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Abstract

We define the scaling supersymmetric Yang–Lee model with boundary as the(1,3) perturbation
of the superconformal minimal modelSM(2/8) (or equivalently, the(1,5) perturbation of the
conformal minimal modelM(3/8)) with a certain conformal boundary condition. We propose
the corresponding boundaryS matrix, which is not diagonal for general values of the boundary
parameter. We argue that the model has an integral of motion corresponding to an unbroken
supersymmetry, and that the proposedS matrix commutes with a similar quantity. We also show by
means of a boundary TBA analysis that the proposed boundaryS matrix is consistent with massless
flow away from the ultraviolet conformal boundary condition. 2001 Elsevier Science B.V. All
rights reserved.

1. Introduction

A (1+ 1)-dimensional massive integrable quantum field theory without boundary (i.e.,
on the full line x ∈ (−∞,∞)) is characterized by its factorizable bulk scattering (S)
matrix [1]. It can also be characterized as a perturbation [2] of a bulk conformal field
theory (CFT) [3]. For example, a perturbed minimal model is the renormalization group
infrared trivial fixed point of the action

A=ACFT+ λ
∞∫
−∞

dy

∞∫
−∞

dx Φ(∆,∆)(x, y), (1.1)

whereACFT is the action of ac < 1 minimal modelM(p/q), Φ(∆,∆) is a spinless
degenerate primary field with (right, left) conformal dimensions(∆,∆) which is relevant
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(∆ < 1) and “integrable”, andλ is a parameter of dimension[length]2∆−2. One link
between these two descriptions is provided by the thermodynamic Bethe Ansatz (TBA),
by means of which the central charge of the CFT can be computed from theS matrix [4,5].
The integer-spin and fractional-spin [6,7] integrals of motion of an integrable field theory
are manifested in both itsS matrix and perturbed CFT descriptions. These features of
integrable field theory are by now relatively well understood, due to the great number of
examples which have been worked out in detail. (See, e.g., [8] and references therein.)

For an integrable field theory with boundary (say, on the half-linex ∈ (−∞,0]),
the above framework has a nontrivial generalization [9]. The theory is characterized by
a factorizableboundaryscattering matrix, together with the bulkS matrix. It can also be
described as a perturbation of a boundary CFT. The boundary generalization of (1.1) is
given by

A=ACFT+CBC+ λ
∞∫
−∞

dy

0∫
−∞

dx Φ(∆,∆)(x, y)+ λB
∞∫
−∞

dyΦ(∆)(y). (1.2)

The boundary CFT is specified [10] by a conformal boundary condition (CBC), which
for c < 1 minimal models corresponds to a cell(n,m) of the Kac table. A CBC is also
characterized by the so-called boundary entropy or ground-state degeneracy (g) factor [11],
which (roughly speaking) is a measure of the number of bulk vacua which are compatible
with a given CBC. This is well illustrated in the unitary minimal models [9,12]. As can
be seen from (1.2), the boundary CFT in general has perturbations by both bulk (Φ(∆,∆))
and boundary (Φ(∆)) relevant primary fields. The boundary parameterλB has dimension
[length]∆−1. Note that the boundary perturbation has the same conformal dimension as
the bulk perturbation, and therefore, presumably it is integrable [9]. Furthermore, the
CBC and the boundary perturbation must be compatible [9,10]. By means of a “boundary
TBA” [13–15], ratios ofg factors of the boundary CFT can be computed from the bulk
and boundaryS matrices. (See also [16,17].) Fractional-spin integrals of motion should
be manifested in both the boundaryS matrix and the perturbed CFT descriptions [18].
These features of integrable field theory with boundary have been studied in relatively few
examples and are less well understood, in comparison to the case without boundary.

In an effort to provide more such examples, we consider here the boundary version of
the bulk scaling supersymmetric Yang–Lee (SYL) model [19–21]. This model is arguably
the simplest nontrivial supersymmetric quantum field theory. Its spectrum consists of one
Boson and one Fermion of equal mass, and the bulkS matrix is factorizable and hasN = 1
supersymmetry. This model is the supersymmetric generalization of the scaling Yang–Lee
(YL) model [4,22,23], which describes the scaling region near the Yang–Lee singularity of
the two-dimensional Ising model [24,25]. The SYL model is the first member of an infinite
family of integrable models withN = 1 supersymmetry [19].

In particular, we define the boundary SYL model as a perturbed boundary CFT, and we
propose the corresponding boundaryS matrix, which is not diagonal for general values
of the boundary parameter. We support this picture by identifying a supersymmetry-like
integral of motion, and by studying massless boundary flow using the boundary TBA.
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Some related work was done by Moriconi and Schoutens in [26]. These authors proposed
two diagonalboundaryS matrices for the boundary SYL model, without reference to any
specific boundary conditions. For a special value of the boundary parameter, our boundary
S matrix differs from one of theirs by a CDD factor.

The outline of this article is as follows. In Section 2, we briefly review some necessary
results about the YL model, and we clarify a few subtleties of the boundary TBA. In
Section 3, we review some necessary results about the bulk SYL model. We also recall
the useful observation [27] that the critical SYL model can be formulated as either the
superconformal minimal modelSM(2/8) or the conformal minimal modelM(3/8). This
is completely analogous to the well-known fact that the tricritical Ising model can be
formulated as eitherSM(3/5) orM(4/5). One consequence of this fact is that the SYL
model can be regarded, following [28,29], as a restriction of the ZMS model [30–32], as
we discuss in an appendix. Section 4 is the heart of the paper. There we first define the
boundary SYL model as a perturbed boundary CFT, and we argue that it has an integral
of motion corresponding to an unbroken supersymmetry. We then propose the boundaryS

matrix for the boundary SYL model. Our approach is to restrict the boundaryS matrix of
the boundary supersymmetric sinh-Gordon model [15], by imposing the various boundary
bootstrap constraints [9]. We then show that the proposed boundaryS matrix commutes
with a supersymmetry-like charge. Finally, we perform a boundary TBA analysis, and
show that the proposed boundaryS matrix is consistent with massless flow away from the
ultraviolet conformal boundary condition. In Section 5 we present a brief discussion of our
results.

2. The YL model

We now briefly recall the basic results of the scaling Yang–Lee model which we shall
need in subsequent sections to formulate the supersymmetric generalization. We also
clarify a few subtleties of the boundary TBA.

2.1. Bulk

The critical behavior of the Yang–Lee singularity is described [33] by the minimal
modelM(2/5). This is a (nonunitary) CFT with central chargec=−22/5. There are only
two irreducible representations of the Virasoro algebra, and the corresponding conformal
dimensions∆(n,m) of the primary fields are organized into a Kac table in Table 1.

The scaling Yang–Lee model (without boundary) is defined [22] by the perturbed action
(1.1), where the CFT isM(2/5), and∆ = ∆(1,3) = −1/5. Arguments developed by

Table 1
Kac table forM(2/5)

0 −1
5 −1

5 0
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Zamolodchikov [2] imply that this model is integrable. The spectrum consists of a single
particle of massm, with energyE =mcoshθ and momentumP =msinhθ , whereθ is the
rapidity. The two-particleS matrix for particles with rapiditiesθ1 andθ2 is given by [22]

SYL (θ)=
sinhθ + i sin

(2π
3

)
sinhθ − i sin

(2π
3

) , (2.1)

whereθ = θ1 − θ2. This S matrix has a direct (s) channel pole atθ = i2π/3, since the
particle is a bound state of itself. Hence, theS matrix obeys the bootstrap equation

SYL

(
θ + iπ

3

)
SYL

(
θ − iπ

3

)
= SYL (θ). (2.2)

The TBA analysis [4] demonstrates that thisS matrix correctly reproduces the central
charge of the unperturbed CFT. The YL model can be regarded [23] as a restriction of
the sine-Gordon model in which the solitons are projected out and only the first breather
remains. Indeed, theS matrix (2.1) coincides with that of the first sine-Gordon breather [1,
34], with γ = 16π/3.

2.2. Boundary

Following [14,35], we consider the boundary YL model which is defined by the
perturbed action (1.2), where the CFT isM(2/5), the CBC corresponds to the cell(1,3)
of the Kac table, and∆ = ∆(1,3) = −1/5. The(1,3) conformal boundary condition and

the(1,3) boundary perturbation are compatible, since the fusion rule coefficientN
(1,3)
(1,3)(1,3)

is nonvanishing. The boundaryS matrix SYL (θ;b) is given by [35]1

SYL (θ;b)=
(

1

2

)(
3

2

)(
4

2

)−1(1− b
2

)−1(1+ b
2

)(
5− b

2

)(
5+ b

2

)−1

, (2.3)

where

(x)≡ sinh
(
θ
2 + iπx

6

)
sinh

(
θ
2 − iπx

6

) , (2.4)

andb is a parameter which is related toλB . ThisS matrix obeys the boundary bootstrap
equation [9]

SYL

(
θ + iπ

3
;b
)
SYL (2θ)SYL

(
θ − iπ

3
;b
)
= SYL (θ;b). (2.5)

This model can be regarded as a restriction of the boundary sine-Gordon model. Indeed,
the boundaryS matrix (2.3) coincides with that of the first sine-Gordon breather [36] with
γ = 16π/3, and with the parametersη,ϑ of [9] taking the values [14]η= π

4 (b+ 4), iϑ =
π
4 (b+ 2).

This picture is supported by the boundary TBA, which implies that the boundary entropy
is given (up to an additive constant) by

1 We make an effort to distinguish boundary quantities from the corresponding bulk quantities by using sans
serif letters to denote the former, and Roman letters to denote the latter.
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lng = 1

4π

∞∫
−∞

dθ

[
κYL (θ;b)−ΦYL (2θ)− 1

2
ΦYL (θ)

]
L(θ), (2.6)

where

ΦYL (θ)= 1

i

∂

∂θ
lnSYL (θ), κYL (θ;b)= 1

i

∂

∂θ
ln SYL (θ;b), (2.7)

and

L(θ)= ln
(
1+ e−ε(θ)). (2.8)

Moreover,ε(θ) is the solution of the bulk TBA equation [4]

ε(θ)= r coshθ − 1

2π
(ΦYL ∗L)(θ), (2.9)

where∗ denotes convolution

(f ∗ g)(θ)=
∞∫
−∞

dθ ′f (θ − θ ′)g(θ ′), (2.10)

and r = mR, with R the inverse temperature. Note that our expression (2.6) for the
boundary entropy differs in the third term in the brackets from the one given in Refs. [13]
and [14]. This term originates from the exclusion [37,38] of the Bethe Ansatz root at zero
rapidity.

For simplicity, let us consider the case of massless boundary flow.2 That is, we consider
the bulk massless scaling limit

m= µn, θ = θ̂ ∓ ln
n

2
, n→ 0, (2.11)

whereµ andθ̂ are finite, which impliesE = µe±θ̂ , P =±µe±θ̂ . Moreover, we consider

b =−3− i6
π

(
θB − ln

n

2

)
, n→ 0, (2.12)

where the boundary scaleθB is finite. For the sign− in the limit (2.11), the boundaryS
matrix reduces toS(θ̂ − θB)−1 [14], and we obtain

lng =− 2

4π

∞∫
−∞

dθ̂ ΦYL (θ̂ − θB)L̂(θ̂ ), (2.13)

whereε̂(θ̂ ) ≡ ε(θ̂ − ln n
2), andL̂(θ̂ ) = ln(1+ e−ε̂(θ̂ )). Note the factor of 2 appearing in

(2.13), which accounts for the contribution from the sign+ in the limit (2.11). That is, it
can be shown that right-movers and left-movers give equal contributions to the boundary
entropy. In the UV limitθB→−∞, the integrand is nonvanishing forθ̂→−∞; similarly,

the IR limit θB→∞ requiresθ̂→∞. Using the resultŝL(−∞)= ln(1+√5
2 ), L̂(∞)= 0

which follow from the TBA equation (2.9), we obtain

2 The bulk-massive case seems to have several complicated issues which remain to be resolved [14].
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ln
gUV

gIR = ln

(
1+√5

2

)
. (2.14)

This is precisely the ratio ofg factors corresponding to the conformal boundary
conditions(1,3) and(1,1)

ln
g(1,3)

g(1,1)
= ln

(
1+√5

2

)
, (2.15)

which have been computed [14] from theM(2/5)modularS matrix. Hence, the boundary
S matrix (2.3) is consistent with massless flow away from the UV conformal boundary
condition; namely, from the CBC(1,3) to the CBC(1,1). In Section 4.3 we shall find a
generalization to the supersymmetric case.

3. The bulk SYL model

We turn now to the supersymmetric generalization of the scaling Yang–Lee model,
which was first defined in [19] as a perturbation of the superconformal minimal model
SM(2/8). This (nonunitary) CFT has central chargec = −21/4; and the corresponding
dimensions∆(n,m) of the primary superconformal fields are given in Table 2. These fields
are of Neveu–Schwarz (NS) or Ramond (R) type ifn−m is even or odd, respectively. We
recall [3] that the superconformal symmetry is generated by the right and left supercurrents
G(z) andSG(z̄) of dimensions(3

2,0) and(0, 3
2), respectively. The NS fields are local with

respect toG(z) andSG(z̄), while the R fields are semi-local with respect to these currents.
The action of the SYL model is given by [19]

A=ASM(2/8)+ λ
∞∫
−∞

dy

∞∫
−∞

dxG− 1
2
SG− 1

2
Φ(∆,∆)(x, y), (3.1)

where∆=∆(1,3) = −1
4, andGn (SGn) are operators appearing in the operator expansion

of the supercurrentG(z) (SG(z̄)) with Φ(∆,∆)(z, z̄). An interesting feature of this model
is that it has fractional (12) spin integrals of motion. Indeed, the perturbation preserves
supersymmetry, since [6,19]

∂z̄G= ∂zSΨ , SΨ = λ(2∆− 1)SG− 1
2
Φ(∆,∆),

∂zSG= ∂z̄Ψ, Ψ = λ(2∆− 1)G− 1
2
Φ(∆,∆). (3.2)

The corresponding integrals of motion are given by

Table 2
Kac table forSM(2/8)

0 − 3
32 −1

4 − 7
32 −1

4 − 3
32 0
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Table 3
Kac table forM(3/8)

3
2

25
32

1
4 − 3

32 −1
4 − 7

32 0

0 − 7
32 −1

4 − 3
32

1
4

25
32

3
2

Q =
∞∫
−∞

dx
[
G(x,y)+ SΨ (x, y)],

SQ =
∞∫
−∞

dx
[SG(x,y)+Ψ (x, y)]. (3.3)

We now recall the important observation [27] that there is an equivalent formulation
of the SYL model as a perturbation of the ordinary minimal modelM(3/8). 3 Indeed,
M(3/8) also has central chargec=−21/4. The corresponding dimensions of the primary
fields are given in Table 3. Note that these dimensions either coincide with those for
SM(2/8) or else correspond to their super-descendants. Indeed, the fields of dimension
1
4 and 3

2 correspond toG− 1
2
Φ(1,3) and G− 1

2
L−1Φ(1,1) respectively; and the field of

dimension25
32 corresponds toG−1Φ(1,4).

The SYL model can therefore also be formulated by the action (1.1), where the
CFT is the minimal modelM(3/8), and ∆ = ∆(1,5) = 1

4. This is an integrable
perturbation, since [39] the(1,5) perturbation ofM(p/q) is integrable if 2p < q . There is
a corresponding formulation of the conservation laws (3.2), with the supercurrentsG and
SG replaced by the chiral primary fieldsΦ(2,1),(1,1) andΦ(1,1),(2,1) respectively, etc.

The spectrum of the SYL model consists of one Boson and one Fermion of equal mass
m. Following [1,9], it is convenient to introduce the Zamolodchikov operatorsAa(θ) =(
b(θ)
f (θ)

)
which create the corresponding Boson and Fermion asymptotic particle states,

|Aa1(θ1)Aa2(θ2) · · ·AaN (θN)〉 =Aa1(θ1)Aa2(θ2) · · ·AaN (θN)|0〉. (3.4)

This is an “in state” or “out state” if the rapidities are ordered asθ1 > θ2 > · · · > θN or
θ1< θ2< · · ·< θN , respectively.

The two-particleS matrix is defined by

Aa1(θ1)Aa2(θ2)= Sb1b2
a1a2

(θ1− θ2)Ab2(θ2)Ab1(θ1). (3.5)

For the SYL model, theS matrix is given by [19]

S(θ)= SYL (θ)SSUSY(θ), (3.6)

whereSYL (θ) is given by (2.1). Moreover,

SSUSY(θ)= Y (θ)R(θ), (3.7)

3 As mentioned in introduction, this is completely analogous to the well-known fact that the tricritical Ising
model can be formulated as eitherSM(3/5) orM(4/5).
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whereR(θ) is the 4× 4 matrix4

R(θ)=


a+(θ) 0 0 d(θ)

0 b c(θ) 0
0 c(θ) b 0
d(θ) 0 0 a−(θ)

 , (3.8)

with

a±(θ)=±1+ 2i sin π3
sinhθ

, b= 1, c= i sin π3
sinh θ2

, d = sin π3
coshθ2

. (3.9)

The scalar factorY (θ) is given by

Y (θ)= sinhθ2
sinhθ2 + i sin π3

exp

( ∞∫
0

dt

t

sinh(itθ/π)sinh2t
3 sinh t3

cosht cosh2 t
2

)
, (3.10)

which we find has the following infinite-product representation:

Y (θ) = 0
( 1

2 + iθ
2π

)
0
( 1

2 − iθ
2π

)
0
(− iθ

2π

)
0
(
1+ iθ

2π

)
×
∞∏
k=0

{
0
( 3

2 + k − iθ
2π

)2
0
(
1+ k + iθ

2π

)2
0
( 1

2 + k + iθ
2π

)2
0
(
1+ k − iθ

2π

)2
× 0

( 2
3 + k − iθ

2π

)
0
( 5

6 + k + iθ
2π

)
0
( 1

3 + k − iθ
2π

)
0
( 7

6 + k + iθ
2π

)
0
( 5

3 + k + iθ
2π

)
0
( 5

6 + k − iθ
2π

)
0
( 4

3 + k + iθ
2π

)
0
( 7

6 + k − iθ
2π

)}.
(3.11)

It is convenient to denote the total scalar factor byZ(θ)

Z(θ) = SYL (θ) Y (θ)

= sinhθ2
sinhθ2 − i sin π3

exp

(
−
∞∫

0

dt

t

sinh(itθ/π)sinh4t
3 sinh t3

cosht cosh2 t
2

)
.

(3.12)

Hence, the SYL bulkS matrix is given by

S(θ)=Z(θ)R(θ), (3.13)

where the matrixR(θ) is given by Eqs. (3.8), (3.9). TBA analysis [20,21] shows that this
S matrix correctly reproduces the central charge of the unperturbed CFT.

In analogy with the YL model, the SYL model can be regarded as a restriction of the
supersymmetric sine-Gordon (SSG) model in which the solitons are projected out and
only the first breather multiplet remains. Indeed, theS matrix is that of the first SSG

4 Our conventions are such that ifA andB are matrices with matrix elementsAa1a2 andBb1b2, then the tensor

productC =A⊗B has matrix elementsCa2b2
a1b1
=Aa1a2Bb1b2.
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breather [40,41] withα = 1/3. In particular, it coincides with the expression for theS
matrix of the supersymmetric sinh-Gordon model given in [15] withB =−1/3.

In view of the alternative formulation of SYL as the(1,5) perturbation ofM(3/8), the
SYL model can also be regarded as a restriction [28,29] of the Zhiber–Mikhailov–Shabat
model [30–32]. Details of this identification are given in Appendix A.

We recall [6,19] that the supersymmetry charges are assumed to act as follows: on one-
particle states,

QAa(θ)= qab(θ)Ab(θ), q(θ)=√me θ2
(

0 e
iπ
4

e− iπ4 0

)
,

SQAa(θ)= q̄ab(θ)Ab(θ), q̄(θ)=√me− θ2
(

0 e− iπ4
e
iπ
4 0

)
(3.14)

and on multiparticle states,

Q|Aa1(θ1) · · ·AaN (θN)〉

=
N∑
l=1

(
l−1∏
k=1

(−1)Fak

)
|Aa1(θ1) · · ·Aal−1(θl−1)(QAal (θl))Aal+1(θl+1) · · ·AaN (θN)〉,

SQ|Aa1(θ1) · · ·AaN (θN)〉

=
N∑
l=1

(
l−1∏
k=1

(−1)Fak

)
|Aa1(θ1) · · ·Aal−1(θl−1)(SQAal (θl))Aal+1(θl+1) · · ·AaN (θN)〉,

(3.15)

where (−1)F is +1 for a Boson and−1 for a Fermion. These charges obey the
supersymmetry algebra

Q2=E + P, SQ2=E − P,{
Q, SQ}= 0,

{
Q,(−1)F

}= {SQ,(−1)F
}= 0. (3.16)

It can be shown [19] that the SYLS matrix commutes with the supersymmetry chargesQ

andSQ, as well as with(−1)F .
To conclude this section, we demonstrate that the aboveS matrix satisfies the bulk

bootstrap equations. We do this in preparation for our investigation in Section 4.2 of the
boundary bootstrap equations, which will help determine the boundaryS matrix. Near the
direct-channel pole atθ = i2π/3, the bulkS matrix is given by

S(θ)'− i
√

3c2

θ − i2π
3


3 0 0

√
3

0 1 1 0
0 1 1 0√
3 0 0 1

 , (3.17)

where

c= exp

(
−1

2

∞∫
0

dt

t

sinh2(2t/3)sinh(t/3)

cosht cosh2(t/2)

)
.

Hence, the nonvanishing three-particle couplings are given by
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f bbb = ic
√

3
√

3, f bff = f fbf = f ff b = ic 4
√

3, (3.18)

where b and f denote Boson and Fermion, respectively. Using the infinite-product
representation for the scalar factorY (θ) (3.11), one can prove the identity

Y
(
θ + iπ

3

)
Y
(
θ − iπ

3

)
Y (θ)

= 2 sinh
(
θ
2 − iπ

6

)
cosh

(
θ
2 + iπ

6

)
sinhθ

. (3.19)

Recalling the YL bootstrap relation (2.2), it follows that the total scalar factorZ(θ) (3.12)
satisfies

Z
(
θ + iπ

3

)
Z
(
θ − iπ

3

)
Z(θ)

= 2 sinh
(
θ
2 − iπ

6

)
cosh

(
θ
2 + iπ

6

)
sinhθ

. (3.20)

With the help of this identity, it is now straightforward to verify the bulk bootstrap
equations

f ca1a2
Sbb3
ca3
(θ)= f bc1c2Sc1b3

a1c3

(
θ + iπ

3

)
Sc2c3a2a3

(
θ − iπ

3

)
. (3.21)

4. The boundary SYL model

We now address the main problems of defining the boundary SYL model and
determining its boundaryS matrix.

4.1. Definition of the model as a perturbed CFT

As in the bulk case, we can define the boundary SYL model in either of two ways.
One way is to define the model as a perturbation of the superconformal minimal model
SM(2/8) (cf., Eq. (3.1))

A = ASM(2/8)+SCBC(1,3)+ λ
∞∫
−∞

dy

0∫
−∞

dx G− 1
2
SG− 1

2
Φ(∆,∆)(x, y)

+ λB
∞∫
−∞

dyG− 1
2
Φ(∆)(y), (4.1)

where ∆ = ∆(1,3) = −1
4. Indeed, the arguments of [9] suggest that this boundary

perturbation is integrable. Following [10], we observe that for the boundary CFT,
superconformal invariance requires that the stress-energy tensors and supercurrents obey
the boundary conditions(

T − ST )∣∣
x=0= 0,

(
G− SG )∣∣

x=0= 0. (4.2)

We assume that for a superconformal minimal model, a superconformal boundary
condition (SCBC) corresponds to a cell of the Kac table, which in (4.1) we take to be
(1,3). (See below.)
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Although for the case with boundary the supersymmetry charges

Q=
0∫

−∞
dx
[
G(x,y)+ SΨ (x, y)], SQ=

0∫
−∞

dx
[SG(x,y)+Ψ (x, y)] (4.3)

(cf., Eq. (3.3)) are not conserved, it is plausible that some combination of these charges
(plus a possible boundary term) survives. Indeed, following [9], let us first consider
the massless caseλ = 0, and compute the operator product expansion[G(y + ix)−
G(y − ix)]G− 1

2
Φ(∆)(y

′). We conclude that the quantity

Q=
0∫

−∞
dx
[
G(x,y)+ SG(x,y)]+Θ(y), (4.4)

with Θ(y) ∝ λB(1− 2∆)Φ(∆)(y) is an integral of motion. It is plausible that, for the
general massive caseλ 6= 0, this becomes

Q=Q+ SQ+Θ, (4.5)

whereQ andSQ are given in (4.3).
Alternatively, we can define the boundary SYL model as a perturbation of the minimal

modelM(3/8). That is, we can define the model by the action (1.2), where the CFT is
M(3/8), ∆ = ∆(1,5) = 1

4, and the CBC is either(1,3), (1,4), or (1,5). Indeed, these
three conformal boundary conditions are compatible with the(1,5) boundary perturbation,
since the corresponding fusion rule coefficientsN

(1,5)
(1,3) (1,3), N

(1,5)
(1,4) (1,4) andN(1,5)(1,5) (1,5) are

all nonvanishing, as can be seen from Table 4. Presumably, only the CBC(1,3) preserves
superconformal invariance, since only for this CBC does the corresponding dimension
∆(1,3) =−1

4 appear in theSM(2/8) Kac Table 2. Hence, here we shall consider only the
CBC (1,3), for which case the corresponding action is presumably equivalent to (4.1).

We have obtained theM(3/8) fusion rule coefficients given in Table 4 using the
corresponding modularS matrix. Indeed, we recall (see, e.g., [42]) that forM(p/q) the
modularS matrix elements are given by

Table 4
Fusion rule coefficients forM(3/8). Here we list all the triplets(i, j, k) with i 6 j 6 k for which

N
(1,i)
(1,j)(1,k) is nonvanishing, and in fact, equal to 1. Note thatN

(1,i)
(1,j)(1,k) is symmetric under the

interchange of any pair of indices(i, j, k)

(1, 1, 1) (2, 2, 3) (3, 3, 3) (4, 4, 5) (5, 5, 5)
(1, 2, 2) (2, 3, 4) (3, 3, 5) (4, 4, 7)
(1, 3, 3) (2, 4, 5) (3, 4, 4) (4, 5, 6)
(1, 4, 4) (2, 5, 6) (3, 4, 6)
(1, 5, 5) (2, 6, 7) (3, 5, 5)
(1, 6, 6) (3, 5, 7)
(1, 7, 7) (3, 6, 6)
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S(r,s) (r ′,s ′) = 2

√
2

pq
(−1)rs

′+r ′s+1 sin
πqrr ′

p
sin

πpss′

q
,

16 r, r ′ 6 p− 1, 16 s, s′ 6 q − 1. (4.6)

Settingr = r ′ = 1, forM(3/8) we obtain the result

S =



−1
2 sin 3π

8
1

2
√

2
1
2 sin π8 −1

2
1
2 sin π8

1
2
√

2
−1

2 sin 3π
8

1
2
√

2
1
2

1
2
√

2
0 − 1

2
√

2
−1

2 − 1
2
√

2
1
2 sin π8

1
2
√

2
1
2 sin 3π

8
1
2

1
2 sin 3π

8
1

2
√

2
1
2 sin π8

−1
2 0 1

2 0 −1
2 0 1

2
1
2 sin π8 − 1

2
√

2
1
2 sin 3π

8 −1
2

1
2 sin 3π

8 − 1
2
√

2
1
2 sin π8

1
2
√

2
−1

2
1

2
√

2
0 − 1

2
√

2
1
2 − 1

2
√

2

−1
2 sin 3π

8 − 1
2
√

2
1
2 sin π8

1
2

1
2 sin π8 − 1

2
√

2
−1

2 sin 3π
8


, (4.7)

where the matrix element(s, s′) corresponds toS(1,s) (1,s ′). This matrix is real, symmetric,
and unitary,S S†= S2= I. Finally, the Verlinde formula [44] implies that the fusion rule
coefficients are given by

N
(1,i)
(1,j)(1,k) =

7∑
l=1

S(1,i)(1,l)S(1,j)(1,l)S(1,k)(1,l)

S(1,1)(1,l)
. (4.8)

We close this subsection with the computation ofg factors for the various conformal
boundary conditions, which also relies on the modularS matrix. As shown in [10,14], the
g factor for the CBC(1, s) is given by

g(1,s) = SΩ (1,s)√|SΩ 0| , (4.9)

where 0 denotes the conformal vacuum (which has the propertyN
(1,i)
0 (1,j) = δij ), andΩ is

the state of lowest dimension. ForM(3/8), 0 is (1,1) andΩ is (1,3). In this way, we
obtain

g(1,4) = 1√
2 sinπ8

, g(1,3) = g(1,5) =
sin 3π

8√
2 sinπ8

,

g(1,2) = g(1,6) = 1

2
√

sin π8

, g(1,1) = g(1,7) =
√

1

2
sin

π

8
. (4.10)

It should also be possible to computeg factors from theSM(2/8) modularS matrix.
However, we do not attempt this here.5

4.2. BoundaryS matrix

The boundaryS matrix S(θ) is defined as [9]

5 It is not clear how to compute theSM(2/8) modular S matrix directly from the cosetsu(2)2 ⊕
su(2)m/su(2)2+m with m=−4/3 [43], since an additional coset field seems to be required.
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Aa(θ)B = Sba(θ)Ab(−θ)B, (4.11)

where hereB is the so-called boundary creation operator. We now try to determineS(θ)

for the boundary SYL model (4.1). By analogy with the bulk SYL model, as well as with
the boundary YL model, we expect that the boundaryS matrix of the boundary SYL
model should be some reduction of that of the boundary supersymmetric sine-Gordon
model [45], or equivalently, the boundary supersymmetric sinh-Gordon model [15]. We
therefore consider

S(θ)= SYL (θ;b)SSUSY(θ;φ), (4.12)

where the scalar factorSYL (θ;b) is given by (2.3), andSSUSY(θ;φ) is given by

SSUSY(θ;φ)= Y(θ;φ)R(θ;φ), (4.13)

whereR(θ;φ) is the 2× 2 matrix

R(θ;φ)=
(
A+ B
B A−

)
, (4.14)

with matrix elements

A± = cosh
θ

2
G+ ± i sinh

θ

2
G−, B =−i sinhθ, (4.15)

where

G+ = r

(
sinhφ + e

φ sinh2 θ
2

1− sin π3

)
, G− = r

(
coshφ + e

φ sinh2 θ
2

1− sin π3

)
,

r=
(

2(1− sin π3 )

sin π3

)1/2

. (4.16)

Moreover,Y(θ;φ) is a scalar factor given by

Y(θ;φ)= Y0(θ)Y1(θ;φ)F(θ;φ), (4.17)

where

Y0(θ) = i√
2sinh( θ2 + iπ

4 )

× exp

(
−1

2

∞∫
0

dt

t

sinh(2itθ/π)sinh(2t/3)sinh(t/3)

cosh2 t cosh2(t/2)

)
,

Y1(θ;φ) = 1

rsinhφ

sin( π12− ζ
2)sin( π12+ ζ

2)

sin( π12− ζ
2 − iθ

2 )sin( π12+ ζ
2 − iθ

2 )

× exp

(
−2

∞∫
0

dt

t

sinh(itθ/π)sinh(t/3)cosh(tζ/π)

sinht cosh(t/2)

)
, (4.18)

andζ is a function ofφ defined by
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cosζ = 1− e−2φ
(

1− sin
π

3

)
. (4.19)

The exponential factors ofY0(θ) andY1(θ;φ) do not have zeros or poles in the physical
strip 06 Im θ 6 π

2 , provided|ζ |< 2π/3. Finally,F(θ;φ) is a CDD-like factor obeying

F(θ;φ)F(−θ;φ)= 1, F

(
iπ

2
+ θ;φ

)
= F

(
iπ

2
− θ;φ

)
, (4.20)

which is still to be determined.
The above expression forSSUSY essentially coincides with the one for the supersymmet-

ric sinh-Gordon model given in [15] withB =−1/3, ε =+1,ϕ = φ+ iπ
2 with φ real, and

r = −ir. The only differences lie in the CDD factorF(θ;φ) (which is absent from [15])
and the factorY1: the expression given here is an analytic continuation of the one given
in [15]. The former does not diverge forθ = ± iπ3 , which is important for implementing
the boundary bootstrap equations, as we shall see below (4.27).

The alert reader will have noticed that, while the boundary SYL action (4.1) contains
only one boundary parameter (namely,λB ), the above boundaryS matrix seems to
contain two parameters, namely,b and φ. The key point to realize is that these two
parameters arenot independent. By demanding that the boundaryS matrix satisfy the
various constraints [9] arising from the existence of boundary and bulk bound states, we
shall determine the relation betweenφ andb (4.26), as well as the CDD factorF(θ;φ)
(4.33).

We begin by considering the constraints due to boundary bound states. In general [9],
let ivα0a be the position of a pole of the boundaryS matrix in the physical strip associated
with the excited boundary state|α〉B , which can be interpreted as a boundary bound state
of particleAa with the boundary ground state|0〉B . Near this pole, the boundaryS matrix
has the form

Sba(θ)'
i

2

gαa0g
b0
α

θ − ivα0a
, (4.21)

wheregαa0 are boundary-particle couplings.
We assume that (as in the bulk) the SYL boundaryS matrix inherits its pole structure

from the YL boundaryS matrix (2.3). Therefore, it has [46] two boundary bound state
poles, corresponding to excited boundary states|1〉B, |2〉B , with 6

v1
0 =

π(b+ 1)

6
, v2

0 =
π(b− 1)

6
. (4.22)

It follows from the condition (4.21) and the form (4.14) of theS matrix that forθ = ivα0 ,

A+ ∝
(
gb0α
)2
, A− ∝

(
gf 0
α

)2
, B ∝ gb0α gf 0

α , (4.23)

where the indicesb andf again denote Boson and Fermion, respectively. Hence, we arrive
at the important constraint

6 The subscripta of vα0a can be dropped, since YL has only one type of particle.
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A+A−
B2

∣∣∣∣
θ=ivα0
= 1. (4.24)

This equation gives a relation between the boundary parameterφ andvα0 . As shown in
Appendix B, the relation can be expressed most succinctly in terms of the parameterζ

defined in (4.19):

ζ = vα0 ±
π

6
. (4.25)

The above relation can hold for both poles (4.22) only if

ζ = πb
6
. (4.26)

Eq. (4.26) is the desired relation betweenφ andb. The restriction|ζ | < 2π/3 which we
found above implies|b|< 4.

We now consider the constraints due to bulk bound states. In view of the direct-channel
pole of the SYL bulkS matrix atθ = i2π/3, the following boundary bootstrap relations
must hold [9]

f abd Sdc (θ)= f b1a1
c Sa2

a1

(
θ + iπ

3

)
S
b2a
b1a2

(2θ)Sbb2

(
θ − iπ

3

)
. (4.27)

Using infinite-product representations for the scalar factorsY0(θ), Y1(θ;φ), andY (θ), one
can prove the identities

Y0(θ + iπ
3 )Y0(θ − iπ

3 )Y (2θ)

Y0(θ)
= i

√
2sinhθ sinh

(
θ
2 − iπ

4

)
sinh

(
θ + iπ

3

)
cosh

(
θ − iπ

3

) ,
Y1(θ + iπ

3 ;φ)Y1(θ − iπ
3 ;φ)

Y1(θ;φ) = 1

rsinhφ
sin

(
π

12
− ζ

2

)
sin

(
π

12
+ ζ

2

)
× 2(1+ 2 cos2ζ − 2 cosh2θ − 4i cosζ sinhθ)

cos3ζ + i sinh3θ
.

(4.28)

With the help of these identities, together with (2.5), one can show that the SYL boundary
bootstrap relations (4.27) are satisfied, provided that the CDD factor obeys

F
(
θ + iπ

3 ;φ
)
F
(
θ − iπ

3 ;φ
)

F(θ;φ) = cos3ζ + i sinh3θ

cos3ζ − i sinh3θ
. (4.29)

In addition to the boundary bootstrap relation, another constraint due to bulk bound
states is stated in [9]. Namely, letiucab be the position of the pole of the bulkS matrix
associated with the direct-channel bound state ofAaAb which can be interpreted as the
particleAc. If the particlesAa andAb have equal mass, then the boundaryS matrix must
have a pole atθ = iūcab/2, whereūcab = π − ucab. Furthermore,

Sbā(θ)'−
i

2

f abc gc

θ − iūcab
2

, (4.30)

wheregc describes the coupling ofAc to the boundary. The SYL boundaryS matrix indeed
has such a pole atθ = iπ/6. It follows from the condition (4.30) that forθ = iπ/6,
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A+ ∝ f bbb gb, A− ∝ f ffb gb; (4.31)

and hence [26]

A+
A−

∣∣∣∣
θ= iπ6
= f bbb

f
ff
b

=√3. (4.32)

However, this equation is satisfied for arbitrary values ofφ, and so does not provide any
further constraints on theS matrix.

The scalar factorY(θ;φ) (4.17) should not have zeros or poles in the physical strip. In
view of the relation (4.26), we see that the factorY1(θ;φ) has poles atθ = i(±ζ − π

6 )=
iπ(±b − 1)/6. The pole atθ = iπ(b − 1)/6 is undesirable, since it is physical for
1< b < 4.7 Fortunately, we can arrange for this pole to be canceled by a corresponding
zero of the CDD factor. Indeed, a solution to the CDD constraint equations (4.20)
and (4.29) which has a zero atθ = iπ(b− 1)/6 is given by

F(θ;φ)=
(

1− b
2

)(
5+ b

2

)
, (4.33)

where we have again used the notation (2.4).
In short, the boundaryS matrix which we propose for the boundary SYL model (4.1)

is given by Eqs. (4.12)–(4.19), (4.26), (4.33). This is one of the main results of our paper.
Note that our proposed boundaryS matrix depends on a single independent boundary
parameterb. The relation of this parameter to the boundary parameterλB in the action
(4.1) is not yet known.

One check on this proposal is provided by supersymmetry. We have suggested that the
SYL model (4.1) has the integral of motionQ given by (4.5). We now demonstrate that
our proposed boundaryS matrix commutes with a similar quantity. Indeed, let us assume
that the supersymmetry chargesQ and SQ act on states according to (3.14), (3.15). It is
straightforward to show that the matrixR(θ;φ) (4.14) commutes with

Q=Q+ SQ+ γ (−1)F , (4.34)

where hereγ =−√m
√
−1+ 2/

√
3e−φ . Note thatQ does not anticommute with(−1)F ,

unlike usual supersymmetry charges. The appearance of(−1)F in Q should not be too
surprising, since similar topological charges also appear in the fractional-spin integrals of
motion of the boundary sine-Gordon model [18]. Presumably the operatorΘ in (4.5) can be
identified withγ (−1)F . Note thatλB = 0 (for whichΘ vanishes) corresponds toφ =∞,
and henceb= 0. For this value ofb, the boundaryS matrixS(θ) is diagonal. We recall that
Moriconi and Schoutens proposed [26] two diagonal boundaryS matrices for the boundary
SYL model (although without reference to any specific boundary conditions), which they
designatedR[1](1) andR[1](2). Our boundaryS matrix for b = 0 differs fromR[1](2) by the CDD
factor, i.e.,

S(θ)

F (θ;φ)
∣∣∣∣
b=0
=R[1](2)(θ). (4.35)

7 The pole atθ = iπ(−b− 1)/6 is canceled by a corresponding zero in the factor
(

1+b
2

)
from SYL .
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4.3. Boundary TBA and massless boundary flow

We have defined the boundary SYL model in Section 4.1, and we have proposed the
corresponding boundaryS matrix in Section 4.2. We shall now demonstrate that this picture
is supported by the boundary TBA. Our analysis is a generalization of the one for the
boundary YL model, which we briefly reviewed in Section 2.2. For simplicity, we again
focus our attention on the case of massless boundary flow.

We begin by determining the massless scaling limit. We set

m= µn, θ = θ̂ − ln
n

2
,

iπ

6
(b+ a)= θB − ln

n

2
, n→ 0, (4.36)

with µ, θ̂ , andθB real and finite. Our objective is to determine the value(s) ofa (also real
and finite) for which the boundaryS matrix, in the above limit, remains finite and unitary.
After some computation, we find thata = 6; and the resulting massless boundaryS matrix
is given by

S(θ)= Z(θ̂ − θB)R(θ̂ − θB), (4.37)

where

Z(θ)= sinh
(
θ
2 − iπ

12

)
sinh

(
θ
2 − i5π

12

)
sinh

(
θ
2 + i5π

12

) exp

(
−
∞∫

0

dt

t

sinh t3 sinh
(
t
(
iθ
π
− 1

))
sinht cosht2

)
, (4.38)

and

R(θ)=
(

sinh
(
θ
2 + iπ

4

) − i 4√3
2

− i 4√3
2 sinh

(
θ
2 − iπ

4

)
)
. (4.39)

Indeed,S(θ) satisfies the unitarity condition, since

Z(θ)R(θ) Z(−θ)R(−θ)= I. (4.40)

In order to formulate the TBA equations, we considerN particles with real rapidities
θ1, . . . , θN in an interval of lengthL, with bulk S matrix S(θ) (3.13) and boundaryS
matricesS(θ;b±) (4.12), where the subscripts± here denote the left and right boundaries.
As already discussed, the bulk and boundaryS matrices of the SYL model essentially
coincide with those for the supersymmetric sinh-Gordon model given in [15] withB =−1

3,
ε = +1, ϕ = φ + iπ

2 , andr = −ir. Hence, the Bethe Ansatz equations and the transfer
matrix eigenvalues for SYL can be easily obtained from [15], to which we shall henceforth
refer as I. From Eq. (I 4.14) we obtain the Bethe ansatz equations forz+k

N∏
j=1

tanh
(1

2(z
+
k − θj )

)
tanh

(1
2(z
+
k − θj )+ iπ

3

) tanh
( 1

2(z
+
k + θj )

)
tanh

( 1
2(z
+
k + θj )+ iπ

3

)
= sinh2( 1

2

(
i5π
6 + z+k

))
sinh2( 1

2

(
iπ
6 − z+k

)) [ −e−φ− sinh2( iπ
12

)+eφ− sinh2( 1
2

(
iπ
6 − z+k

))
−e−φ− sinh2( iπ

12

)+eφ− sinh2( 1
2

(
i5π
6 + z+k

))][φ−→ φ+],
(4.41)
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and from (I 4.15) we obtain a similar result forz−k . In view of the massless scaling limit
(4.36), we set

θj = θ̂j − ln
n

2
, z±k = ẑ±k − ln

n

2
,

iπ

6
(b± + 6)= θ±B − ln

n

2
, n→ 0, (4.42)

and we obtain
N∏
j=1

tanh
(1

2(ẑ
+
k − θ̂j )

)
tanh

( 1
2(ẑ
+
k − θ̂j )+ iπ

3

)
= cosh

(1
2(ẑ
+
k − θ̂−B )− iπ

12

)
cosh

(1
2(ẑ
+
k − θ̂+B )− iπ

12

)
cosh

( 1
2(ẑ
+
k − θ̂−B )+ i5π

12

)
cosh

(1
2(ẑ
+
k − θ̂+B )+ i5π

12

) . (4.43)

Finally, setting ẑ+k = x̂k − iπ
3 , we obtain the Bethe ansatz equations forx̂k (cf.,

Eq. (I 4.19)),

N∏
j=1

tanh
( 1

2(x̂k − θ̂j )− iπ
6

)
tanh

( 1
2(x̂k − θ̂j )+ iπ

6

) cosh
( 1

2(x̂k − θ̂−B )+ iπ
4

)
cosh

(1
2(x̂k − θ̂+B )+ iπ

4

)
cosh

( 1
2(x̂k − θ̂−B )− iπ

4

)
cosh

(1
2(x̂k − θ̂+B )− iπ

4

) = 1,

k = 0,1, . . . ,N. (4.44)

The transfer matrix eigenvaluesΛ(θ |θ1, . . . , θN ) can be deduced from Eqs. (I 4.12),
(I 4.17), (I 4.24). In the scaling limit (4.42) (withθ = θ̂ − ln n

2), we obtain

Λ∝ Z(θ̂ − θ+B )Z(θ̂ − θ−B )ex̂0− 1
2 (θ
+
B+θ−B )

N∏
k=1

Z(θ̂ − θ̂k)ex̂k−θ̂k
1
2 sinh(θ̂ − θ̂k)

N∏
k=0

λεk (θ̂ − θ̂k), (4.45)

whereZ(θ) andZ(θ) are given by (3.12) and (4.38), respectively;

λε(θ)= sinh

(
θ

2
+ εiπ

6

)
cosh

(
θ

2
− εiπ

6

)
, (4.46)

εk =±1 (see Eq. (I 4.20)), and̂xk satisfy (4.44).
We introduce the densitiesP±(θ̂ ) of “magnons”, i.e., of real Bethe ansatz roots{x̂k} with

εk = ±1, respectively; and also the densitiesρ1(θ̂ ) and ρ̃(θ̂ ) of particles{θ̂k} and holes,
respectively. The Bethe ansatz equations (4.44) imply8

P+(θ̂ )+ P−(θ̂ )= 1

2π
(ρ1 ∗Φ)(θ̂)+ 1

2πL

[
Ψ
(
θ̂ − θ+B

)+Ψ (θ̂ − θ−B )], (4.47)

where

Φ(θ) = 1

i

∂

∂θ
ln

(
tanh

(
θ
2 − iπ

6

)
tanh

(
θ
2 + iπ

6

))= 4 coshθ sin π3
cosh2θ − cos2π

3

=−ΦYL (θ),

Ψ (θ) = 1

i

∂

∂θ
ln

(
cosh

(
θ
2 + iπ

4

)
cosh

(
θ
2 − iπ

4

))= 1

coshθ
, (4.48)

and we have definedρ1(θ̂) for negative values of̂θ to be equal toρ1(|θ̂ |).
8 The counting function should be monotonic increasing, in order that the corresponding density (defined as

the derivative of the counting function) be nonnegative.
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The Yang equations (I 5.7) and the expression (4.45) for the eigenvalues imply

ρ1(θ̂ )+ ρ̃(θ̂ )
= µ
π
eθ̂ + 1

2π
(ρ1 ∗ΦZ)(θ̂)+ 1

2π
(P+ ∗Φ+)(θ̂ )+ 1

2π
(P− ∗Φ−)(θ̂)

+ 1

2πL

[
∂

∂θ̂
Im ln Z

(
θ̂ − θ+B

)+ ∂

∂θ̂
Im ln Z

(
θ̂ − θ−B

)]
, (4.49)

where

ΦZ(θ)= ∂

∂θ
Im lnZ(θ), Φ±(θ)= ∂

∂θ
Im lnλ±(θ), (4.50)

and we have definedP±(θ̂ ) for negative values of̂θ to be equal toP∓(|θ̂ |). Using the fact
Φ±(θ)=∓1

2Φ(θ), and using (4.47) to eliminateP+, we obtain

ρ1(θ̂ )+ ρ̃(θ̂ ) = µ

π
eθ̂ + 1

2π
(P− ∗Φ)(θ̂)+ 1

2π

(
ρ1 ∗

(
ΦZ − 1

4π
Φ ∗Φ

))
(θ̂ )

+ 1

2πL

[
∂

∂θ̂
Im ln Z

(
θ̂ − θ+B

)− 1

4π
(Ψ ∗Φ)(θ̂ − θ+B )

+ ∂

∂θ̂
Im ln Z

(
θ̂ − θ−B

)− 1

4π
(Ψ ∗Φ)(θ̂ − θ−B )]. (4.51)

With the help of the identities

ΦZ(θ)− 1

4π
(Φ ∗Φ)(θ) = −Φ(θ),

∂

∂θ
Im ln Z(θ)− 1

4π
(Ψ ∗Φ)(θ) = 0, (4.52)

we obtain the simple result

ρ1(θ̂ )+ ρ̃(θ̂ )= µ
π
eθ̂ + 1

2π
(P− ∗Φ)(θ̂)− 1

2π
(ρ1 ∗Φ)(θ̂). (4.53)

Proceeding as in I, we obtain the TBA equations9

reθ̂ = ε1(θ̂ )− 1

2π

(
Φ ∗ (L1−L2)

)
(θ̂ ),

0 = ε2(θ̂ )+ 1

2π
(Φ ∗L1)(θ̂ ), (4.54)

where

Li(θ̂)= ln
(
1+ e−εi(θ̂)), r = µR,

ε1= ln

(
ρ̃

ρ1

)
, ε2= ln

(
P+
P−

)
. (4.55)

9 This set of TBA equations is the same as for the case of periodic boundary conditions, which was first
conjectured in [47] (see also [48]) and later derived from the SYLS matrix in [20] and generalized in [21].
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Moreover, the boundary entropy of one boundary is given (up to an additive constant)
by

lng = 2

4π

∞∫
−∞

dθ̂ Ψ (θ̂ − θB)L2(θ̂ ), (4.56)

where we have included the factor 2 in order to account for contributions from both right-
movers and left-movers. In the UV limitθB →−∞, the integrand is nonvanishing for
θ̂→−∞; similarly, the IR limit θB→∞ requiresθ̂→∞. Using the resultsL2(−∞)=
ln(2+√2), L2(∞)= ln2 which follow from the TBA equations (4.54), we obtain

ln
gUV

gIR =
1

2
ln

(
1+√2√

2

)
. (4.57)

This is precisely the ratio ofg factors corresponding to theM(3/8) conformal boundary
conditions(1,3) and(1,2)

ln
g(1,3)

g(1,2)
= 1

2
ln

(
1+√2√

2

)
, (4.58)

as one can verify from Eq. (4.10). Hence, the proposed boundaryS matrix is consistent with
massless flow away from the UV conformal boundary condition; namely, from the CBC
(1,3) to the CBC(1,2). In theSM(2/8) description, this corresponds to the flow from
the SCBC(1,3) to the SCBC(1,4). A plot of lng as a function ofθB is given in Fig. 1.
For convenience, a constant has been added so that the UV value is1

2 ln(1+√2) and the
IR value is1

2 ln
√

2.

Fig. 1. Boundary entropy: lng vs. θB .
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5. Discussion

We have proposed the boundaryS matrix (4.12)–(4.19), (4.26), (4.33) for the boundary
SYL model defined by the action (4.1). Some support for this conjecture is provided by
the fractional-spin integral of motion (4.5), (4.34), and by the massless boundary flow
(4.57), (4.58). Several important problems remain to be solved, including the relation of
the parameterλB in the action to the parameterb of the boundaryS matrix; and the
identification of the operatorΘ in (4.5) with the operatorγ (−1)F in (4.34). It would
also be interesting to consider other conformal boundary conditions, as well as extend the
present study to the full family of integrable models withN = 1 supersymmetry [19,26].
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Appendix A. SYL model as restriction of ZMS model

Here we show that the scaling supersymmetric Yang–Lee model is a restriction of the
Zhiber–Mikhailov–Shabat model [30,31], whose action is given by

A=
∫
d2x (∂µϕ)

2+ m
2

γ 2

(
ei
√

8γ ϕ + e−i
√

2γ ϕ). (A.1)

This is theA(2)2 imaginary coupling affine Toda field theory, whoseS matrix was found by
Izergin and Korepin [32]. We follow closely the paper [29] of Takács, to which we shall
refer as II. (See also [49,50].)

It is useful to first recall the related work [28] of Smirnov. There it is observed that, for

γ = πr
s
, (A.2)

the ZMS model is the(1,2) perturbation of the minimal modelM(r/s). Indeed, one can
regard the first two terms in the action (A.1) as the action forM(r/s), and the third term as
the(1,2) perturbation. TheS matrix of the perturbed model can be obtained as the RSOS
restriction of theA(2)2 S matrix, using the model’sUq(sl(2)) symmetry, whereq = eiπ2/γ .

In II, it is observed that, for

γ = 4γ ′ = 4πr ′

s′ , (A.3)

the ZMS model is the(1,5) perturbation of the minimal modelM(r ′/s′). Indeed, one
can regard the first and third terms in the action (A.1) as the action forM(r ′/s′), and the
second term as the(1,5) perturbation. TheS matrix of the perturbed model can be obtained
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as the RSOS restriction of theA(2)2 S matrix, using the model’sUq ′(sl(2)) symmetry, where

q ′ = eiπ2/γ ′ = q4.
We have suggested in Section 3 that the SYL model can be regarded as the(1,5)

perturbation ofM(3/8). We now proceed to compute the latter’sS matrix following II,
and we shall find that it coincides (up to a scalar factor) with Eq. (3.8). ForM(3/8) we
haver ′ = 3, s′ = 8; hence,q ′ = q = e2iπ/3. The first positive integerp for which q ′p =
±1 is p = 3. Hence, the maximum spin isjmax= p

2 − 1= 1
2. Thus, the model contains

“charged” kinksK0 1
2
= K 1

2 0 which we denote byc, and “neutral” kinksK0 0= K 1
2

1
2

which we denote byn. Since (II 23)

ξ = 2

3

(
πγ

2π − γ
)
= 2π, (A.4)

the model contains neither breathers nor higher kinks. TheS matrix is expressed in terms of
the rapidity variabley = eπθ/ξ = eθ/2. Thec c→ c c amplitude is given by (II 43)–(II 45)

�
�
�
�

0
@
@
@
@
0 = y

2

q
− q

y2 −
1

q
+ q + y

2

q5 −
q5

y2 −
1

q
+ q = 2i

√
3− 2 sinhθ.

1
2

1
2

(A.5)

Then n→ n n amplitude is given by (II 46), (II 40)

�
�
�
�

0
@
@
@
@
0 = q

6y2+ y2q8− q8− q4y2+ y2− q10y2+ y4q2− y2q2

y2q5
0

0

= 2i
√

3+ 2 sinhθ. (A.6)

Thec c→ n n andn n→ c c amplitudes are equal, are are given by (II 48)

�
�
�
�

0
@
@
@
@
0 = i (q

4− 1)(y2− 1)

q2y
= 2
√

3 sinh
θ

2
.

1
2

0

(A.7)

Finally, then c forward scattering and reflection amplitudes are given by (II 46), (II 40)

�
�
�
�

0
@
@
@
@

1
2 = (y

2+ q6)(y2− 1)

y2q3 = 2 sinhθ
0

1
2

(A.8)

and

�
�
�
�

1
2

@
@
@
@
0 =− (q

4− 1)(y2+ q6)

yq5
= 2i
√

3 cosh
θ

2
,

1
2

1
2

(A.9)

respectively. Identifyingn and c as the Boson and Fermion (respectively) of the SYL
model, we see that the above amplitudes coincide with those in 2(sinhθ)R(θ), whereR(θ)
is the matrix (3.8). That is, the SYL model is indeed a restriction of the ZMS model,
corresponding to the(1,5) perturbation ofM(3/8).
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Appendix B. Solution of constraint Eq. (4.24)

Here we solve Eq. (4.24), which for simplicity we now write as(
A+A− −B2)∣∣

θ=iv= 0. (B.1)

Using the definitions ofA+,A−, andB given in (4.15), (4.16), and introducing the variable
t ≡ sin2 v

2, Eq. (B.1) can be brought to the form(
t − 1

2

)[
t2+ t

(
−1+

√
3

2
+ e−2φ

(
3

4
−
√

3

2

))
+ 7

16
−
√

3

4
+ e−2φ

(√
3

2
− 7

8

)
+ e−4φ

(
7

16
−
√

3

4

)]
= 0. (B.2)

We discard the solutiont = 1
2, which corresponds to a fixed value ofv (and hence,b). The

two remaining solutions aret = 1
4(γ ∓

√
∆), where

γ = 2−√3+ e−2φ
(√

3− 3

2

)
,

∆= e−2φ(2−√3)+ e−4φ
(√

3− 7

4

)
. (B.3)

In terms of the parameterζ defined by

cosζ = 1− e−2φ
(

1−
√

3

2

)
, (B.4)

we have

γ = 2−√3cosζ, ∆= sinζ ; (B.5)

and therefore,

t = 1

2

[
1− cos

(
ζ ∓ π

6

)]
. (B.6)

Finally, recalling the definitiont = sin2 v
2, we arrive at the remarkably simple result

ζ = v ± π
6
, (B.7)

which is quoted in text (4.25).
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