View : 251 Download: 0

Study on the Slant-Path Effect in the Simulation of Clear-Sky Thermal Radiance for the GK2A AMI

Title
Study on the Slant-Path Effect in the Simulation of Clear-Sky Thermal Radiance for the GK2A AMI
Authors
Lee S.J.Ahn M.-H.
Ewha Authors
안명환이수정
SCOPUS Author ID
안명환scopus; 이수정scopus
Issue Date
2023
Journal Title
Monthly Weather Review
ISSN
0027-0644JCR Link
Citation
Monthly Weather Review vol. 151, no. 4, pp. 1033 - 1044
Keywords
Radiative transferRemote sensingSoundings
Publisher
American Meteorological Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Taking the slanted satellite viewing geometry into account is important in the simulation of satellite radiances, which vary with the atmospheric conditions along the line of sight. As a first step to take the slanted satellite viewing geometry into account in the numerical weather prediction system operated in the Korean Meteorological Administration, the slant-path modeling is applied for the simulation of clear-sky thermal radiances of a geostationary satellite imager, the Advanced Meteorological Imager (AMI) on board the Geo-KOMPSAT-2A (GK2A). The observations minus simulations (O 2 B) and the Jacobians before and after the slant-path calculation are compared. Since most infrared channels of AMI are not sensitive to the atmosphere above the tropopause, the size of slant-path effect for AMI is overall smaller than the effect shown in the microwave sounders. Still, the slant-path modeling is found to have a noticeable effect on the three water vapor absorption channels of AMI peaking between 300 and 600 hPa, particularly at large satellite zenith angles and on the regions with high water vapor variabilities in the model field along the line of sight. On average, the slant-path interpolation reduces the standard deviation of O 2 B of the water vapor channels by around 2.0% on land and 1.4% over the ocean for zenith angles 408-608, and it also influences not only the shape and magnitude but also the height of the peak of the Jacobians. In addition, the retrieval experiment based on the optimal estimation also demonstrates the impact of this new approach in the retrieved moisture field, though the improvement is not as significant as shown in the simulation experiment. © 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
DOI
10.1175/MWR-D-22-0080.1
Appears in Collections:
공과대학 > 기후에너지시스템공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE