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Abstract

We study the ultraviolet asymptotics in non-simply laced affine Toda theories considering them as perturbed non-affine
Toda theories, which possess the extended conformal symmetry. We calculate the reflection amplitudes, in non-affine Toda
theories and use them to derive the quantization condition for the vacuum wave function, describing zero-mode dynamics.
The solution of this quantization conditions for the ground state energy determines the UV asymptotics of the effective

Ž .central charge. These asymptotics are in a good agreement with Thermodynamic Bethe Ansatz TBA results. To make the
comparison with TBA possible, we give the exact relations between parameters of the action and masses of particles as well
as the bulk free energies for non-simply laced affine Toda theories. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.25.Hf; 11.55.Ds

1. Introduction

There is a large class of massive 2D integrable
Ž .quantum field theories IQFTs , which can be con-

Ž .sidered as perturbed conformal field theories CFTs
w x Ž .1 . The ultraviolet UV behavior of these IQFTs is
encoded in the CFT data while their long distance
properties are defined by the S-matrix data. If the
basic CFT admits the representation of the primary
fields of full symmetry algebra in terms of the
exponential fields the CFT data include ‘‘reflection

amplitudes’’. These functions define the linear trans-
formations between different exponential fields, cor-
responding to the same primary field. Reflection
amplitudes play the crucial role for the calculation of

w xthe one point functions 2 as well as for the descrip-
w xtion of the zero mode dynamics 3–5 in integrable

perturbed CFTs. In particular, the zero mode dynam-
ics determines the UV asymptotics of the ground

Ž . Žstate energy E R or effective central charge
Ž ..c R for the system on the circle of size R. Theeff

Ž .function c R admits in this case the UV serieseff

0370-2693r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0370-2693 00 00417-2
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Ž .expansion in the inverse powers of log 1rR . The
solution of the quantization condition for the vacuum

Žwave function which can be written in terms of the
.reflection amplitudes , supplemented with the exact

relations between the parameters of the action and
the masses of the particles determines all logarithmic
terms in this UV expansion.

Ž .The effective central charge c R in IQFT caneff

be calculated independently from the S-matrix data
w xusing the TBA method 6,7 . At small R its asymp-

totics can be compared with that following from the
CFT data. In the case when the basic CFT is known
the agreement of both approaches can be considered
as nontrivial test for the S-matrix amplitudes in
IQFT. The corresponding analysis based on the both
approaches was previously done for the sinh-Gordon
w x w x3 , super-symmetric sinh-Gorgon, Bullough-Dodd 4
models and simply-laced affine Toda field theories
Ž . w xATFTs 5 .

In this paper we study the UV behavior of the
effective central charge in ATFTs associated with
non-simply laced Lie algebras. These IQFTs have
two different classical limits. Namely, the weak and
strong coupling limits correspond to the dual pairs of
affine Toda theories. As a result, the mass ratios in
these IQFTs depend on the coupling constant and
flow from the classical values characteristic for Lie
algebra G 1 to the same values for the dual algebra

k w xG 8 . The number of particles in ATFTs is equal
to the rank r of G. For large r the numerical
analysis of TBA equations, especially in the UV
region, becomes rather complicated. The analytical

w xapproach to the TBA equations 10,11 does not
give, at present, the regular UV expansion. So, it is
useful to have the full logarithmic expansion for

Ž .c R following from CFT data. The agreement ofeff

this expansion with the TBA results confirms the
S-matrix as well as the relations between the parame-
ters of the action and masses of particles in non-sim-
ply laced ATFT.

The remarkable feature of ATFT is that effective
central charge calculated from the CFT data with

Žsubtracted bulk free energy term like in TBA ap-

1 Throughout the paper, we denote an untwisted algebra as G,
while Gk refers to a twisted one.

.proach gives a good agreement with the TBA re-
Ž Ž ..sults even outside the UV region at R;OO 1 . This

‘‘experimental’’ fact still needs the explanation.
The rest of the paper is organized as follows.

After introduction of some basic notations we give
the exact relations between the parameters of the
action and masses of particles in non-simply laced

w xATFTs. Then following the procedure of Ref. 5 , we
obtain the reflection amplitudes and quantization
conditions for the wave function, describing the vac-
uum zero mode dynamics. Using these results we
calculate the UV asymptotics of the effective central
charges for ATFTs and compare these asymptotics
with numerical data following from TBA equations.
We omit here the details, which can be found in Ref.
w x5 , devoted to the analysis of UV asymptotics in
simply laced ATFTs.

2. Mass-m relations and reflection amplitudes

The ATFTs corresponding to Lie algebra G is
described by the action

r1 22 b e Pw b e Pwi 0AAs d x E w q m e qm e ,Ž . ÝH m i 08p is1

1Ž .

where e , is1, . . . ,r are the simple roots of the Liei

algebra G of rank r and ye is a maximal root,0

satisfying the relation:

r

n e s0, n s1. 2Ž .Ý i i 0
is0

Non-simply laced ATFTs have standard simple roots
with e2 s2 and nonstandard simple roots with e2 'i i

2Ž .j /2 . We choose the corresponding parameters
Ž . X Žm as m for standard roots and m for nonstandardi

. 2ones respectively .
In the case of non-simply laced ATFTs, the exact

mass ratios are different from the classical ones and

2 We choose the convention that the length squared of the long
roots are four for C Ž1. and two for the other untwisted algebras.r
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w xget quantum corrections 8,9 . To describe the spec-
trum it is convenient to introduce the notations:

b2 hqb2 hk

Bs , Hs , 3Ž .2 21qb 1qb

where h and hk are Coxeter and dual Coxeter
numbers of the algebra. Then the spectrum of ATFTs
can be expressed in terms of one mass parameter m
as:

Ž1.B : M sm , M s2msin p arH ,Ž .r r a

as1,2, . . . ,ry1
Ž1.C : M s2msin p arH , as1,2, . . . ,rŽ .r a

Ž1.G : M sm , M s2mcos p 1r3y1rHŽ .Ž .2 1 2

Ž1.F : M sm ,4 1

M s2mcos p 1r3y1rH ,Ž .Ž .2

M s2mcos p 1r6y1rH ,Ž .Ž .3

M s2 M cos prH . 4Ž . Ž .4 2

The relation between the parameter m in the above
Ž .spectra and the parameters m in the action 1 cani

Žbe obtained by Bethe Ansatz method see for exam-
w x.ple 12,13 . The corresponding analysis gives:

r
ni2 2ypm g 1qe b r2Ž .Ł i i

is0

2Ž .2 H 1qbmk G 1yB BŽ .
s G G 1q ,ž / ž /2 H H

5Ž .

Ž . Ž . Ž . Ž .where, as usual g x sG x rG 1yx , and k G
is a function depending on the algebra:

2y2r H 22 Br H
Ž1. Ž1.k B s , k C s ,Ž . Ž .r r

G 1rH G 1rHŽ . Ž .

G 2r3Ž .
Ž1.k G s ,Ž .2 2 G 1r2 G 1r6q1rHŽ . Ž .

G 2r3Ž .
Ž1.k F s . 6Ž .Ž .4 2 G 1r2 G 1r6q1rHŽ . Ž .

The similar relations for the dual ATFTs can be
Ž . Ž .easily obtained from Eqs. 5 and 6 if we use the

duality relations for the parameters m and mk
i i

corresponding to the dual pairs of ATFTs:

e 2 b2r22 2 ie b 2i kpm g s pm g . 7Ž .i i 2 2ž / ž /ž /2 e bi

The ATFTs can be considered as perturbed CFTs.
Without the last term with the zeroth root e , the0

Ž .action in Eq. 1 describes the non-affine Toda the-
Ž .ory NATT , which is conformal. To describe the

generator of conformal symmetry we introduce the
complex coordinates zsx q ix and zsx y ix1 2 1 2

and vector:

1 1
kQsbrq r , rs a ,Ý

b 2 a)0

1
k kr s a , 8Ž .Ý

2 a)0

Ž k.where the sum in definition of Weyl vector r r
Ž k.runs over all positive roots a co-roots a of G.

The holomorphic stress-energy tensor

21 2T z sy E w qQPE w 9Ž . Ž . Ž .z z2

ensures the local conformal invariance of the NATT
with the central charge csrq12Q2.

Besides the conformal invariance the NATT pos-
Ž .sesses extended symmetry generated by W G -alge-

Ž .bra. The full chiral W G -algebra contains r holo-
Ž . Ž Ž . Ž ..morphic fields W z W z sT z with spins jj 2

which follows the exponents of Lie algebra G. The
Ž .primary fields F of W G algebra are classified byw

r eigenvalues w , js1, . . . ,r of the operator Wj j,0
Ž Ž ..the zeroth Fourier component of the current W z :j

W F sw F , W F s0, n)0. 10Ž .j ,0 w j w j ,n w

The exponential fields

V x seŽQqa.Pw Ž x . 11Ž . Ž .a

are spinless conformal primary fields with dimen-
Ž . Ž . Ž 2 2 .sions D a sw a s Q ya r2. The fields V2 a

are also primary with respect to all chiral algebra
Ž .W G with the eigenvalues w depending on a. Thej

Ž .functions w a , which define the representation ofj
Ž .W G -algebra possess the symmetry with respect to

w xthe Weyl group WW of Lie algebra G 14,15 , i.e.



( )C. Ahn et al.rPhysics Letters B 481 2000 114–124 117

Ž . Ž .w sa sw a ; for any sgWW . It means that theˆ ˆj j

fields V for different sgWW are reflection imagesˆs aˆ
of each other and are related by the linear transfor-
mation:

V x sR a V x , 12Ž . Ž . Ž . Ž .a s s aˆ ˆ

Ž .where R a is the ‘‘reflection amplitude’’.ŝ

This function plays an important role in the analy-
sis of perturbed CFTs. It can be calculated by the

ŽCFT methods exactly in the same way as it was
w x.done for the simply laced NATTs in 5 and has the

form:

As aˆ
R a s , 13Ž . Ž .ŝ Aa

where

r
kv Parbi2 2A s pm g e b r2Ž .Ła i i

is1

= G 1ya krb G 1ya b , 14Ž . Ž . Ž .Ł a a
a)0

here a saPa , a ksaPa k and vectors v k area a i

the co-weights of G, satisfying the condition v k Pi

e sdj i j

In following we will be interested in the values of
Ž .function A P sA . We note that in the semiclas-i P
Ž .sical limit b™0 with Prb fixed the functions

Ž .A sP coincide with the amplitudes describing theˆ
asymptotics of the wave function of quantum me-

Ž . Žchanical non-affine Toda chain 16 see for example
w x.16 .

3. Quantization condition and UV expansion

Ž .Function A P plays an important role in study
of quantum mechanical problem for zero modes

dx2p 1
w s w x , 15Ž . Ž .H0 2p0

Ž .of the fields w x defined on an infinite cylinder of
circumference 2p with coordinate x along the2

cylinder playing the role of imaginary time. In the
semiclassical limit b™0, where one can neglect the

Ž .oscillator modes of w x , the Schrodinger equation¨
governing the zero-mode dynamics is given by:

rr
2 b e Pwi 0y y= q 2pm e C wŽ .Ýw i P 0012 is1

sE C w 16Ž . Ž .0 P 0

with the energy

r
2E sy qP , 17Ž .0 12

where the momentum P is a real vector. The full
quantum effect can be implemented simply by intro-
ducing the exact reflection amplitudes which take

w xinto account also non-zero-mode contributions 3 .
Ž .The wave function C w in the asymptoticP 0

Ž .region Weyl chamber can be found by using the
w xsame arguments as was given in 5 for simply laced

NATTs. The only difference is that there are now
two kinds of roots with different lengths. Namely,
each exponential term m eb e i w 0 in the Hamiltoniani

can be considered as a potential wall normal to the ei

direction. An incident wave is reflected by this wall
to the wave with the Weyl-reflected momentum. The
phase change corresponding to this process should
be the same as in Liouville field theory. By consider-
ing the reflections from all potential walls, we find

Ž .that the wave function C w can be written as aP 0

superposition of plane waves with the momenta
forming the orbit of the Weyl group WW of Lie
algebra G,

i ŝPPw 0C w , A sP e , 18Ž . Ž . Ž .ˆÝP 0
sgWWˆ

where

r
ki v PPrbi2 2A P s pm g e b r2Ž . Ž .Ł i i

is1

= G 1y iP b G 1y iP krb .Ž . Ž .Ł a a
a)0

19Ž .

For the Weyl element s , associated with the simpleî
Ž . Ž .root e , the ratio A s P rA P should be given byˆi i
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Ž . w xthe reflection amplitude S e , P 3 of the LiouvilleL i

field theory

A s PŽ .î
sS e , PŽ .L iA PŽ .

kyi PPe rbi2 2s pm g e b r2Ž .i i

=
G 1q iPPe b G 1q iPPe krbŽ . Ž .i i

.kG 1y iPPe b G 1y iPPe rbŽ . Ž .i i

20Ž .

Ž .One can easily check that function A P satisfies
this functional equation. With this function one can
proceed to obtain the scaling functions in the UV
region of the ATFTs defined on a cylinder with
circumference R™0. The additional term in the
ATFT Lagrangian corresponding to the zeroth root
e introduces new potential wall in that direction.0

With this term the Weyl chamber is now closed and
the momentum P of the wave function should be
quantized. It depends on the size of the enclosed

Ž .region, which is proportional to log 1rR . This
Ž .quantized momentum P R defines the scaling func-

Ž .tion c in the UV region by Eq. 17 .eff

It is convenient to rescale back the size of the
system from R to 2p . This leads to the following

Ž .rescaling of the parameters m in the action 1 :i

2qb2e 2
iR

m™n sm . 21Ž .i i i ž /2p

In the UV limit the size of enclosed region is rather
big and we can neglect the subtleties of interaction
Ž .which give only exponential corrections taking into
account only the phase shifts coming from the reflec-
tions of the waves by the potential walls. Since the
additional potential term is not different from the

Ž .others, the amplitude A sP with the momentum sPˆ ˆ
Ž .where s is an arbitrary element of Weyl group hasˆ

Ž .to satisfy also the reflection relation 20 with re-
spect to the zeroth root e0

A s sPˆ ˆŽ .0
sS e ,sP . 22Ž .Ž .ˆL 0A sPŽ .ˆ

Ž . Ž . Ž .Inserting Eqs. 19 and 20 into Eq. 22 , we obtain
Žthe condition for P. After some transformations see

w x .Ref. 5 for details , it can be written in the form:

ki PPse rbˆr 0ni2 2pn g e b r2Ž .Ž .Ł i i
is0

kaPseˆ 0GG a , PŽ .
= s1, 23Ž .Ł

GG a ,yPŽ .a)0

Ž .where n are defined by Eq. 21 andi

GG a , P sG 1y iP b G 1y iP krb .Ž . Ž . Ž .a a

Ž .For the lowest energy state, Eq. 23 reduces to the
following equation:

LPs2pry ad a , P , 24Ž . Ž .Ý
a)0

where

2 R
2 kLsy hqb h lnŽ .

b 2p

r1 ni2 2y ln pm g e b r2 , 25Ž .Ž .Ž .Ł i ib is0

and

G 1q iP b G 1q iP krbŽ . Ž .a a
d a , P syilog .Ž .

kG 1y iP b G 1y iP rbŽ . Ž .a a

26Ž .

This is the quantization condition for the momentum
P in the UV region R™0. The ground state energy
of the system on the circle of size R is then given by

p ceff 2E R sy with c sry12 P , 27Ž . Ž .eff6R

Ž .where P is the solution of Eq. 24 .
Ž .In the UV region we can solve Eq. 24 perturba-

Ž .tively by expanding d a , P in powers of P ,a

d a , P sd a ,b P qd a ,b P 3Ž . Ž . Ž .1 a 3 a

qd a ,b P 5 PPP , 28Ž . Ž .5 a
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Ž . Ž .where the coefficients d a ,b and d a ,b , ss3,51 s

are:

2
d a ,b sy2g bq ,Ž .1 E 2ž /a b

sy3 s2 22 sd a ,b s y P z s b q .Ž . Ž . Ž .s 2ž /ž /s a b

29Ž .

Ž .aŽ .b k abUsing the relations: Ý a a sh d , anda ) 0
Ž .aŽ k. b abÝ a a shd , we obtain that:a ) 0

lPs2pry d a ,b a P 3Ž .Ý 3 a
a)0

y d a ,b a P 5 y PPP ,Ž .Ý 5 a
a)0

with

lsLy2g bhkqhrb 'LyL . 30Ž .Ž .E 0

The above equation can be solved iteratively in
Ž .powers of 1rl. Inserting the solution into Eq. 27 ,

we find:

22p
kc sryr hq1 hŽ .eff ž /l

58 2p
k 3 3q z 3 C G b qC G rbŽ . Ž . Ž .4 4 ž /p l

24
k 5 5y z 5 C G b qC G rbŽ . Ž . Ž .6 65p

=

72p
y8qOO l , 31Ž . Ž .ž /l

Ž .where the coefficients C G are defined as:

C G s r r k
3 , C G k s r 4 ,Ž . Ž .Ý Ý4 a a 4 a

a)0 a)0

C G s r r k
5 , C G k s r 6 .Ž . Ž .Ý Ý6 a a 6 a

a)0 a)0

For simply laced algebras, these coefficients were
w xcalculated in 5 and have the values:

1Ž1. 2 2 2C A s n n y1 2n y3 ,Ž . Ž .Ž .4 ny1 60

1Ž1. 2 2 2 2C A s n n y1 n y2 3n y5 ,Ž . Ž . Ž .Ž .6 ny1 168

1Ž1. 3 2C D s 16n y45n q27nq8Ž .Ž .4 n 30

=n ny1 2ny1 ,Ž . Ž .
1Ž1. 5 4 3C D s 48n y213n q262nŽŽ .6 n 42

q6n2 y101ny32 n ny1 2ny1 .. Ž . Ž .
32Ž .

For the non-simply laced algebras BŽ1. and C Ž1., wen n

can express the results through these values. Namely,
we find:

1Ž1. Ž1.C B s C A ,Ž . Ž .i n i 2 ny12

C BŽ1. k sC DŽ1. ,Ž . Ž .i n i nq1r2

C C Ž1. sC DŽ1. ,Ž . Ž .i n i nq1

C C Ž1. k sC DŽ1. , is4,6 . 33Ž . Ž .Ž . Ž .i n i yn

For exceptional algebras GŽ1. and F Ž1., we obtain:2 4

1Ž1. Ž1.C G s C D s392,Ž . Ž .4 2 4 43

980Ž1. kC G s ,Ž .4 2 9

1Ž1. Ž1.C G s C D s7386,Ž . Ž .6 2 6 43

199516Ž1. kC G s ,Ž .6 2 243

1Ž1. Ž1.C F s C E s27378,Ž . Ž .4 4 4 62

22815Ž1. kC F s ,Ž .4 4 2

1Ž1. Ž1.C F s C E s2203578,Ž . Ž .6 4 6 62

4052763Ž1. kC F s . 34Ž .Ž .6 4 8

We note that above equations relating coefficients
Ž .C G for different Lie algebras follow from thei

similar exact relations between the ground state ener-
Ž .gies e G of quantum affine Toda chains associated
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with these Lie algebras. These exact relations are
valid if the parameters m, m

X for non-simply laced
Lie algebras and corresponding parameter m forsl

simply laced ones satisfy the condition:
hyz X 2 z h Ž k .2 hy hŽ .m 2m rj sm , where zs .sl

22y j

4. Comparison with TBA results

The effective central charge calculated above from
Ž .the CFT data reflection amplitudes can be com-

pared with the same function determined from nu-
merical solution of the TBA equations for ATFTs.
Namely:

r 3RmiŽTBA .c R sŽ . Ýeff 2pis1

= Ž .ye u , Ricoshu log 1qe du , 35Ž . Ž .H
Ž . Ž .where functions e u , R is1, . . . ,r satisfy thei

system of r coupled integral equations:

m Rcoshuse u , RŽ .i i
r

Xq w uyuŽ .Ý H i j
js1

=
du

X
XŽ .ye u , Rilog 1qe , 36Ž . Ž .

2p

with the kernels w , equal to the logarithmic deriva-i j
Ž .tives of the S-matrices S u of ATFTs, conjecturedi j

w xin 8,9 .

ŽTBA .Ž .The function E R defined from the TBA
Ž .equations differs from the ground state energy E R

of the system on the circle of size R by the bulk
ŽTBA .Ž . Ž .term: E R sE R y fR, where f is a specific

w xbulk free energy 7 . To compare the same functions
Ž .we should subtract this term from the function E R

Ž .defined by Eq. 31 i.e.

