View : 439 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김희선-
dc.contributor.author천연주-
dc.creator천연주-
dc.date.accessioned2022-08-04T16:31:46Z-
dc.date.available2022-08-04T16:31:46Z-
dc.date.issued2022-
dc.identifier.otherOAK-000000191849-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000191849en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/261821-
dc.description.abstractDuring the orthodontic treatment, tooth movement and stress distribution on archwire are important factor that must be analyzed mechanically. Since it is difficult to experiment clinically with patients, it is efficient to discover the mechanism of orthodontic treatment through FEA (Finite Element Analysis). However, implementing detailed FE (Finite Element) models including brackets, archwire, teeth and gingiva required for orthodontic treatment is ineffective and difficult, which makes limited scope of the study such as considering only one tooth, part of the device and short-term stress losses right after engagement. This study identifies the mechanical and structural behavior of teeth and orthodontic archwire during orthodontic treatment with efficiency and accuracy. In addition, stress changes along the orthodontic treatment are investigated by generating FE models depending on crowding status; Moderate crowding, Mild crowding and Ideal model. In order to achieve the goal, the simplified FE models implemented with short- and long-term stress losses calculations through the modified equations adopted from prestressing technique are proposed. This study uses prestressing technique, because the mechanism of post-tension method, one of the method of prestressing technique, is considered as similar to the mechanism of orthodontic treatment where archwire is engaged into the bracket slots. Therefore, short-term stress losses caused by elastic shortening, anchorage slip and friction are calculated and validated through the experiments. The validated model is then applied to human teeth and used to calculate stress changes in long-term due to stress relaxation of archwire and creep of teeth. ;치아 교정과정에서 치아의 이동과 교정와이어의 응력은 역학적으로 정확히 파악해야 하는 중요한 요인이다. 임상적으로 환자를 대상으로 실험을 수행하는 것은 어려우므로, 유한요소해석을 통해 교정의 메커니즘을 분석하는 것이 효율적인 방법이다. 그러나 교정에 필요한 브라켓, 와이어, 치아 및 잇몸 등을 포함한 세부적인 유한요소해석모델을 구현하는 것은 비효율적이며 어렵다. 따라서 이로 인해 기존의 연구들은 하나의 치아, 교정 장치의 일부, 교정이 시작된 직후인 단기 응력 손실만을 고려하는 등 연구의 범위가 제한적이었다. 본 연구에서는 교정 시 치아 및 교정 와이어의 구조적 및 역학적 거동을 효율적이며 정확하게 파악하였다. 또한 치열의 상태에 따라 Moderate crowding, Mild crowding, Ideal model 세가지의 유한요소해석 모델을 구성하여 응력변화를 분석하였다. 이를 위해, 단순화된 유한요소해석 모델에 프리스트레스 기법에서 차용하여 변형된 단기 및 장기 응력 손실 계산식을 제안하였다. 이는 프리스트레스 기법 중 하나인 포스트텐션 공법의 메커니즘이 치아에 장착된 브라켓에 교정와이어가 연결되는 것과 유사한 메커니즘으로 이루어졌다고 판단되어 프리스트레스 기법이 사용되었다. 따라서 탄성수축, 정착장치에서의 손실, 마찰에 의한 단기 응력손실은 실험을 통해 계산되며 검증된다. 그 후, 검증된 모델을 사람의 치아에 적용하며 교정 와이어의 릴랙세이션과 치아의 크리프로 인한 장기 응력 변화를 계산하는 데에 사용되었다.-
dc.description.tableofcontentsI. Introduction 1 A. Orthodontic Treatment System and Teeth 1 B. Literature Review 5 1. Structural mechanism of orthodontic treatment and prestressing technique. 5 2. Experimental studies on orthodontic treatment 7 3. Analytical studies on orthodontic treatment. 12 C. Research Objective and Scope 17 II. Analytical Approach 19 A. Generation of FE Model 20 1. Teeth model geometry and mesh generation. 21 2. Loading and boundary conditions 25 3. Contact formulation and equation 26 B. Material Model 30 1. Archwire 30 2. Veroclear 31 3. Human teeth 32 4. PDL 33 III. Stress Distribution of Archwire Considering Short-term Stress Loss 35 A. Adoption of Prestressing Technique to Orthodontics 36 B. Short-term Stress Loss 38 C. Stress Distribution of Archwire and Teeth 43 IV. Validation of FE Model with Experiment 51 A. Experimental Method. 51 B. Stress Calculation. 53 C. Comparisons of Wire Stress between Models. 56 D. Validation with FE Results 62 V. Stress Distribution of Archwire Considering Long-term Stress Loss 66 A. Adoption of Long-term Stress Loss Equation 67 B. Calculation of Short-term Stress Losses with Human Teeth Material 71 C. Long-term Stress Losses in Moderate Crowding model 74 VI. Application of Proposed Model to the Simulation of Food Chewing during Orthodontic Treatment 85 A. Modeling Description 86 B. Effect of Chewing Simulation on Orthodontic Treatment 87 VII. Conclusions 91 A. Conclusions. 91 B. Limitation of this Study and Further Research 94 Bibliography 96 Appendix 109 Abstract (in Korean) 111-
dc.formatapplication/pdf-
dc.format.extent3606721 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc720-
dc.titleApplication of Prestressing Technique to the Analysis of Orthodontic Treatment-
dc.typeDoctoral Thesis-
dc.title.subtitleStructural and Mechanical Perspectives-
dc.creator.othernameChun, Yeonju-
dc.format.pageix, 113 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 건축도시시스템공학과-
dc.date.awarded2022. 8-
Appears in Collections:
일반대학원 > 건축도시시스템공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE