(3.12)

×R
aN+1

dN
a′N+1

(θ1, ξ−)S dN aN
dN−1aN+1

(θ1 + θN) · · ·S d2 a2
a′1 a3

(θ1 + θ2)
}
.

There are similar matricesY(k) for the other kinks. In analogy with the case of periodic
boundary conditions, the key to diagonalizing the Yang matrix is to relate it to an
inhomogeneous open-chain transfer matrix

t
a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN)

(3.13)

=
∑

a′′1 ,...,a′′N+1

{
R

a1
a′′1

a′1
(iπ − θ, ξ+)S

a′1a′′2
a′′1 a′2

(θ − θ1) · · ·S a′N a′′N+1
a′′N a′N+1

(θ − θN)

×R
aN+1

a′′N+1
a′N+1

(θ, ξ−)S
a′′
N+1 aN

a′′N aN+1
(θ + θN) · · ·S a′′2 a1

a′′1 a2
(θ + θ1)

}
,

which commutes for different values ofθ

(3.14)
[
t (θ |θ1, . . . , θN), t (θ

′|θ1, . . . , θN)
]= 0.

The transfer matrix (3.13) is an RSOS version [13,30,31] of the Sklyanin [25] vertex-type
transfer matrix. Using the relations (A.6), (A.9) and (A.2), one can show that

(3.15)Y(k) = t (θk|θ1, . . . , θN ), k = 1, . . . ,N.

Hence, in order to diagonalize the Yang matricesY(k), it suffices to diagonalize the open-
chain transfer matrixt (θ |θ1, . . . , θN). Indeed, letΨ (θ1, . . . , θN) be an eigenvector of the
transfer matrix with corresponding eigenvalueΛ(θ |θ1, . . . , θN),

(3.16)t (θ |θ1, . . . , θN)Ψ (θ1, . . . , θN)=Λ(θ |θ1, . . . , θN )Ψ (θ1, . . . , θN).

The eigenvector is independent ofθ by virtue of the commutativity property (3.14). With
the help of the result (3.15), the Yang equation (3.11) implies

(3.17)e2iLmsinhθkΛ(θk|θ1, . . . , θN)= 1, k = 1, . . . ,N.

4. Inversion identity and transfer-matrix eigenvalues: NS case

We turn now to the problem of determining the eigenvalues of the inhomogeneous open-
chain transfer matrix (3.13). As for the closed chain [19], our approach is to derive an
exact inversion identity. For definiteness, we treat here the NS case (see Section 2.2.2.).
The results for the R case, which are closely related to those for the NS case, are presented
in Section 6.

Instead of working with the full (“dressed”) transfer matrix (3.13), it is convenient (see
Footnote 6 below) to work instead with the reduced (“bare”) transfer matrixt̄ , which is
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constructed from the reduced bulk and boundaryS matrices,

t̄
a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN )

(4.1)

=
∑

a′′1 ,...,a′′N+1

{�R a1
a′′1

a′1
(iπ − θ, ξ+)�S a′1a′′2

a′′1 a′2
(θ − θ1) · · ·�S a′N a′′N+1

a′′N a′
N+1

(θ − θN)

× �R
aN+1

a′′N+1
a′N+1

(θ, ξ−)�S a′′N+1 aN

a′′N aN+1
(θ + θN) · · ·�S a′′2 a1

a′′1 a2
(θ + θ1)

}
.

It is also convenient to define the following four “sectors”:

N = even− sector I: a1, a
′
1, aN+1, a

′
N+1 ∈ {−1,+1},

N = even− sector II: a1 = a′1 = aN+1 = a′N+1 = 0,

N = odd− sector I: a1, a
′
1 ∈ {−1,+1}, aN+1 = a′N+1 = 0,

(4.2)N = odd− sector II: a1 = a′1 = 0, aN+1, a
′
N+1 ∈ {−1,+1}.

The nonzero matrix elements of the transfer matrix lie exclusively in these sectors. For a
given parity ofN (i.e., even or odd), the transfer matrix decomposes into two blocks along
the diagonal corresponding to sectors I and II. For the NS case (2.21), (2.22), the relation
between the full transfer matrix and the reduced transfer matrix is given by

(4.3)t(α)(θ |θ1, . . . , θN )=w(α)(θ)t̄ (α)(θ |θ1, . . . , θN),

whereα runs over the four sectors (4.2), andw(α)(θ) is given by

(4.4)w(α)(θ)=
N∏
j=1

σ(θ − θj )σ (θ + θj )×


P(iπ − θ, ξ+)P (θ, ξ−),
M(iπ − θ, ξ+)M(θ, ξ−),
e−2iγ θP (iπ − θ, ξ+)M(θ, ξ−),
e2iγ θM(iπ − θ, ξ+)P (θ, ξ−),

respectively. The latter can be brought to the form

w(α)(θ)= 1

σ(2θ)cosh(θ/2)

N∏
j=1

σ(θ − θj )σ (θ + θj )

(4.5)×


e2iγ θP (θ, ξ+)P (θ, ξ−),
1
2e

−2iγ θM(θ, ξ+)M(θ, ξ−),
P (θ, ξ+)M(θ, ξ−),
1
2M(θ, ξ+)P (θ, ξ−)

with the help of the crossing properties (2.5), (2.16).
Using the fusion procedure, we show in Appendix B that the reduced transfer matrix

obeys the inversion identity

(4.6)t̄ (α)(θ |θ1, . . . , θN )t̄
(α)(θ + iπ |θ1, . . . , θN )= f (α)(θ)I(α),
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whereα runs over the four sectors (4.2), andf (α)(θ) is given by

f (α)(θ)= 1

coshθ

[
f
(α)
+ (θ)cosh2

θ

2

N∏
j=1

cosh

(
1

2
(θ − θj )

)
cosh

(
1

2
(θ + θj )

)

(4.7)

+ f
(α)
− (θ)sinh2 θ

2

N∏
j=1

sinh

(
1

2
(θ − θj )

)
sinh

(
1

2
(θ + θj )

)]
,

where

(4.8)f
(α)
± (θ)=


1,

(coshθ ± cosξ−)(coshθ ± cosξ+),
1
2(coshθ ± cosξ−),
2(coshθ ± cosξ+),

respectively. This inversion identity is one of the main results of this paper. We have
checked it explicitly up toN = 4.

In addition to the inversion identity, we can establish certain further properties of the
transfer matrix which are needed to determine its eigenvalues. Namely, periodicity6

(4.9)t̄ (θ + 2iπ |θ1, . . . , θN)= t̄ (θ |θ1, . . . , θN),

crossing

(4.10)t̄ (iπ − θ |θ1, . . . , θN )= t̄ (θ |θ1, . . . , θN ),

and asymptotic behavior for largeθ

(4.11)t̄ (α)(θ |θ1, . . . , θN )∼ z(α)(θ) I
(α), for θ →∞,

whereα runs over the four sectors (4.2), andz(α) is given by

(4.12)z(α)(θ)=



(− ieθ

4

)N/2
(δa1,aN+1 − δa1,−aN+1),

2
(− ieθ

4

)(N/2)+1
,(− ieθ

4

)(N+1)/2
(δa1,−1 − δa1,1),

2
(− ieθ

4

)(N+1)/2
(δaN+1,−1 − δaN+1,1),

respectively.
Acting with the above relations on an eigenvectorΨ (θ1, . . . , θN) of the (reduced)

transfer matrix

(4.13)t̄ (θ |θ1, . . . , θN)Ψ (θ1, . . . , θN )= Λ̄(θ |θ1, . . . , θN)Ψ (θ1, . . . , θN),

6 This is not the case for the full transfer matrixt (θ |θ1, . . . , θN ).
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we obtain corresponding relations for the eigenvaluesΛ̄(α)(θ |θ1, . . . , θN) in the various
sectors,

(4.14)Λ̄(α)(θ |θ1, . . . , θN)Λ̄
(α)(θ + iπ |θ1, . . . , θN)= f (α)(θ),

(4.15)Λ̄(α)(θ + 2iπ |θ1, . . . , θN )= Λ̄(α)(θ |θ1, . . . , θN),

(4.16)Λ̄(α)(iπ − θ |θ1, . . . , θN)= Λ̄(α)(θ |θ1, . . . , θN),

(4.17)Λ̄(α)(θ |θ1, . . . , θN)∼ z(α)(θ), for θ →∞.

The periodicity, crossing and asymptotic behavior requirements of the eigenvalues
(4.15)–(4.17) are fulfilled by the ansatz

(4.18)Λ̄(α)(θ |θ1, . . . , θN)= c(α)
d(α)∏
j=1

(−i)sinh

(
1

2
(θ − uj )

)
cosh

(
1

2
(θ + uj )

)
,

wherec(α) andd(α) are given by

(4.19)c(α) =


±1,

2,

±1,

±2,

d(α) =



N
2 ,

N
2 + 1,
N+1

2 ,

N+1
2 ,

respectively. The parameters{uj } appearing in the ansatz (4.18) are evidently roots of the
eigenvalues,Λ̄(α)(uj |θ1, . . . , θN ) = 0. It follows from the inversion identity (4.14) that
{uj } are also roots of the functionf (α)(θ), i.e.,f (α)(uj )= 0. We conclude from (4.7) that
{uj } are solutions of the set of equations

−f
(α)
− (uj )

f
(α)
+ (uj )

sinh2 uj
2

cosh2 uj
2

N∏
k=1

sinh(1
2(uj − θk))

cosh(1
2(uj − θk))

sinh(1
2(uj + θk))

cosh(1
2(uj + θk))

= 1,

(4.20)j = 1, . . . , d(α),

to which we refer as “Bethe ansatz” equations.
The periodicity property (4.15) implies that we can restrict the rootsuj of Λ̄(α)(θ) to

the interval

(4.21)−π < Imuj � π.

We now demonstrate that all the rootsuj have the formxj ± iπ
2 with xj real. Indeed, we

observe thatf (α)(θ) has the properties7

(4.22)
[
f (α)(θ)

]∗ = f (α)
(
θ∗
)
, f (α)(θ ∓ iπ)= f (α)(θ),

where∗ denotes complex conjugation. These two properties imply that ifuj is a root of
f (α)(θ), then so areu∗j anduj ∓ iπ , respectively. Sinceu∗j �= uj , thenu∗j = uj ∓ iπ .

Hence, Imuj =± iπ
2 .

7 We assume here that{θk} andξ± are real.
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In view of the above, we set

(4.23)uj = xj + iπ

2
εj ,

with xj real andεj =±1. The eigenvalues (4.18) are specified by{xj , εj }, j = 1, . . . , d(α),
similarly to the bulk case [19]. Hence, we can rewrite the expression for the eigenvalues as

(4.24)Λ̄(α)(θ |θ1, . . . , θN)= c(α)
d(α)∏
j=1

λ(1)εj
(θ − xj )λ

(2)
εj
(θ + xj ),

where

(4.25)λ(1)ε (θ)= sinh
1

2

(
θ − iπ

2
ε

)
, λ(2)ε (θ)=−i cosh

1

2

(
θ + iπ

2
ε

)
.

Moreover, we can rewrite the Bethe ansatz equations (4.20) in terms ofxj (they do not
depend onεj ) as

Q(α)(xj , ξ±)
sinh2(

xj
2 − iπ

4 )

sinh2(
xj
2 + iπ

4 )

N∏
k=1

[
−sinh(

xj−θk
2 − iπ

4 )

sinh( xj−θk
2 + iπ

4 )

sinh(
xj+θk

2 − iπ
4 )

sinh( xj+θk
2 + iπ

4 )

]
= 1,

(4.26)j = 1, . . . , d(α),

where

(4.27)Q(α)(xj , ξ±)=


1,

Q(xj , ξ−)Q(xj , ξ+),
Q(xj , ξ−),
Q(xj , ξ+)

and

(4.28)Q(x, ξ)= sinhx − i cosξ

sinhx + i cosξ
.

(As always,α runs over the four sectors (4.2).) Notice that (4.26) is invariant under
xj �→ −xj . Moreover, following [41,42], we assume that the rootxj = 0 corresponds to an
eigenvector with zero norm. Hence, we restrict to solutions withxj > 0.

To summarize this section, the eigenvalues (3.16) of the full transfer matrix for the NS
case of the TIM are given by

(4.29)Λ(α)(θ |θ1, . . . , θN)=w(α)(θ)Λ̄(α)(θ |θ1, . . . , θN ),

wherew(α)(θ) is given by (4.5),Λ̄(α)(θ |θ1, . . . , θN) is given by (4.24), and{xj } are positive
solutions of the Bethe ansatz equations (4.26).
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5. TBA analysis

Having obtained the eigenvalues of the transfer matrix and the Bethe ansatz equations,
we can proceed to the derivation of the corresponding TBA equations and boundary
entropy. Following [2,20] we consider the partition functionZ+− of the system on a
cylinder of lengthL and circumferenceR with left/right boundary conditions denoted by
±. It is given by

Z+− = tr e−RH+− = e−RF

= 〈B+|e−LHP |B−〉
(5.1)≈ 〈B+|0〉〈0|B−〉e−LE0, for L→∞.

In the first line, Euclidean time evolves along the circumference of the cylinder, andH+−
is the Hamiltonian for the system with spatial boundary conditions±. In the second line,
time evolves parallel to the axis of the cylinder,HP is the Hamiltonian for the system
with periodic boundary conditions, and|B±〉 are boundary states which encode initial/final
(temporal) conditions. In the third line, we consider the limitL→∞; the state|0〉 is the
ground state ofHP , andE0 is the corresponding eigenvalue. The quantity ln〈B+|0〉〈0|B−〉
is the sought-after boundary entropy [20,24]. Taking the logarithm of the above expressions
for the partition function, one obtains

(5.2)−RF ≈−LE0 + ln〈B+|0〉〈0|B−〉.
Whereas the free energyF has a leading contribution which is of orderL, we seek here
the subleading correction which is of order 1.

5.1. Thermodynamic limit

We proceed to computeF using the TBA approach [17–22]. To this end, we introduce
the densitiesP±(θ) of “magnons”, i.e., of real Bethe ansatz roots{xj } with εj = ±1,
respectively; and also the densitiesρ1(θ) andρ̃(θ) of particles{θk} and holes, respectively.
Computing the imaginary part of the logarithmic derivative of the “magnonic” Bethe ansatz
equations (4.26), we obtain8

P+(θ)+ P−(θ)= 1

2π

∞∫
0

dθ ′ ρ1(θ
′)
[
Φ(θ − θ ′)+Φ(θ + θ ′)

]
(5.3)+ 1

2πL

[
Φ(θ)+Ψξ+(θ)+Ψξ−(θ)

]
,

where

Φ(θ)= ∂

∂θ
Im ln

(
sinh( θ2 − iπ

4 )

sinh( θ2 + iπ
4 )

)
= 1

coshθ
,

(5.4)Ψξ (θ)= ∂

∂θ
Im lnQ(θ, ξ)= 4 cosξ coshθ

cos2ξ + cosh2θ
.

8 There is a contribution− 1
2πLΦ(θ) which originates from the exclusion [41,42] of the Bethe ansatz root

xj = 0.
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In the final equality, we have used the expression (4.28) forQ(θ, ξ), and we have assumed
thatξ is real. We present here the results forN = even− sector II, from which the results
for the other sectors (see (4.27)) can be read off by inspection. Definingρ1(θ) for negative
values ofθ to be equal toρ1(|θ |), we obtain the final form

(5.5)P+(θ)+ P−(θ)= 1

2π
(ρ1 ∗Φ)(θ)+ 1

2πL

[
Φ(θ)+Ψξ+(θ)+Ψξ−(θ)

]
,

where∗ denotes convolution

(5.6)(f ∗ g)(θ)=
∞∫

−∞
dθ ′ f (θ − θ ′)g(θ ′).

Computing the imaginary part of the logarithmic derivative of the Yang equation (3.17)
using the result (4.29) for the eigenvalue, we obtain (again forN = even− sector II)

ρ1(θ)+ ρ̃(θ)= 1

2π

{
2mcoshθ +

∞∫
0

dθ ′ ρ1(θ
′)
[
Φσ (θ − θ ′)+Φσ (θ + θ ′)

]

+
∞∫

0

dθ ′
[
P+(θ ′)

(
Φ

(1)
+ (θ − θ ′)+Φ

(2)
+ (θ + θ ′)

)
+ P−(θ ′)

(
Φ

(1)
− (θ − θ ′)+Φ

(2)
− (θ + θ ′)

)]

(5.7)

+ 1

L

[
−2γ −Φσ (θ)− 2Φσ (2θ)+ ∂

∂θ
Im lnM(θ, ξ+)

+ ∂

∂θ
Im lnM(θ, ξ−)

]}
,

where

Φσ (θ)= ∂

∂θ
Im lnσ(θ)= 1

8

∞∫
−∞

dk
eikθ

cosh2 πk
2

= θ

2π sinhθ
,

(5.8)Φ
(l)
± (θ)= ∂

∂θ
Im lnλ(l)± (θ), l = 1,2,

andλ(l)± (θ) are introduced in (4.25). Using the factsΦ(1)
± (θ) = Φ

(2)
± (θ) = ±1

2Φ(θ), and
definingP±(θ) for negative values ofθ to be equal toP±(|θ |), we obtain

ρ1(θ)+ ρ̃(θ)

= m

π
coshθ + 1

2π
(ρ1 ∗Φσ )(θ)+ 1

4π

(
(P+ − P−) ∗Φ

)
(θ)

(5.9)

+ 1

2πL

[
−2γ −Φσ (θ)− 2Φσ (2θ)+ ∂

∂θ
Im lnM(θ, ξ+)

+ ∂

∂θ
Im lnM(θ, ξ−)

]
.
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Using (5.5) to eliminateP−, and (2.14), (2.18) to separate the various factors inM(θ, ξ),
we obtain

ρ1(θ)+ ρ̃(θ)

= m

π
coshθ + 1

2π
P+ ∗Φ + 1

2π
ρ1 ∗

(
Φσ − 1

4π
Φ ∗Φ

)

(5.10)

+ 1

2πL

[
2

(
∂

∂θ
Im lnPmin(θ)−Φσ (2θ)−Φσ (θ)+ γ

)
+
(
Φσ − 1

4π
Φ ∗Φ

)
+
(
Φσ (θ − iξ+)+Φσ (θ + iξ+)− 1

4π
Ψξ+ ∗Φ

)
+
(
Φσ (θ − iξ−)+Φσ (θ + iξ−)− 1

4π
Ψξ− ∗Φ

)
+ ∂

∂θ
Im lnPCDD(θ, ξ+)+ ∂

∂θ
Im lnPCDD(θ, ξ−)

]
.

Using the identity [19]

(5.11)Φσ (θ)− 1

4π
(Φ ∗Φ)(θ)= 0,

as well as the identities

Φσ (θ − iξ)+Φσ (θ + iξ)− 1

4π
(Ψξ ∗Φ)(θ)= 0,

(5.12)
∂

∂θ
Im lnPmin(θ)−Φσ (2θ)−Φσ (θ)+ γ =−1

4
Φ(θ),

we arrive at the final simple result

ρ1(θ)+ ρ̃(θ)

(5.13)= m

π
coshθ + 1

2π
(P+ ∗Φ)(θ)+ 1

2πL

[
−1

2
Φ(θ)+ κξ+(θ)+ κξ−(θ)

]
,

where

(5.14)κξ (θ)= ∂

∂θ
Im lnPCDD(θ, ξ)= 4 sinξ coshθ

cos2ξ − cosh2θ
.

The result (5.13) holds in fact for all four sectors.
The thermodynamic limit of the magnonic Bethe ansatz equations and the Yang

equations, given by (5.5) and (5.13), respectively, are the main results of this subsection.

5.2. TBA equations and boundary entropy

The free energyF is given by

(5.15)F =E − T S,
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where the temperature isT = 1
R

, the energyE is

(5.16)E =
N∑
k=1

mcoshθk = L

2

∞∫
−∞

dθ ρ1(θ)mcoshθ,

and the entropyS is [17,19]

S = L

2

∞∫
−∞

dθ
{
(ρ1 + ρ̃) ln(ρ1 + ρ̃)− ρ1 lnρ1 − ρ̃ ln ρ̃ + (P+ + P−) ln(P+ +P−)

(5.17)− P+ lnP+ − P− lnP−
}
.

Extremizing the free energy(δF = 0) subject to the constraints

(5.18)δP− =−δP+ + 1

2π
δρ1 ∗Φ, δρ̃ =−δρ1 + 1

2π
δP+ ∗Φ,

(which follow from Eqs. (5.5), (5.13), respectively) we obtain a set of TBA equations which
is the same as for the case of periodic boundary conditions [19]

rcoshθ = ε1(θ)+ 1

2π
(Φ ∗L2)(θ),

(5.19)0= ε2(θ)+ 1

2π
(Φ ∗L1)(θ),

where

Li(θ)= ln
(
1+ e−εi(θ)

)
, r =mR,

(5.20)ε1 = ln

(
ρ̃

ρ1

)
, ε2 = ln

(
P−
P+

)
.

We next evaluateF using also the constraints (5.5), (5.13) and the TBA equations. From
the boundary (order 1) contribution, we obtain (see Eq. (5.2)) the boundary entropy9

ln〈B+|0〉〈0|B−〉 = 1

4π

∞∫
−∞

dθ

{[
−1

2
Φ(θ)+ κξ+(θ)+ κξ−(θ)

]
L1(θ)

(5.22)+ [Φ(θ)+Ψξ+(θ)+Ψξ−(θ)
]
L2(θ)

}
.

9 Taking into account all the sectors, the last term in (5.22) should be replaced by[Φ(θ)+Ψ (α)(θ, ξ±)]L2(θ),
whereα runs over the four sectors (4.2), andΨ (α)(θ, ξ±) is given by

(5.21)Ψ (α)(θ, ξ±)=


0,
Ψξ+ (θ)+Ψξ− (θ),
Ψξ− (θ),
Ψξ+ (θ),

respectively.
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In particular, the dependence of the boundary entropy of a single boundary on the boundary
parameterξ is given by

(5.23)lng(ξ)= 1

4π

∞∫
−∞

dθ
[
κξ (θ)L1(θ)+Ψξ (θ)L2(θ)

]
,

where the kernelsκξ (θ) andΨξ (θ) are given in Eqs. (5.14) and (5.4), respectively. This
expression for the boundary entropy for the NS case of the TIM is another of the main
results of this paper.

5.3. Massless boundary flows

We now consider the case of massless boundary flow. That is, we consider the bulk
massless scaling limit

(5.24)m= µn, θ = θ̂ ∓ ln
n

2
, n→ 0,

whereµ andθ̂ are finite, which impliesE = µe±θ̂ , P =±µe±θ̂ . There are two nontrivial
scaling limits of the boundary parameter, which we consider in turn. As we shall see, these
two limits correspond to the boundary flows(−0)& (0+)→ (−)& (+) and(−0)& (0+)→
2(0), respectively.

5.3.1. The boundary flow(−0)& (0+)→ (−)& (+)

Let us first consider the scaling limit

(5.25)ξ =−π

2
+ i

(
θB − ln

n

2

)
, n→ 0,

where the boundary scaleθB is finite. For the sign—in the limit (5.24), the CDD factor has
a nontrivial limit

(5.26)PCDD(θ, ξ)→− i sinh( θ̂−θB
2 − iπ

4 )

sinh( θ̂−θB
2 + iπ

4 )
,

and therefore, so does the corresponding kernel (5.14)

(5.27)κξ (θ)→Φ(θ̂ − θB).

On the other hand, the factorQ(θ, ξ) (4.28) becomes real in this limit; hence, the
corresponding kernelΨξ (θ) (5.4) vanishes. The result (5.23) for the boundary entropy
therefore implies

(5.28)lng = 2

4π

∞∫
−∞

dθ̂ Φ(θ̂ − θB) L̂1(θ̂ ),

whereε̂i (θ̂ ) ≡ εi(θ̂ − lnn/2), andL̂i (θ̂) = ln(1+ e−ε̂i (θ̂)). The factor of 2 appearing in
(5.28) accounts for the contribution from the sign+ in the limit (5.24), corresponding to
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Fig. 3.

the fact that right-movers and left-movers give equal contributions to the boundary entropy.
In the UV limit θB →−∞, the integrand is nonvanishing forθ̂ →−∞; similarly, the IR
limit θB →∞ requiresθ̂ →∞. Using the resultŝL1(−∞)= ln(1

2(3+
√

5)), L̂1(∞)= 0
which follow from the TBA Eq. (5.19), we conclude from (5.28) that

(5.29)
gUV

gIR = 1

2

(
1+√

5
)
.

This is precisely the ratio ofg factors corresponding to the boundary flow(−0)& (0+)→
(−)& (+), as follows from (2.8),

(5.30)
g(−0)&(0+)

g(−)&(+)

= η2 = 1

2

(
1+√

5
)
.

A plot of lng in (5.23) as a function of the boundary scaling parameterθB defined in (5.25)
with finite n10 for various values ofr is given in Fig. 3. Observe that forr � 1, the correct
conformal boundary entropy is reproduced. Asr increases, one can see that the entropy
deviates from the conformal field theory value. Indeed, forr → 1, the entropy approaches
zero, as expected for a massive theory.

One might wonder how there can be a flow to the boundary condition(−)& (+) in
theN = even− sector II, for which the boundary “spins” are fixed to 0 (see (4.2)). Our
explanation is that there are boundary bound states with spins±1, corresponding to the
pole atθ̂ = θ0 ≡ θB − iπ

2 in the CDD factor (see Fig. 4).

5.3.2. The boundary flow(−0)& (0+)→ 2(0)
Let us now consider instead the scaling limit

(5.31)ξ = i

(
θB − ln

n

2

)
, n→ 0,

10 The horizontal axis is rescaled in such a way that the range is mapped to(0,1).
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Fig. 4. Boundary bound state pole.

with θB finite. Taking again the sign—in the limit (5.24), the factorPCDD(θ, ξ) becomes
real, and so the corresponding kernelκξ (θ) vanishes. However,

(5.32)Q(θ, ξ)→ i sinh( θ̂−θB
2 − iπ

4 )

sinh( θ̂−θB
2 + iπ

4 )
,

and therefore

(5.33)Ψξ (θ)→Φ(θ̂ − θB).

The result (5.23) for the boundary entropy now implies

(5.34)lng = 2

4π

∞∫
−∞

dθ̂ Φ(θ̂ − θB)L̂2(θ̂).

Using the resultŝL2(−∞)= ln(1
2(3+√

5)), L̂2(∞)= ln2, we obtain11

(5.35)
gUV

gIR = 1

2

√
3+√

5.

This is the ratio ofg factors corresponding to the boundary flow(−0)& (0+)→ 2(0), since

(5.36)
g(−0)&(0+)

g2(0)
= η2

√
2
= 1

2

√
3+√

5.

11 This flow does not occur forN = even− sector I, since for this sector there is noL2(θ) contribution to the
boundary entropy, as can be seen from (5.21). Our understanding of this fact is as follows: by definition (4.2), this
sector has boundary “spins”±1. Moreover, in the scaling limit (5.31), there cannot be a boundary bound state
with spin 0, since the CDD factor does not have a corresponding pole. That is, the process represented by Fig. 4
with the spins±1 and 0 interchanged does not occur. Hence, there cannot be a flow to the boundary condition(0)
in this sector.
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5.3.3. Nonsupersymmetric flows
The analysis presented so far in Sections 4 and 5 has been restricted to the NS case of

the TIM, for which the boundaryS matrix is given by (2.21), (2.22). However, the results
for the cases without supersymmetry can now be obtained with no additional effort.

For definiteness, let us now consider the nonsupersymmetric boundaryS matrix (2.12)–
(2.18).12 The corresponding inversion identity is again given by (4.6)–(4.8), except the
sectors are now given by

N = even− sector I: a1 = a′1 = aN+1 = a′N+1 =−1,

N = even− sector II: a1 = a′1 = aN+1 = a′N+1 = 0,

N = odd− sector I: a1 = a′1 =−1, aN+1 = a′N+1 = 0,

(5.37)N = odd− sector II: a1 = a′1 = 0, aN+1 = a′N+1 =−1.

That is, the sectors are restrictions of those in the NS case (4.2). In particular, theN = even
− sector II is identical to the one for the NS case. Hence, the TBA equations and boundary
entropy are the same as before (5.19), (5.23). Moreover, the two massless scaling limits
give the same results (5.28), (5.34). However, the interpretation of these scaling limits is
different from the interpretation in the NS case: the first scaling limit now corresponds
to the boundary flow(−0)→ (−), while the second scaling limit now corresponds to the
boundary flow(−0)→ (0). That both interpretations are possible is due to the coincidence
in the ratio ofg factors [9],

(5.38)
g(−0)&(0+)

g(−)&(+)

= g(−0)

g(−)

,
g(−0)&(0+)

g2(0)
= g(−0)

g(0)
.

The TBA results (5.28), (5.34) for these flows coincide with those obtained in [32] on the
basis of an analogy with the Kondo problem.

6. R case

We now consider the R case of the TIM, for which the boundaryS matrix is given by
(2.24)–(2.26). Remarkably, the results are closely related (in fact, dual) to those for the NS
case. Indeed, let us define the four sectors as before (4.2). The relation between the full and
reduced transfer matrices is again given by (4.3), exceptw(α)(θ) is now given by

(6.1)w(α)(θ)=
N∏
j=1

σ(θ − θj )σ (θ + θj )×


N(iπ − θ, ξ+)N(θ, ξ−),
R(iπ − θ, ξ+)R(θ, ξ−),
e−2iγ θN(iπ − θ, ξ+)R(θ, ξ−),
e2iγ θR(iπ − θ, ξ+)N(θ, ξ−).

12 For the other nonsupersymmetric case (2.19), the results are exactly parallel, with the spins−1 interchanged
with +1.
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The inversion identity is again given by (4.6), (4.7), exceptf
(α)
± (θ) is now given by

(6.2)f
(α)
± (θ)=


1
4(coshθ ± cosξ−)(coshθ ± cosξ+),
4,
1
2(coshθ ± cosξ+),
2(coshθ ± cosξ−).

The periodicity and crossing properties of the reduced transfer matrix are the same as
before (4.9), (4.10). In contrast to the NS case, the reduced transfer matrix now becomes
an anti-diagonal (rather than diagonal) matrix forθ → ∞. Nevertheless, the asymptotic
values of the eigenvalues are again given by (4.17), exceptz(α) is now given by

(6.3)z(α)(θ)=



±(− ieθ

4

)(N/2)+1
,

±2
(− ieθ

4

)N/2
,

±(− ieθ

4

)(N+1)/2
,

±2(− ieθ

4 )(N+1)/2.

A suitable ansatz for the eigenvalues is again given by (4.18), exceptc(α) andd(α) are now
given by

(6.4)c(α) =


±1,

±2,

±1,

±2,

d(α) =



N
2 + 1,
N
2 ,

N+1
2 ,

N+1
2 ,

respectively. The Bethe ansatz equations are therefore again given by (4.20), with the new
f
(α)
± (θ) given in (6.2). Comparing with the oldf (α)

± (θ) given in (4.8), we conclude that the
Bethe ansatz equations for the R case exactly coincide with those for the NS case, except
the sectors I and II are interchanged (for bothN = even andN = odd)! We remark that the
eigenvalues do not depend on the parameterr which appears in the boundaryS matrix.

It is now straightforward to repeat the TBA analysis. ForN = even− sector I, we obtain
the same constraint equations (5.5), (5.13), and therefore the same TBA equations (5.19)
and boundary entropy (5.23). The result (5.28) for the first massless scaling limit can now
be interpreted as the boundary flow(d)→ (0), since

(6.5)
g(d)

g(0)
= η2 = 1

2

(
1+√

5
)
,

as follows from (2.8). Similarly, the result (5.34) for the second massless scaling limit can
now be interpreted as the boundary flow(d)→ (−)& (+), since

(6.6)
g(d)

g(−)&(+)

= η2

√
2
= 1

2

√
3+√

5.
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7. Conclusion

We have achieved the principal goals set out in the introduction:

• We have provided support for the proposed TIM boundaryS matrices [8,9] by show-
ing that the corresponding boundary entropies (5.23), (5.28), (5.34) are consistent with
boundary flows (both supersymmetric (5.30), (5.36), (6.5), (6.6) and nonsupersymmet-
ric (5.38)) which were expected on other grounds [8,9,32–35].

• We have developed in Appendix B analytical tools for RSOS models with boundary,
which we have used to derive exact inversion identities for the TIM. (See (4.6)–(4.8)
and (6.2) for the supersymmetric cases, and (5.37) for the nonsupersymmetric case.)

• Our TBA descriptions of boundary flows have been derived directly from the TIM
scattering theory. The fact that we have reproduced the TBA description of the
nonsupersymmetric flows given by Lesage et al. [32] provides support for their
approach based on an analogy with the Kondo problem. The TBA descriptions of the
supersymmetric boundary flows are new.

It would be interesting to see if the approach presented here can also be used to
investigate massless flow in the bulk [32]. Moreover, we expect that it should be possible
to generalize this approach to more complicated models, such as the RSOSn models with
n > 3 [19,32], and coset models [45,46].
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Appendix A. Properties of S matrices

We collect here some important properties which are satisfied by the TIM bulk and
boundaryS matrices.

A.1. BulkS matrix

The bulkS matrix (2.3)–(2.6) has the following symmetries in its indices

(A.1)Scda b(θ)= Scdb a (θ)= Sd ca b(θ).

It also satisfies the crossing relation

(A.2)Scda b(θ)= Sa bc d (iπ − θ)
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and the unitarity relation

(A.3)
∑
d

Sc da b(θ)S
d c′
a b (−θ)= δc c′Aa cAb c,

whereAab is the so-called adjacency matrix (see, e.g., [30])

(A.4)Aab = δa,b−1 + δa,b+1.

Moreover, it satisfies the Yang–Baxter (star-triangle) equation∑
g

S
b g
a c (θ1 − θ2)S

c e
g d(θ1 − θ3)S

g f
a e (θ2 − θ3)

(A.5)=
∑
g

S
c g
b d (θ2 − θ3)S

b f
a g (θ1 − θ3)S

g e
f d(θ1 − θ2).

Finally, we note that the bulkS matrix at zero rapidity is given by

(A.6)Scda b(0)= δc,dAa cAbd.

A.2. BoundaryS matrix

The nonsupersymmetric boundaryS matrix (2.12)–(2.18) obeys the unitarity relation

(A.7)
∑
c

R
c

a
b
(θ)R d

a
c
(−θ)= δb,dAa bBd,

where hereBd equals 1 ifd is an allowed state of the boundary and equals zero otherwise;
hence, it is given by

(A.8)Bd = δd,−1 + δd,0.

ThisS matrix also obeys the boundary crossing-unitarity relation [2]

(A.9)R
a

b
c

(
iπ

2
− θ

)
=
∑
d

Sb da c (2θ)R
a

d
c

(
iπ

2
+ θ

)
,

as well as the boundary Yang–Baxter equation [8,13,30,31,43]∑
f,g

S
b g
a c (θ1 − θ2)R

f
g
c
(θ1)S

g d

a f (θ1 + θ2)R
e

d
f
(θ2)

(A.10)=
∑
f,g

R
g

b
c
(θ2)S

b f
a g (θ1 + θ2)R

e
f
g
(θ1)S

f d
a e (θ1 − θ2).

The supersymmetric boundaryS matrices described in Section 2.2.2 obey the unitarity
condition (A.7) withBd = 1, and also (A.9), (A.10).
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Appendix B. Fusion procedure for RSOS models with boundary

The fusion procedure was developed for bulk vertex models in [26,27], and was adapted
to bulk RSOS models in [29]. The fusion procedure was extended to vertex models with
boundary in [28], but this work has been adapted only in part to the RSOS case [30,
31]. In particular, the useful notions of projectors and quantum determinants have not
been explicitly implemented in [30,31]. For this reason, and also to make this paper self-
contained, we give here a brief summary of the fusion procedure for RSOS models with
boundary, and provide the derivation of the TIM inversion identity. However, our treatment
is not completely general. In particular, to avoid complications which are not necessary for
the TIM, we restrict toS matrices with the symmetries (A.1).

We remind the reader that a bar over a quantity (e.g.,�S ) denotes that it is “reduced”,
and a tilde over a quantity (e.g.,̃S) denotes that it is “fused”.

B.1. Projectors

We shall carry out the fusion procedure by exploiting the fact that the reduced13 bulk S
matrix degenerates into the projectorP−c d

a b for some value of the rapidity, which for the
TIM is θ =−iπ ,

(B.1)�S cd
a b(−iπ)=√

2P−c d
a b.

For the TIM,P−c d
a b has the matrix elements

P− σ σ ′
0 0 = 1

2
(δσ,σ ′ − δσ,−σ ′),

(B.2)P− 0 0
σ σ ′ = δσ,−σ ′,

where as usualσ,σ ′ ∈ {−1,+1}. We define the projectorP+ c d
a b by

(B.3)P+ c d
a b = I

c d
a b − P− c d

a b,

whereI
c d
a b is the “adjacency-inclusive” identity matrix,

(B.4)I
c d
a b = δc,dAa cAbd.

For the TIM,P+ c d
a b has the matrix elements

P+ σ σ ′
0 0 = 1

2
(δσ,σ ′ + δσ,−σ ′)= 1

2
,

(B.5)P+ 0 0
σ σ ′ = δσ,σ ′ .

13 Note that we work here with the reduced matrix�S c d
a b

(θ) rather than the full matrixSc d
a b

(θ). There are good
reasons for so doing: (i) as explained in Section 4, it is the reduced transfer matrix for which we require an
inversion identity; and (ii) the fullS matrix is singular atθ =−iπ .
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Fig. 5. Fused bulkS matrix �̃S
c j
b k
a d

(θ1 − θ2).

These projectors have the important properties∑
c′

P− c c′
a b P

− c′ d
a b = P− c d

a b,
∑
c′

P+ c c′
a b P

+ c′ d
a b = P+ c d

a b,

(B.6)
∑
c′

P− c c′
a b P

+ c′ d
a b = 0.

B.2. Fused bulkS matrices

We derive a bulk “fusion identity” from a degeneration of the Yang–Baxter equation.
That is, in (A.5) we setθ1 = θ , θ2 = θ + iπ , θ3 = 0, use the degeneration result (B.1), and
contract on the right of both sides with the projectorP+ to obtain

(B.7)
∑
f,g

P− b g
a c
�S cf
g d (θ)

�S g j
a f (θ + iπ)P+ f k

j d = 0.

This identity can be used to show that the “fused”S matrix (which can be read off from
(B.7) by replacing the projectorP− with P+, and which is represented by Fig. 5),

(B.8)�̃S c j
b k
a d

(θ)=
∑
f,g

P+ b g
a c
�S cf
g d (θ)

�S g j
a f (θ + iπ)P+ f k

j d

satisfies the generalized Yang–Baxter equation∑
f,g

�̃S bf
k g
a c

(θ1 − θ2)�̃S
cm
g l
f d

(θ1 − θ3)�S f j
am(θ2 − θ3)

(B.9)=
∑
f,g

�S cf

b d (θ2 − θ3)�̃S
b j
k g
a f

(θ1 − θ3)�̃S
f m
g l
j d

(θ1 − θ2).
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Fig. 6. Fused bulkS matrix �̃S ′ b k d
a c j (θ1 − θ2).

For the TIM, the nonzero matrix elements of�̃S are given by

(B.10)�̃S σ 0
0σ ′
σ 0

(θ)= �̃S 0σ
σ ′ 0
0σ

(θ)= 1√
2

cosh
θ

2
.

From a second degeneration of the Yang–Baxter equation (A.5) withθ2 − θ3 = −iπ ,
we obtain a second fusedS matrix (see Fig. 6)

(B.11)�̃S ′ b k d
a c j (θ)=

∑
f,g

P+ c g
b d
�S bf
a g (θ − iπ)�S g j

f d(θ)P
+ f k
a j ,

which obeys∑
f,g

�̃S ′ b g c
a k f (θ1 − θ2)�S cm

f d(θ1 − θ3)�̃S
f j
g l
am

(θ2 − θ3)

(B.12)=
∑
f,g

�̃S cf
k g
b d

(θ2 − θ3)�S b j
a f (θ1 − θ3)̃�S ′ f l d

j gm(θ1 − θ2).

For the TIM, the nonzero matrix elements of�̃S ′ are given by

(B.13)�̃S ′ 0 0 0
σ σ ′ σ (θ)= �̃S ′ σ σ ′ σ

0 0 0 (θ)= 1√
2

cosh
θ

2
.

B.3. Fused boundaryS matrix

Following [28], we obtain a boundary fusion identity from the degeneration of the
boundary Yang–Baxter equation (A.10) withθ1 − θ2 =−iπ ,

(B.14)
∑
d,f,g

P− b g
a c

�R f
g
c
(θ)�S g d

a f (2θ + iπ)�R k
d
f
(θ + iπ)P+ d j

a k = 0.



462 R.I. Nepomechie, C. Ahn / Nuclear Physics B 647 [FS] (2002) 433–470

Fig. 7. Fused boundaryS matrix �̃R j k
a
b c

(θ).

This identity can be used to show that the “fused”R matrix (which can be read off from
(B.14) by replacing the projectorP− with P+, and which is represented by Fig. 7),

(B.15)�̃R j k
a
b c

(θ)=
∑
d,f,g

P+ b g
a c

�R f
g
c
(θ)�S g d

a f (2θ + iπ)�R k
d
f
(θ + iπ)P+ d j

a k

satisfies the generalized boundary Yang–Baxter equation∑
f,g,h,i

�̃S ′ a hc
d b g(θ1 − θ2)�R f

g
c
(θ1)�̃S

g e
h i
d f

(θ1 + θ2) �̃R j k
e
i f

(θ2)

(B.16)=
∑

f,g,h,i

�̃R i g
a
b c

(θ2)̃�S ′ a hg
d i f (θ1 + θ2 + iπ)�R k

f
g
(θ1)�̃S

f e
hj
d k

(θ1 − θ2 − iπ).

The shifts in the arguments of the fused bulkS matrices on the RHS should be noted. As

an example, for the NS case of the TIM, the nonzero matrix elements of�̃R are given by

�̃R 0σ
σ

0σ
(θ, ξ)=√

2cosh
θ

2
,

(B.17)�̃R σ 0
0
σ ′ 0

(θ, ξ)= 1

2
√

2
(coshθ + cosξ)cosh

θ

2
.

B.4. Fused transfer matrix

Before attempting to construct the fused transfer matrix, it is instructive to first review
the construction of the fundamental transfer matrix. To this end, we set

(B.18)

t̄
a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN )=
∑
a′′1

�R+ a1
a′′1

a′1
(θ − iπ, ξ+)�T

a1···aN+1
a′′1

a′1···a′N+1

(θ |θ1, . . . , θN),
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where�T is defined by

�T
a1···aN+1

a′′1
a′1···a′N+1

(θ |θ1, . . . , θN)=
∑

a′′2,...,a′′N+1

{�T a′′1 ···a′′N+1
a′1···a′N+1

(θ |θ1, . . . , θN) �R
aN+1

a′′N+1
a′N+1

(θ, ξ−)

(B.19)× �̂T a1···aN+1
a′′1 ···a′′N+1

(θ |θ1, . . . , θN)
}
,

and the monodromy matrices�T and�̂T are given by

�T a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN)= S
a′1a2

a1a
′
2
(θ − θ1) · · ·S a′N aN+1

aN a′N+1
(θ − θN),

(B.20)�̂T a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN)= S
a′N+1aN

a′N aN+1
(θ + θN) · · ·S a′2a1

a′1a2
(θ + θ1).

The boundary matrix�R in (B.19) is assumed to obey the boundary Yang–Baxter equation
(A.10), which implies that�T obeys∑

c1,b1,...,bN+1

�S e c1
a′′1 a′1

(θ1 − θ2)�T b1···bN+1
c1

a′1···a′N+1
(θ1)�S c1 d1

a′′1 b1
(θ1 + θ2)�T

a1···aN+1
d1

b1···bN+1
(θ2)

(B.21)

=
∑

c1,b1,...,bN+1

�T b1···bN+1
e

a′1···a′N+1
(θ2)�S e c1

a′′1 b1
(θ1 + θ2)�T a1···aN+1

c1
b1···bN+1

(θ1)�S c1 d1
a′′1 a1

(θ1 − θ2).

However, the matrix�R+ in (B.18) is not yet specified. Indeed, following Sklyanin [25],
the requirement that the transfer matrix obey the commutativity property (3.14) determines
the relation which�R+ should satisfy. In this way, we find (using also the properties (A.1)–
(A.3)) that

(B.22)�R+ c
a

b
(θ, ξ+)= �R c

a
b
(−θ, ξ+),

where�R c
a
b
(θ, ξ) obeys (A.10). The result (B.18), (B.22) coincides with the expression

(3.13) for the (reduced) fundamental open-chain transfer matrix.
We follow a similar strategy to construct the fused transfer matrix˜̄t . We set

(B.23)

˜̄t a1···aN+1
a′1···a′N+1

(θ |θ1, . . . , θN )=
∑

a′′1,b′′1,c′′1

�̃R+ a1 c
′′
1
a′′1

a′1b′′1
(θ − iπ, ξ+) �̃T

a1···aN+1
a′′1,b′′1,c′′1
a′1···a′N+1

(θ |θ1, . . . , θN),

where�̃T is defined by

�̃T
a1···aN+1
a′′1,b′′1,c′′1
a′1···a′N+1

(θ |θ1, . . . , θN)

(B.24)

=
∑

a′′2 ,...,a′′N+1,

b′′N+1,c
′′
N+1

{
�̃T

a′′1 ···a′′N+1
b′′1,b′′N+1
a′1···a′N+1

(θ |θ1, . . . , θN)

× �̃R
c′′N+1 aN+1

a′′N+1
b′′N+1 a

′
N+1

(θ, ξ−)
˜̂�T a1···aN+1

c′′1,c′′N+1
a′′1 ···a′′N+1

(θ + iπ |θ1, . . . , θN)

}
,
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where the fused monodromy matrices�̃T and
˜̂�T are given by

�̃T
a1···aN+1
b1,bN+1

a′1···a′N+1

(θ |θ1, . . . , θN)=
∑

b2,...,bN

�̃S
a′1 a2
b1 b2
a1 a

′
2

(θ − θ1) · · · �̃S
a′N aN+1
bN bN+1
aN a′N+1

(θ − θN),

˜̂�T a1···aN+1
b1,bN+1

a′1···a′N+1

(θ |θ1, . . . , θN)

(B.25)=
∑

b2,...,bN

�̃S ′ a′N+1 bN aN+1

a′N bN+1 aN
(θ + θN) · · · �̃S ′ a′2 b1a2

a′1 b2a1
(θ + θ1).

We determine the relation obeyed bỹ�R + from the requirement that the fused transfer
matrix (B.23) commute with the fundamental transfer matrix (B.18), (B.22),

(B.26)
[
t (θ |θ1, . . . , θN),

˜̄t(θ ′|θ1, . . . , θN )
]= 0.

With the help of the relation obeyed bỹ�T
∑
g,h,i,

a′1,...,a′N+1

�̃S ′ a ha1
d b g (θ1 − θ2)�T a′1···a′N+1

g
a1···aN+1

(θ1)�̃S
g e
h i

d a′1
(θ1 + θ2)�̃T

b1···bN+1
e,i,j

a′1···a′N+1

(θ2)

(B.27)

=
∑
g,h,i,

a′1,...,a′N+1

�̃T a′1···a′N+1
a,b,i

a1···aN+1

(θ2)̃�S ′ a ha′1
d i f (θ1 + θ2 + iπ)

× �T b1···bN+1
f

a′1···a′N+1
(θ1)�̃S

f e
hj
d b1

(θ1 − θ2 − iπ),

we obtain the following equation for̃�R +

∑
b,d,f,g

�̃S g k
f l
j m

(θ2 − θ1)�R+d
g

m
(θ1 − iπ, ξ+)̃�S ′ a f d

j b g (−θ1 − θ2 + 2iπ)

× �̃R+ e c
a

d b
(θ2 − iπ, ξ+)

(B.28)

=
∑

b,d,f,g

�̃R+ d b
k

m l
(θ2 − iπ, ξ+)�̃S

g k
f b
j d

(−θ1 − θ2 + iπ)

× �R+ e
g

d
(θ1 − iπ, ξ+)̃�S ′ a f e

j c g (θ2 − θ1 + iπ).

That is, this relation guarantees the commutativity (B.26). This relation is satisfied by

�̃R+ k j
a

c b
(θ − iπ, ξ+)

(B.29)=
∑
d,f,g

P+ b g
c a

�R f
g
c
(iπ − θ, ξ+)�S g d

f a(−2θ + iπ)�R k
d
f
(−θ, ξ+)P+ d j

k a .
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For the NS case of the TIM, the nonzero matrix elements of�̃R + are given by

�̃R+σ 0
σ

σ 0
(θ − iπ, ξ+)=

√
2cosh

θ

2
,

(B.30)�̃R+0σ
0

0σ ′ (θ − iπ, ξ+)= 1

2
√

2
(coshθ + cosξ+)cosh

θ

2
.

To summarize, the fused transfer matrix˜̄t is given by (B.23)–(B.25), where the fused

matrices̃�S, �̃S ′, �̃R and �̃R + are given by (B.8), (B.11), (B.15) and (B.29), respectively. For
the NS case of the TIM, the nonzero matrix elements of the fused transfer matrix are as
follows: forN = even,

˜̄t
σ1 0σ2 ···0σN

2 +1

σ1 0σ2 ···0σN
2 +1

(θ |θ1, . . . , θN )= 2 cosh2
θ

2

(∏
cosh

)
,

˜̄t
0σ1 0σ2···σN

2
0

0σ1 0σ2···σN
2

0(θ |θ1, . . . , θN )

(B.31)= 1

2
(coshθ + cosξ+)(coshθ + cosξ−)cosh2

θ

2

(∏
cosh

)
and forN = odd,

˜̄t
σ1 0σ2···σN+1

2
0

σ1 0σ2···σN+1
2

0(θ |θ1, . . . , θN)= (coshθ + cosξ−)cosh2
θ

2

(∏
cosh

)
,

(B.32)˜̄t
0σ1 0···0σN+1

2
0σ1 0···0σN+1

2

(θ |θ1, . . . , θN)= (coshθ + cosξ+)cosh2
θ

2

(∏
cosh

)
,

where(
∏

cosh) denotes

(B.33)

(∏
cosh

)
=

N∏
j=1

cosh

(
1

2
(θ − θj )

)
cosh

(
1

2
(θ + θj )

)
.

As also discussed in Section 4, for a given a transfer matrix (either fundamental
t̄
a1···aN+1
a′1···a′N+1

or fused˜̄t a1···aN+1
a′1···a′N+1

), it is convenient to define the following four “sectors”:

N = even− sector I: a1, a
′
1, aN+1, a

′
N+1 ∈ {−1,+1},

N = even− sector II: a1 = a′1 = aN+1 = a′N+1 = 0,

N = odd− sector I: a1, a
′
1 ∈ {−1,+1}, aN+1 = a′N+1 = 0,

(B.34)N = odd− sector II: a1 = a′1 = 0, aN+1, a
′
N+1 ∈ {−1,+1}.

The results (B.31), (B.32) show that, within each sector, the fused transfer matrix is
proportional to the adjacency-inclusive identity matrix,

(B.35)˜̄t (α)(θ |θ1, . . . , θN)= g(α)(θ)I(α),
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whereα runs over the four sectors (B.34), andg(α)(θ) is given by

g(α)(θ)= cosh2
θ

2

N∏
j=1

cosh

(
1

2
(θ − θj )

)
cosh

(
1

2
(θ + θj )

)

(B.36)×


2,
1
2(coshθ + cosξ+)(coshθ + cosξ−),
(coshθ + cosξ−),
(coshθ + cosξ+),

respectively. This is a nontrivial property of the TIM. The supersymmetric sinh-Gordon
model enjoys [22] a similar property.

B.5. Fusion formula and quantum determinants

We now derive the important “fusion formula”, from which the TIM inversion identity

is obtained. To this end, we first note that�̃T (B.24) can be expressed as the fusion of the
corresponding fundamental quantities�T (B.19),

�̃T
a1···aN+1
a′′1,b′′1,c′′1
a′1···a′N+1

(θ |θ1, . . . , θN)

(B.37)

=
∑

b1,...,bN+1,
f1,g1

{
P+ b′′1 f1

a′′1 a′1
�T b1···bN+1

f1
a′1···a′N+1

(θ |θ1, . . . , θN)�Sf1 g1
a′′1 b1

(2θ + iπ)

× �T a1···aN+1
g1

b1···bN+1
(θ + iπ |θ1, . . . , θN )P

+ g1 c
′′
1

a1 a
′′
1

}
.

We next observe that the reduced bulkS matrix obeys

(B.38)
∑
c

�Sa bc d (iπ − 2θ)�Sa bc d ′(iπ + 2θ)= δd,d ′ζd(θ)AadAbd,

where, for the TIM, the scalar factorζd(θ) is given by

(B.39)ζ0(θ)= 1

2
coshθ, ζ±1(θ)= 2 coshθ.

Using also Eqs. (B.29) and (B.21), we obtain the desired fusion formula14

(B.40)˜̄t a1···aN+1
a′1···a′N+1

(θ)= ζa′1(θ)
∑

a′′1,...,a′′N

t̄
a′′1 ···a′′N
a′1···a′N (θ)t̄

a1···aN
a′′1 ···a′′N (θ + iπ)− &̄

a1···aN+1
a′1···a′N+1

(θ),

14 We save writing by suppressing the dependence of the transfer matrix, etc. on the inhomogeneity parameters
θ1, . . . , θN .
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where the quantum determinant [27,44]&̄(θ) of the transfer matrix is given by

&̄
a1···aN+1
a′1···a′N+1

(θ)

(B.41)

=
∑

f1,...,fN+1,
b,c,d,j,k

{
δ
(�R+(θ, ξ+)

)a1d
f1

a′1 c
δ
(�R(θ, ξ−)) j aN+1

fN+1
b a′N+1

P− k d
f1a1

× δ
(�T (θ))c f1···fN+1

b a′1···a′N+1
δ
(�̂T (θ))k a1···aN+1

j f1···fN+1

}
,

where the quantum determinants of the monodromy matrices are defined by

δ
(�T (θ))c a1···aN+1

b a′1···a′N+1

=
∑

b1,...,bN+1

P− c b1
a1a

′
1

�T b1···bN+1
a′1···a′N+1

(θ)�T a1···aN+1
b1···bN+1

(θ + iπ)P− bN+1b

aN+1a
′
N+1

,

δ
(�̂T (θ))c a1···aN+1

b a′1···a′N+1

(B.42)=
∑

b1,...,bN+1

P− c b1
a′1a1

�̂T b1···bN+1
a′1···a′N+1

(θ)�̂T a1···aN+1
b1···bN+1

(θ + iπ)P− b bN+1
a′N+1aN+1

,

and the quantum determinants of the boundary matrices are defined by

δ
(�R(θ, ξ−)) j k

a
b c

=
∑
d,f,g

P− b g
a c

�R f
g
c
(θ)�S g d

a f (2θ + iπ)�R k
d
f
(θ + iπ)P− d j

a k ,

δ
(�R+(θ, ξ+)

)k j
a

c b

(B.43)=
∑
d,f,g

P− b g
c a

�R f
g
c
(iπ − θ, ξ+)�S g d

f a(−2θ + iπ)�R k
d
f
(−θ, ξ+)P− d j

k a .

We now proceed to evaluate the quantum determinants for the TIM. With the help of
the identity

(B.44)
∑
f,g

P− b g
a c
�S cf
g d (θ)

�S g j
a f (θ + iπ)P− f k

j d = i
√

2 sinh
θ

2
P− b j

a cP
− c k
j d ,

we find that the quantum determinants of the monodromy matrices are given by

δ
(�T (θ))c a1···aN+1

b a′1···a′N+1

=
(
i
√

2sinh
θ

2

)N
P− c a2

a1 a
′
1
P− a′1 a3

a2 a
′
2
· · ·P− a′N b

aN+1a
′
N+1

,

δ
( �̂T (θ))c a1···aN+1

b a′1···a′N+1

(B.45)=
(
i
√

2sinh
θ

2

)N
P− c a′2

a1 a
′
1
P− a1 a

′
3

a2 a
′
2
· · ·P− aN b

aN+1a
′
N+1

.
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Moreover, for the NS case, the quantum determinants of the boundary matrices have the
following nonzero matrix elements

δ
(�R(θ, ξ−)) 0σ−σ

0σ
= i

√
2 sinh

θ

2
,

(B.46)δ
(�R(θ, ξ−)) σ 0

0
σ ′ 0

=± i

2
√

2
(cosξ− − coshθ)sinh

θ

2
, σ =±σ ′;

and

δ
(�R+(θ, ξ+)

)σ 0−σ
σ 0

=−i
√

2 sinh
θ

2
,

(B.47)δ
(�R+(θ, ξ+)

)0σ
0

0σ ′ = ± i

2
√

2
(coshθ − cosξ+)sinh

θ

2
, σ =±σ ′.

We conclude that the quantum determinant&̄(θ) for the NS case of the TIM is given by

(B.48)&̄(α)(θ)= h(α)(θ) I
(α),

whereα runs over the four sectors (B.34), andh(α)(θ) is given by

h(α)(θ)= sinh2 θ

2

N∏
j=1

sinh

(
1

2
(θ − θj )

)
sinh

(
1

2
(θ + θj )

)

(B.49)×


2,
1
2(coshθ − cosξ+)(coshθ − cosξ−),
(coshθ − cosξ−),
(coshθ − cosξ+),

respectively. Substituting this result, together with the result (B.35), (B.36) into the fusion
formula (B.40), we finally arrive at the inversion identity (4.6)–(4.8).

Note added

It was pointed out in [47] that the bulkS matrix (2.4) should be rescaled by a minus sign.
Moreover, it was pointed out in [48] that the amplitudeP(θ) (2.14) should be rescaled by
the factori tanh( iπ4 − θ

2), in order that it have a simple (rather than double) pole atθ = iπ
2

for ξ = π
2 . Similarly, the amplitudes (2.26) should also be rescaled by this factor. The effect

on the TBA computation is to produce an additional contribution1
2πL [2Φ(θ)] in (5.10),

(5.13), and inside the brackets multiplyingL1 in (5.22). However, since this additional
contribution to the boundary entropy does not depend on the boundary parameter, it does
not change (5.23) or any of the discussion which follows. We are grateful to L. Chim for
bringing [48] to our attention.
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