6R2
ŽTBA . ŽRA .c R sc R q f G . 37Ž . Ž . Ž . Ž .eff eff

p

Ž .The specific bulk free energy f G for non-simply
laced ATFTs can be calculated by the Bethe Ansatz
method with the result:

2m sin prHŽ .
f G s ,Ž .

8sin p BrH sin p 1yB rHŽ . Ž .Ž .
GsBŽ1. ,C Ž1. ,r r

f GŽ .
2m cos p 1r3y1rHŽ .Ž .

s ,
16cos pr6 sin p BrH sin p 1yB rHŽ . Ž . Ž .Ž .

GsGŽ1. ,F Ž1. . 38Ž .2 4

Ž .The contribution of bulk term f G becomes quite
Ž .essential at R;OO 1 .

Ž .The TBA equations 36 were solved numerically
Ž1. Ž Ž1.. Ž1.for non-simply laced algebras, B sC , B ,2 2 3

BŽ1., C Ž1., C Ž1., GŽ1. and F Ž1.. The effective central4 3 4 2 4
ŽTBA .Ž . Ž .charge c R was then computed from Eq. 35eff

for many different values of parameter mR. After
taking into account the bulk term, the numerical

Table 1
LŽRA . versus LŽTBA . for non-simply laced ATFTs0 0

B

0.3 0.4 0.5 0.6 0.7 0.8
ŽRA . Ž1.Ž .L C 11.5882 11.3111 11.5443 12.2537 13.6035 16.1620 2
ŽTBA . Ž1.Ž .L C 11.5882 11.3111 11.5443 12.2537 13.6035 16.1620 2
ŽRA . Ž1.Ž .L C 16.6266 16.0240 16.1620 16.9666 18.6419 21.93420 3
ŽTBA . Ž1.Ž .L C 16.6266 16.0240 16.1620 16.9666 18.6419 21.93190 3
ŽRA . Ž1.Ž .L C 21.6649 20.7370 20.7798 21.6796 23.6803 27.70640 4
ŽTBA . Ž1.Ž .L C 21.6649 20.7370 20.7798 21.6795 23.6802 27.50 4
ŽRA . Ž1.Ž .L B 14.3593 13.1962 12.6987 12.7250 13.3516 15.00760 3
ŽTBA . Ž1.Ž .L B 14.3589 13.1962 12.6987 12.7250 13.3516 15.00760 3
ŽRA . Ž1.Ž .L B 19.3977 17.9092 17.3165 17.4379 18.3900 20.77980 4
ŽTBA . Ž1.Ž .L B 19.32 17.9089 17.3165 17.4379 18.3900 20.77920 4
ŽRA . Ž1.Ž .L G 13.6035 12.2537 11.5443 11.3111 11.5882 12.69870 2
ŽTBA . Ž1.Ž .L G 13.3 12.2529 11.5443 11.3111 11.5882 12.69870 2
ŽRA . Ž1.Ž .L F 27.9629 25.4499 24.2431 24.0360 24.9398 27.70640 4
ŽTBA . Ž1.Ž .L F 25.1 24.238 24.0360 24.9398 27.50 4
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Table 2
cŽRA . versus cŽTBA . for non-simply laced ATFTs5 5

B

0.3 0.4 0.5 0.6 0.7 0.8
ŽRA . Ž1.Ž .c C 1569.60 124216 1438.68 2183.98 3961.81 8713.175 2
ŽTBA . Ž1.Ž .c C 1567. 1240. 1437. 2182. 3959. 8708.5 2
ŽRA . Ž1.Ž .c C 15018.6 10858.7 11399.2 16288.0 28809.0 62845.75 3
ŽTBA . Ž1.Ž .c C 15000 10840 11380 16270 28790 680005 3
ŽRA . Ž1.Ž .c C 76141.1 52782.9 52563.7 72394.9 125955. 273273.5 4
ŽTBA . Ž1.Ž .c C 76100 52700 52500 72300 1259905 4
ŽRA . Ž1.Ž .c B 8260.97 4765.97 3488.60 3541.95 5151.97 10444.45 3
ŽTBA . Ž1.Ž .c B 8500 4761. 3484. 3538. 5147. 10439.5 3
ŽRA . Ž1.Ž .c B 48261.8 28350.9 21550.3 22970.0 34594.6 71159.45 4
ŽTBA . Ž1.Ž .c B 29000 21530 22940 34560 730005 4
ŽRA . Ž1.Ž .c G 4370.29 2385.82 1533.23 1265.48 1524.65 2816.475 2
ŽTBA . Ž1.Ž .c G 2600 1532. 1264. 1523. 2814.5 2
ŽRA . Ž1.Ž .c F 308495. 172966. 118723. 109767. 147970. 289824.5 4
ŽTBA . Ž1.Ž .c F 160000 110055. 148248.5 4

ŽTBA .Ž .solution for c R was fitted with the expansioneff
Ž . Ž .31 neglecting higher order terms in 1rl :

22p
ŽRA . kc R sryr hq1 hŽ . Ž .eff ž /l

5 72p 2p
qc qc , 39Ž .5 7ž / ž /l l

with fitting parameters L , c and c , where parame-0 5 7
Ž .ter L is defined by Eq. 30 . The exact values of0

these parameters can be easily identified from Eqs.
Ž . Ž . Ž .30 and 31 . To compare the expansion 39 with

Ž .TBA results we use the relations 5 between param-
eters m in the action and the parameter m charac-i

terizing the spectrum of particles. It gives the follow-
Ž . Ž .ing expression for function L R in Eqs. 30 :

2
2 kLsy hqb hŽ .

b

=
mR 1yB B

ln k G G G 1qŽ . ž / ž /4p H H

2 z2 h 2q ln b j r2 . 40Ž .Ž .Ž .
b

Table 3
cŽRA . versus cŽTBA . for non-simply laced ATFTs7 7

B

0.3 0.4 0.5 0.6 0.7 0.8
ŽRA . Ž1.Ž .c C y12262.9 y6566.01 y9109.78 y21843.4 y64594.2 y247955.7 2
ŽTBA . Ž1.Ž .c C y14000 y8000 y10600 y23800 y68000 y2560007 2
ŽRA . Ž1.Ž .c C y304830. y137513. y148031. y324132. y944077. y36174807 3
ŽTBA . Ž1.Ž .c C y330000 y160000 y170000 y350000 y9900007 3
ŽRA . Ž1.Ž .c C y2878340 y1216910 y1148970 y2366240 y6815270 y260793007 4
ŽTBA . Ž1.Ž .c C y3000000 y1400000 y1300000 y2600000 y70000007 4
ŽRA . Ž1.Ž .c B y174026. y60330.1 y29061.1 y30298.6 y76073.1 y264814.7 3
ŽTBA . Ž1.Ž .c B y65000 y33000 y34000 y76000 y2700007 3
ŽRA . Ž1.Ž .c B y1847280 y650082. y338009. y404020. y1004420 y37696807 4
ŽTBA . Ž1.Ž .c B y380000 y450000 y1100000 y22000007 4
ŽRA . Ž1.Ž .c G y97474.0 y32718.2 y13002.5 y7830.99 y12225.2 y41991.47 2
ŽTBA . Ž1.Ž .c G y14000 y9000 y14000 y440007 2
ŽRA . Ž1.Ž .c F y2913070 y9911730 y4293750 y3478610 y7094660 y257924007 4
ŽTBA .Ž Ž1..c F y3410000 y70900007 4
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ŽTBA . Ž1. Ž1. Ž1. Ž1. Ž1. Ž Ž1. Ž1.Fig. 1. Plot of c for C , C , B , G and F ATFTs at Bs0.5. We omit in the figure C and B cases not to make it tooeff 2 3 4 2 4 4 3
. ŽRA . Ž1.complicated. As an example, we also display c for C calculated without taking into account the bulk term. The difference betweeneff 2

ŽTBA . Ž1. Ž .this function and c gives the bulk free energy of C ATFT according to Eq. 37 .eff 2

Tables 1–3 show the values of parameters L , c0 5

and c obtained numerically from TBA equations7
Ž Ž ..denoted with the superscript TBA and those ob-

Ž Ž . Ž ..tained analytically Eqs. 30 and 31 from reflec-
Ž Ž ..tion amplitudes denoted with the superscript RA

for C Ž1., C Ž1., C Ž1., BŽ1., BŽ1., GŽ1. and F Ž1. ATFTs2 3 4 3 4 2 4

with different values of the parameter B. We see that
Žboth data are in excellent agreement. Relatively

poor accuracy for c is mainly due to the limitation7

of numerical accuracy and the influence of higher
Ž Ž y8 .. Ž . .order term OO l in the expansion 39 . This

agreement supports the approach based on the reflec-
tion amplitudes, m-m relations and quantization con-
ditions as well as the S-matrices for non-simply
laced ATFTs.

ŽTBA .Ž .In Fig. 1, we plot the functions c R andeff
ŽRA .Ž .c R for different ATFTs setting ms1. Theeff

first function is computed numerically from TBA
equations. The second one is calculated using Eqs.
Ž . Ž .24 and 27 , based on the reflection amplitudes,

with taking into account the bulk free energy term
Ž .according to Eq. 37 . For all models, the two curves

are almost identical without essential difference in
Ž .the graphs even at R;OO 1 . This good agreement

outside the UV region looks not to be accidental.
However, at present, we have no satisfactory expla-
nation of this interesting phenomena in ATFTs.

5. Concluding remarks

In the main part of this paper we considered the
UV asymptotics of the effective central charges in
ATFTs. The most important CFT data, which we
used for this analysis were the reflection amplitudes
Ž .13 of NATTs. It was mentioned in Introduction,
that these functions play also a crucial role in the
calculation of the one point functions in perturbed
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CFT. The one point functions of the exponential
fields in ATFTs:

² :TT a s expaPw 41Ž . Ž .

can be reconstructed from from the same reflection
amplitudes. It follows from the results of the paper
w x Ž .2 that functions 41 satisfy the functional equa-

Ž .tions similar to the relations 12 for the vertex
operators. These equations together with analyticity
and symmetry conditions fix one point functions in
perturbed CFTs. One can find the solution of these
functional equations with proper analyticity proper-
ties and respecting all symmetries of extended Dynkin
diagram of Lie algebra G. This solution is a natural
generalization to the non-simply laced case of the
one point function for ADE series of ATFTs calcu-

w xlated in 17 and can be written in the form:

22 QPayamk G 1yB BŽ .
TT a s G G 1qŽ . ž / ž /2 H H

=
r

kyv Parbi2 2ypm g 1qe b r2Ž .Ł i i
is1

=
dt

2 y2 texp a e yFF a ,t , 42Ž . Ž .H
t

where

FF a , tŽ .

sinh a bt sinh ba y 2 bQ q 1 q b 2 H t sinh b 2a 2r2 q 1 tŽ .Ž . Ž .Ž .Ž .Ž .a a a
s .Ý 2 2 2sinh tsinh b a tr2 sinh 1 q b HtŽ .Ž .Ž .

a)0

43Ž .

Ž .The one point function TT a can be used for the
analysis of ATFTs. In particular, it contains the

Ž .information about the bulk free energy f G , which
was calculated independently by Bethe Ansatz

Ž . Ž .method. One can easily derive from Eqs. 1 and 5
that:

n f GŽ .i
sm TT be . 44Ž . Ž .i i2H 1qbŽ .

Ž . Ž .Using Eq. 42 for function TT a one finds:

y4pg 1qe2 b2r2 n f GŽ .Ž .i i

22H 1qb mk GŽ . Ž .Ž .

21yB B
s G G 1qž / ž /H H

=
dt 2 y2 texp be e yFF be ,t . 45Ž . Ž . Ž .H i it

The integral in the exponent can be calculated and
Ž .results coincides with Eq. 38 . This gives the non-

Ž .perturbative test to the one point function TT a . In
Ž . Žparticular, taking the limit b™0 in Eq. 45 and the

.dual limit one can derive the amusing relations for
gamma-functions associated with Lie algebras G. It
is convenient to introduce the integers nksn e2r2i i i

is0, . . . ,r. Then these relations can be written as:

ye Pa k
ikg aPr rhŽ .Ž .Ł

a)0

y1rhr
nik ksn n , 46Ž .Ž .Łi iž /

is0

and

ye kPaikg aPrrhŽ .Ž .Ł
a)0

y1rhkr
knik 2 k 2sn e r2 n e r2 . 47Ž .Ž .Łi i i iž /

is0

More detailed consideration of one point functions in
ATFTs we suppose to give in another publication.
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