View : 12 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author곽준영-
dc.date.accessioned2024-08-30T16:31:26Z-
dc.date.available2024-08-30T16:31:26Z-
dc.date.issued2024-
dc.identifier.issn1616-301X-
dc.identifier.otherOAK-35464-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/269642-
dc.description.abstract2D MoS2 has gained attention for the post-silicon material owing to its atomically thin nature and dangling bond-free surface. The bi-layer MoS2 is considered a promising material for electronic devices due to its better electrical properties than monolayer MoS2. However, the uniform growth of bi-layer MoS2 is still challenging. Herein, the uniform growth of bi-layer MoS2 is demonstrated using gas-phase alkali metal-assisted metal–organic chemical vapor deposition (GAA-MOCVD). Thanks to enhanced metal reactant diffusion length in GAA-MOCVD, the uniform growth of bi-layer MoS2 film is achieved even at fast nucleation kinetics for a shorter growth time compared to previously reported MOCVD. The bi-layer MoS2 field-effect transistors (FETs) show superior electrical properties such as sheet conductance and electron mobility than monolayer MoS2 FETs. The electron mobility of bi-layer MoS2 FETs with bismuth contacts reaches a maximum of 92.35 cm2 V−1 s−1. Using the partially grown epitaxial bi-layer (PGEB) MoS2, it is demonstrated that a photodetector showed a near-infrared photoresponse with a low dark current that is advantageous for both monolayer and bi-layer applications. The potential expansion of the growth technique to layer-by-layer growth can result in boosted performance across a wide spectrum of electronic and optoelectronic devices employing MoS2. © 2024 Wiley-VCH GmbH.-
dc.description.sponsorshipJohn Wiley and Sons Inc-
dc.languageEnglish-
dc.subject2D materials-
dc.subjectbi-layer growth-
dc.subjectgas-phase alkali metal-
dc.subjectmetal–organic chemical vapor deposition-
dc.subjecttransition metal dichalcogenides-
dc.titleDiffusion Control on the Van der Waals Surface of Monolayers for Uniform Bi-Layer MoS2 Growth-
dc.typeArticle-
dc.relation.issue23-
dc.relation.volume34-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.journaltitleAdvanced Functional Materials-
dc.identifier.doi10.1002/adfm.202312365-
dc.identifier.wosidWOS:001162709300001-
dc.identifier.scopusid2-s2.0-85185135107-
dc.author.googleKim-
dc.author.googleTae Soo-
dc.author.googleNoh-
dc.author.googleGichang-
dc.author.googleKwon-
dc.author.googleSeongdae-
dc.author.googleJi Yoon-
dc.author.googleDhakal-
dc.author.googleKrishna P.-
dc.author.googleOh-
dc.author.googleSaeyoung-
dc.author.googleChai-
dc.author.googleHyun-Jun-
dc.author.googlePark-
dc.author.googleEunpyo-
dc.author.googleIn Soo-
dc.author.googleLee-
dc.author.googleEunji-
dc.author.googleYoungbum-
dc.author.googleJaehyun-
dc.author.googleJo-
dc.author.googleMin-kyung-
dc.author.googleKang-
dc.author.googleMinsoo-
dc.author.googleCheolmin-
dc.author.googleJeongho-
dc.author.googleJeongwon-
dc.author.googleSuhyun-
dc.author.googleMingyu-
dc.author.googleYuseok-
dc.author.googleChoi-
dc.author.googleSung-Yool-
dc.author.googleSong-
dc.author.googleSeungwoo-
dc.author.googleJeong-
dc.author.googleHu Young-
dc.author.googleJeongyong-
dc.author.googleKwak-
dc.author.googleJoon Young-
dc.author.googleKibum-
dc.date.modifydate20240830140539-
Appears in Collections:
ETC > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE