View : 166 Download: 29

Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators

Title
Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators
Authors
LeeSiyeonKooHeejinKangHong SukOhKeun-HwanNamKwan Woo
Ewha Authors
남관우
SCOPUS Author ID
남관우scopus
Issue Date
2023
Journal Title
Polymers
ISSN
2073-4360JCR Link
Citation
Polymers vol. 15, no. 23
Keywords
conventional binderslithium-ion battery bindernext-generation binderspolymer
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Review
Abstract
Lithium-ion batteries (LIBs) have become indispensable energy-storage devices for various applications, ranging from portable electronics to electric vehicles and renewable energy systems. The performance and reliability of LIBs depend on several key components, including the electrodes, separators, and electrolytes. Among these, the choice of binder materials for the electrodes plays a critical role in determining the overall performance and durability of LIBs. This review introduces polymer binders that have been traditionally used in the cathode, anode, and separator materials of LIBs. Furthermore, it explores the problems identified in traditional polymer binders and examines the research trends in next-generation polymer binder materials for lithium-ion batteries as alternatives. To date, the widespread use of N-methyl-2-pyrrolidone (NMP) as a solvent in lithium battery electrode production has been a standard practice. However, recent concerns regarding its high toxicity have prompted increased environmental scrutiny and the imposition of strict chemical regulations. As a result, there is a growing urgency to explore alternatives that are both environmentally benign and safer for use in battery manufacturing. This pressing need is further underscored by the rising demand for diverse binder research within the lithium battery industry. In light of the current emphasis on sustainability and environmental responsibility, it is imperative to investigate a range of binder options that can align with the evolving landscape of green and eco-conscious battery production. In this review paper, we introduce various binder options that can align with the evolving landscape of environmentally friendly and sustainable battery production, considering the current emphasis on battery performance enhancement and environmental responsibility. © 2023 by the authors.
DOI
10.3390/polym15234477
Appears in Collections:
공과대학 > 화공신소재공학과 > Journal papers
Files in This Item:
polymers-15-04477.pdf(1.9 MB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE