View : 142 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김희선*
dc.contributor.author김도연*
dc.creator김도연*
dc.date.accessioned2024-01-22T16:31:07Z-
dc.date.available2024-01-22T16:31:07Z-
dc.date.issued2024*
dc.identifier.otherOAK-000000212486*
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000212486en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/266737-
dc.description.abstractⅠ. The role of RIPK1 in LPS-induced neuroinflammation and MPTPinduced Parkinson’s disease (PD) mouse model. In the first part of this study, I explored the role of receptor interacting protein kinase 1 (RIPK1), an initiator of necroptosis, in lipopolysaccharide (LPS)-induced neuroinflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease model mice by using RIPK1-specific inhibitors, necrostatin-1 (Nec-1) and necrostatin-1 stable (Nec-1s). Nec-1 and Nec-1s or RIPK1 small interference RNA (siRNA) inhibited the production of proinflammatory molecules such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, while they increased anti-inflammatory IL-10 in LPS-induced inflammatory or LPS/QVD (caspase inhibitor)/BV6 (IAP inhibitor)-induced necroptotic conditions of BV2 microglial cells. In addition, Nec-1 and Nec-1s inhibited the phosphorylation of RIPK1-RIPK3- mixed lineage kinase domain like pseudokinase (MLKL), cell death and the release and/or expression of damage associated molecular patterns (DAMPs) in LPS or LPS/QVD/BV6-stimulated BV2 cells. Detailed mechanistic studies showed that Nec-1 and Nec-1s exerted anti-inflammatory effects by modulating adenosine monophosphate activated protein kinase (AMPK), phosphoinositol-3-kinase (PI3K)/ protein kinase B (PKB; Akt), mitogen-activated protein kinase (MAPKs), and nuclear factor kappa B (NF-κB) signaling pathways, and antioxidant effects by modulating nuclear factor-erythroid 2-related factor (Nrf2)/ antioxidant response element (ARE) and cAMP response element-binding protein (CREB) signaling pathways in LPS-stimulated BV2 cells. The anti-neuroinflammatory effects of RIPK1 inhibitors were confirmed using in vivo models. The Nec-1 and Nec-1s inhibited microglial activation and proinflammatory gene expression by inhibiting the RIPK1 phosphorylation (p-RIPK1) in the brains of LPS-injected systemic inflammation mice model. In addition, Nec-1 and Nec-1s exerted neuroprotective and anti-inflammatory effects in MPTP-induced PD mice. I found that p-RIPK1 is mainly expressed in microglia, and thus RIPK1 may contribute to neuroinflammation and subsequent cell death of dopaminergic neurons in MPTP-induced PD model mice. These data suggest that RIPK1 is a key regulator of microglial activation in LPS-induced neuroinflammation and MPTP-induced PD mice. Ⅱ. The role of MLKL in LPS- or poly(I:C)-induced neuroinflammation and MPTP-induced PD mouse model. In the second part, I explored the role of MLKL, a final executor of necroptosis, in LPS- or polyinosinic: polycytidylic acid (poly(I:C))-induced neuroinflammation and MPTP-induced PD mice model by using MLKL-specific inhibitor necrosulfonamide (NSA). NSA or MLKL siRNA inhibited the production NO and proinflammatory cytokines such as TNF-α, IL-1β and IL-6 in LPS- or poly(I:C)-induced inflammatory conditions and LPS/QVD/BV6- or poly(I:C)/QVD/BV6-induced necroptotic conditions of BV2 microglial cells. In addition, NSA inhibited the phosphorylation of RIPK1-RIPK3-MLKL, cell death and the release and/or expression of DAMPs (HMGB1, IL-1α/β and IL-33) in LPS- or poly(I:C)-induced inflammatory/necroptotic conditions. Detailed mechanistic studies showed that NSA has anti-inflammatory properties by inhibiting phosphorylated-ERK, -p38 MAPKs, NF-κB, interferon regulatory factor (IRF)1/7 and interferon (IFN)-β and upregulating Nrf2/ARE and CREB signaling pathways in LPS- or poly(I:C)-stimulated BV2 microglial cells. The anti-neuroinflammatory effects of NSA were confirmed using in vivo models. NSA inhibited microglial, astrocyte activation and proinflammatory gene expression in the brains of LPS- or poly(I:C)-injected mice. In addition, NSA exerted neuroprotective and anti-inflammatory effects in MPTP-induced PD mice. Interestingly, I found that phosphorylated-MLKL is expressed in microglia and dopaminergic neurons, and thus MLKL may contribute to neuroinflammation and dopaminergic neuronal cell death in MPTP-induced PD model mice. These data suggest that MLKL plays an important role in LPS-or poly(I:C)-induced neuroinflammation and MPTP-induced dopaminergic neuronal cell death. ;본 연구에서는 LPS 또는 poly(I:C)로 유도된 신경염증과 MPTP로 유도된 파킨슨병 마우스 모델에 네크롭토시스(necroptosis) 억제제를 주사하여 항염증 및 신경보호 효과와 이와 관련된 분자적 메커니즘을 규명하고자 하였다. 세포실험 (in vitro)에서는, LPS, poly(I:C) 또는 LPS/Q-VD-OPh(QVD)/BV-6(BV6), poly(I:C)/QVD/BV6를 처리하여 염증 및 네크롭토시스를 유발한 BV2 소교세포에서 RIPK1 억제제인 necrostatin-1(Nec-1), necrostatin-1-stable (Nec-1s) 및 necrosulfonamide (NSA)를 처리시 염증/항염증성 인자들의 발현에 미치는 영향을 ELISA, RT-PCR 및 western blot을 통해 조사하였다. 세포 독성은 LDH assay를 통해 평가되었다. 전사인자들의 활성에 미치는 영향은 EMSA, reporter gene assay 및 western blot을 통해 관찰하였다. 생체 내 (in vivo)에서는, LPS와 poly(I:C)로 유발한 신경염증 마우스 모델과 MPTP로 유발한 파킨슨병 마우스 모델을 이용하여 Nec-1, Nec-1s, NSA가 도파민 신경세포 사멸, 소교세포 활성, 염증성 마커 발현 등에 미치는 영향을 면역조직화학 및 면역형광 염색, western blot 및 RT-PCR을 사용하여 분석하였다. 본 연구의 첫번째 파트에서는 BV2 소교세포에 LPS, LPS/QVD/BV6를 처리하여 유도된 염증 및 네크롭토시스 조건에서 RIPK1 저해제인 Nec-1, Nec-1s의 항염증효과와 기전을 분석하고 LPS 전신염증 및 MPTP 파킨슨병 마우스에서 그 효과를 검증하는 실험을 진행하였다. Nec-1, Nec-1s는 염증 및 네크롭토시스에 의해 유도되는 NO, TNF-α, IL-1β, IL-6 등 염증성 싸이토카인의 생성을 억제하고, 항염증성 사이토카인 IL-10의 생성은 증가시켰다. 이러한 결과는 RIPK1 siRNA를 이용한 유전자 녹다운 실험을 통해서 확인되었다. 또한 Nec-1과 Nec-1s는 LPS 또는 LPS/QVD/BV6로 자극된 BV2 소교세포에서 RIPK1-RIPK3-MLKL의 인산화 및 세포사멸, DAMPs (HMGB1, IL-33, IL-1α, IL-1β) 유전자 발현을 억제했다. 구체적인 메커니즘 연구에서, Nec-1과 Nec-1s는 AMPK, PI3K/Akt, MAPKs, NF-κB 신호전달 경로를 조절하여 항염증 효과를 나타내며, Nrf2/ARE 및 CREB 신호전달 경로를 조절하여 항산화 효과를 나타냄을 규명하였다. Nec-1과 Nec-1s는 LPS로 유도된 전신염증 마우스 뇌에서 RIPK1 인산화 억제를 통해 소교세포 활성화 및 염증성 유전자 발현을 억제했다. MPTP 유도된 파킨슨병 마우스 모델에서 Nec-1과 Nec-1s는 신경보호 및 항염증 효과를 나타냈다. MPTP 마우스에서 RIPK1 인산화는 소교세포에서 관찰되었으나, 도파민 신경세포에서는 관찰되지 않았으며, Nec-1과 Nec-1s에 의해 소교세포에서 RIPK1 인산화가 감소하였다. 이 결과는 소교세포에서 발현된 RIPK1 인산화가 염증을 유도하고 이를 통해 신경세포 사멸에 기여함을 시사한다. 본 연구의 두번째 파트에서는, BV2 소교세포에 LPS 또는 poly(I:C)로 유도한 염증 조건과 LPS/QVD/BV6 또는 poly(I:C)/QVD/BV6로 유도한 네크롭토시스 조건에서 MLKL 저해제인 NSA의 항염증 효과와 기전을 분석하고 전신염증 및 파킨슨병 마우스에서 그 효과를 검증하는 실험을 진행하였다. LPS 또는 poly(I:C)로 활성화된 BV2 소교세포에서 NSA는 Nec-1과 Nec-1s 보다 아주 낮은 농도에서 염증성 싸이토카인의 발현을 효과적으로 감소시킴을 발견하였다. NSA의 항염증 효과를 MLKL siRNA 실험을 통해 확인하였고, NSA는 RIPK1-RIPK3-MLKL의 인산화 및 세포사멸, DAMPs (HMGB1, IL-33, IL-1α, IL-1β) 유전자 발현을 억제했다. 구체적인 기전 분석을 통해 NSA가 LPS 또는 poly(I:C)에 의해 유도된 p-ERK/p38 MAPK, NF-κB, IRF1/7, IFN-β발현을 억제하고, Nrf2/ARE 및 CREB 신호전달 경로를 활성화함을 알 수 있었다. NSA는 LPS 또는 poly(I:C) 주사한 마우스의 뇌에서 소교세포/성상세포의 활성화 및 염증성 유전자 발현은 억제하고 항산화 효소 유전자 발현은 증가시켰으며, MPTP로 유도된 파킨슨병 마우스 모델에서 신경보호 및 항염증 효과를 나타냈다. MPTP 마우스의 뇌에서 MLKL의 인산화는 소교세포 및 도파민성 신경세포에서 모두 관찰되었으며 NSA에 의해 억제되었다. 이러한 결과는 MLKL이 신경염증 및 세포사멸에 공통적으로 기여할 가능성을 보여주고 있다. 본 연구들을 통해 신경염증 및 파킨슨병 마우스 모델에서 RIPK1 및 MLKL 억제제의 치료효과 및 작용기전을 규명하였다. 이러한 결과는 RIPK1 및 MLKL이 신경염증 및 세포사멸에 중요한 매개인자로 작용할 가능성을 나타내고 있다. 본 연구에서 규명한 Nec-1, Nec-1s와 NSA의 항염증 및 신경보호효과는 신경염증을 동반한 파킨슨병 및 기타 퇴행성 뇌질환에 잠재적인 치료 효과를 제시해 준다.*
dc.description.tableofcontentsI. Intoduction 1 A. Microglial activation 1 B. TLR3 or TLR4 signaling mediates microglial activation 4 C. Neuroinflammation and Parkinson's disease 5 D. Necroptosis and neuroinflammation 6 E. Necroptosis inhibitors; necrostatin-1, necrostatin-1 stable and necrosulfonamide 7 F. The purpose of research 14 II. Materials and methods 15 A. Animals 15 B. Reagents and antibodies 15 C. BV2 microglial cell culture 16 D. Measurement of nitrite, cytokine, and intracellular reactive oxygen species (ROS) levels 16 E. Cytotoxicity assay (LDH assay) 17 F. Detection of high mobility group protein B1 (HMGB1) release 17 G. Western blot analysis 18 H. Reverse-transcription polymerase chain reaction (RT-PCR) 18 I. Electrophoretic mobility shift assay (EMSA) 19 J. Transient transfection and luciferase assay 21 K. Drug administration to neuroinflammation and PD mouse model 21 L. Brain tissue preparation 22 M. Immunohistochemistry and immunofluorescence analysis 22 N. Statistical analysis 23 III. Results 24 PART Ⅰ. The role of RIPK1 in LPS-induced neuroinflammation and MPTP-induced PD mouse model 24 1-1. Nec-1 and Nec-1s showed anti-inflammatory effects in LPS- or LPS/QVD/BV6-stimulated BV2 microglial cells 24 1-2. Knockdown of RIPK1 recapitulated the anti-inflammatory effects of Nec-1 and Nec-1s in LPS- or LPS/QVD/BV6-stimulated BV2 cells 27 1-3. Nec-1 and Nec-1s inhibited RIPK1-RIPK3-MLKL phosphorylation and cell death in LPS or LPS/QVD/BV6-stimulated BV2 cells 27 1-4. Nec-1 and Nec-1s exerted anti-inflammatory effects by modulating AMPK, PI3K/Akt, MAPKs, and NF-κB signaling pathways in LPS-stimulated BV2 cells 35 1-5. Nec-1 and Nec-1s exerted antioxidant effects by modulating Nrf2/ARE and CREB signaling pathways in LPS-stimulated BV2 cells 43 1-6. Nec-1 and Nec-1s inhibited microglial activation and proinflammatory gene expression in the brains of LPS-injected mice 52 1-7. Nec-1 and Nec-1s inhibited the phosphorylation and expression of RIPK1-RIPK3-MLKL in the brains of LPS-injected mice 55 1-8. Nec-1 and Nec-1s exerted neuroprotective and anti-inflammatory effects in MPTP-induced PD mice 59 1-9. Nec-1 and Nec-1s reduced p-RIPK1 expression in microglia of MPTP-induced PD mice 59 PART Ⅱ. The role of MLKL in LPS- or poly(I:C)-induced neuroinflammation and MPTP-induced PD mouse model 64 2-1. Necrosulfonamide (NSA) inhibits NO, ROS, and pro-inflammatory cytokines in LPS, poly(I:C), LPS/QVD/BV6 or poly(I:C)/QVD/BV6-stimulated BV2 microglial cells 64 2-2. Knockdown of MLKL recapitulated the anti-inflammatory effects of NSA in inflammatory or necroptotic conditions induced by LPS or poly(I:C)-stimulated BV2 cells 65 2-3. NSA inhibited RIPK1-RIPK3-MLKLphosphorylation and cell death in LPS, poly(I:C), LPS/QVD/BV6 or poly(I:C)/QVD/BV6-stimulated BV2 cells 65 2-4. NSA inhibited cell death and the release and/or expression of DAMPs (HMGB1, IL-1α/β and IL-33) in LPS/QVD/BV6 or poly(I:C)/QVD/BV6-stimulated BV2 cells 72 2-5. NSA suppressed pro-inflammatory molecules and NF-κB signaling pathway in LPS- or poly(I:C)-stimulated BV2 cells 72 2-6. NSA exerted anti-inflammatory effects by modulating MAPKs, IRF-1, IRF-7, and IFN-β in LPS- or poly(I:C)-stimulated BV2 cells 81 2-7. NSA exerted antioxidant effects by modulating Nrf2/ARE and CREB signaling pathways in LPS or poly(I:C)-stimulated BV2 cells 86 2-8. NSA inhibited microglial, astrocyte activation and proinflammatory gene expression in the brains of LPS-injected mice 91 2-9. NSA inhibited the mRNA expression of RIPK1-RIPK3-MLKL and p-MLKL protein expression in microglia in the brains of LPS-injected mice 95 2-10. NSA inhibited the activation of microglia and astrocytes and the expression of proinflammatory genes in the brains of poly(I:C)-injected mice 95 2-11. NSA inhibited the expression of RIPK1-RIPK3-MLKL and p-MLKL expression in microglia in the brains of poly(I:C)-injected mice 96 2-12. NSA exerted neuroprotective effects in MPTP-induced PD mice 104 2-13. NSA exerted anti-inflammatory and antioxidant effects in MPTP-induced PD mice 104 2-14. NSA reduced p-MLKL expression in microglia and dopaminergic neurons of MPTP-induced PD mice 111 IV. Discussion 113 V. Conclusion 122 VI. References 123 국문초록 136 Acknowledgement 139*
dc.formatapplication/pdf*
dc.format.extent12901546 bytes*
dc.languageeng*
dc.publisher이화여자대학교 대학원*
dc.subjectneuroinflammation, parkinson's disease, necroptosis inhibitors*
dc.subject.ddc600*
dc.titleAnti-inflammatory and neuroprotective mechanisms of necroptosis inhibitors in neuroinflammation and Parkinson’s disease mouse models*
dc.typeDoctoral Thesis*
dc.title.translated신경염증과 파킨슨병 마우스 모델에서 네크롭토시스 억제제의 항염증 및 신경보호 메커니즘*
dc.creator.othernameKim, DoYeon*
dc.format.pagexviii, 139 p.*
dc.identifier.thesisdegreeDoctor*
dc.identifier.major대학원 의과학과*
dc.date.awarded2024. 2*
Appears in Collections:
일반대학원 > 의과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE