View : 520 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor현가담-
dc.contributor.author김영지-
dc.creator김영지-
dc.date.accessioned2023-06-21T16:30:02Z-
dc.date.available2023-06-21T16:30:02Z-
dc.date.issued2023-
dc.identifier.otherOAK-000000202266-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000202266en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/265051-
dc.description.abstractStructural colors and the ability to dynamically control them are widely investigated due to increasing academic and commercial interests in environmentally friendly colors, smart displays, e-readers, etc. While the field has undergone tremendous progress over the past decade, there still remains a number of hurdles that must be overcome. For plasmonic structural colors, the number of usable metals is severely limited to just a few (e.g., Ag, Au, Al, etc.). The high cost of Ag and Au must also be considered. Despite these problems, such metals are needed to produce plasmonic structural colors because other more common and cheaper metals compromise the color quality as they are optically lossy. On a separate note, one of the problems facing dynamic structural colors is that the color tuning and on/off switching mechanism are usually tied to one another. Since commercial applications requires that the two functions be independent, it is important to devise new strategies to satisfy this condition. Herein in this dissertation, I present studies that add color generating functionality to existing devices or address some of the problems mentioned above. Specifically, I discuss approaches to 1) endow and enhance semi-transparent solar cells with colors, 2) generate vivid reflective colors with lossy metals (e.g., Pt, W, etc), 3) achieve color tunability and on/off switchability with high contrast in a single reflective color pixel, and lastly 4) encode several colored-states per single pixel by tuning the state of light excitation (angle, polarization, etc) and collection. These studies provide guidelines on how to design and optimize the color generating, tuning and switching functionality in various structural color devices.;공명을 통한 장치의 성능 향상과 스마트 디스플레이, 전자종이 등의 스마트 디스플레이의 상업적인 수요가 증가함에 따라 구조색의 구현과 이를 동적으로 제어하는 것에 대한 연구가 활발하게 이루어지고 있다. 하지만, 현재까지 금속을 기반으로 하는 구조색의 경우, 플라즈모닉 특성을 이용하기 때문에 사용될 수 있는 금속의 종류가 은, 금, 알루미늄 등으로 제한되어 왔다. 또한, 구조색이 스마트 디스플레이로 적용되기 위해서는 하나의 시스템에서의 다양한 색 변화와 온/오프 스위칭이 요구되지만, 서로 밀접하게 연관된 광학 상수로 인해 이들 중 하나의 특성만을 변화시킬 수 있다는 제한이 있었다. 본 학위 논문에서는 구조체에서의 빛의 간섭을 조절하는 다음과 같은 다양한 전략을 제시한다. 1) 필름 타입의 컬러 필터를 결합하여 유기 태양전지에 심미적인 효과를 부여함과 동시에 광 변환 효율을 증가시키는 전략, 2) 손실 금속 (백금, 텅스텐, 니켈 등)을 이용하여 반사형 구조색을 구현하는 전략, 3) 전기화학적 방식으로 하나의 시스템에서 다양한 색 변화와 온/오프 스위칭을 동시에 구현할 수 있는 전략, 그리고 4) 하나의 구조에서 간단히 빛의 구성 (편광 방향, 입사 각도)과 대물렌즈의 개구수를 조절하여 여러 가지 색 가짓수를 나타내는 전략. 또한, 이들을 활용한 스마트 디스플레이와 이미지 암호화 등으로의 다양한 적용 가능성을 보여준다. 이러한 연구들은 다양한 소자에서의 색 구현, 변색 등을 위한 디자인과 이를 최적화하는 방법들을 제시한다.-
dc.description.tableofcontentsChapter Ⅰ 1 Introduction 1 A. Fundamentals of Static Structural Colors 3 A.1. Plasmonic structural colors 3 A.2. Photonic structural colors 5 A.3. Hybrid plasmonic-photonic structural colors 8 B. Dynamic Structural Colors 11 B.1. Configurationally-tunable dynamic structural colors 11 B.2. Stimuli-response dynamic structural colors 12 Chapter Ⅱ 15 Semitransparent Blue, Green, and Red Organic Solar Cells Using Color Filtering Electrodes with enhancing photovoltaic performances 15 A. Introduction 16 B. Results and Discussion 17 B.1. Structural designs of Color Filter (CF) integrated Organic Photovoltaic Cells (OPVs) 17 B.2. Optical characteristics of color filters 21 B.3. Optical characteristics of CF-integrated OPVs 24 B.4. A theoretical comparison of the absorption between the transparent and CF-integrated OPVs 29 B.5. Photovoltaic characteristics of CF-integrated OPVs 32 B.6. Diverse color generation and ability to increase Jsc values of CF-integrated OPVs 38 C. Experimental Section 43 D. Conclusions 45 Chapter Ⅲ 47 Generating Vibrant and High Contrast Reflective Structural Colors Using Lossy Metals 47 A. Introduction 48 B. Results and Discussion 49 B.1. Design to generate structural colors using lossy metals 49 B.2. Understanding of coupled waveguide-array modes 54 B.3. Analyzing the field distributions under s- and p- pol light 61 B.4. Calculation and measurement results of 0th order reflection under s- and p-pol light 64 B.5. Calculation and measurement results of cross-polarized reflection 70 C. Experimental Section 74 D. Conclusions 75 Chapter Ⅳ 77 Electrochemically Color Tunable and On/off Switchable Dynamic Color Pixels Using Single System 77 A. Introduction 78 B. Results and Discussion 79 B.1. Active color tuning mechanism 79 B.2. Operation of electrochemical structural color pixel 84 B.3. Electrochemical control of Cu morphology and corresponding optical response 90 B.4. Demonstration as display elements 105 C. Experimental Section 109 D. Conclusions 112 Chapter Ⅴ 113 Mie, Plasmonic, and Diffractive Structural Colors Encoded in a Single 1D Nanoresonator array 113 A. Introduction 114 B. Results and discussions 116 B.1. Structural design of multimode structural colors 116 B.2. Optical responses of Mie resonance under s-polarized light 119 B.3. Plasmonic resonance (p-polarized light) 126 B.4. Diffraction 127 B.5. Image encryption examples 129 C. Experimental Section 131 D. Conclusions 132 Appendices 134 Appendix 1: Analytical description of the reflection 134 Appendix 2: Dependence of propagation length on grating parameters 137 Appendix 3: Analytical calculation of waveguide-array modes in bare and Cu-filled HCGs 139 Appendix 4: Analytical study of partially Cu-filled HCGs 141 Appendix 5: Cu thickness distribution from the drift diffusion equation 144 References 147 Copyrights & Permissions 160 CV 162 Abstract (in Korean) 166 Acknowledgement (감사의 글) 167-
dc.formatapplication/pdf-
dc.format.extent7793018 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleGenerating Static and Dynamic Color Filters by Manipulation of Light Interference-
dc.typeDoctoral Thesis-
dc.format.pagexxiii, 168 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2023. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE