View : 584 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김우재-
dc.contributor.author정혜민-
dc.creator정혜민-
dc.date.accessioned2022-02-07T16:31:00Z-
dc.date.available2022-02-07T16:31:00Z-
dc.date.issued2022-
dc.identifier.otherOAK-000000184469-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000184469en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/259801-
dc.description.abstractRecently, there is an increasing need for environmentally friendly clean energy development. Hydrogen energy is a powerful new energy and only water is generated during combustion, so it has the advantage of reducing greenhouse gas emissions. Currently, the main hydrogen production method is steam reforming, in which fossil fuels such as natural gas are reacted with water at a high temperature, but there is a limit that a large amount of carbon dioxide is generated in the hydrogen production process. Water electrolysis hydrogen production does not generate carbon dioxide and is the most environmentally friendly hydrogen production method, but the production cost is higher than other processes. By using biomass that absorbs carbon dioxide by photosynthesis, hydrogen can be produced in a carbon-neutral. In this study, high-purity hydrogen was produced without carbon dioxide generation using an alkaline thermochemical process (Alkaline Thermal Treatment (ATT)) in which an alkaline material was added to the gasification process of biomass or waste sample. Alkaline thermochemical processes are characterized by a simple reaction pathway and low temperature compared to gasification processes. Carbon dioxide generated during the reaction is collected in the form of solid carbonate, and unlike the gasification reaction, tar and char are not produced in the alkaline thermochemical reaction. The alkaline material mainly used was NaOH, and the gas produced by mixing at an appropriate ratio according to the components of the reactants and putting them in the reactor, and then raising the reactor temperature was analyzed in real-time. Through an alkaline thermochemical process experiment, the cellulose standard of 44.5 mmol H2 / g, which is model biomass, was achieved, and the effect of the process was confirmed by applying it to actual biomass and waste such as wood, seaweed, shade water sludge, and plastic. Especially in the case of lignin, 125.2921 mmol H2 / daf-g was produced by the ATT reaction, showing the highest hydrogen production. By applying a Ni / ZrO2 catalyst to the alkaline thermochemical step to modify the kettle acid gas generated during the ATT step, the amount of hydrogen produced (CatATT) was increased by 200 % or more of the ATT reaction ratio. In addition, the [CnH2n] plastic, which is known not to undergo thermal decomposition well, was thermally oxidized to improve the ATT reaction selectivity.;최근 친환경 청정에너지 개발에 대한 필요성이 높아지고 있다. 수소 에너지는 유력한 신에너지로 연소 시 물만 발생하기 때문에 온실가스 배출량을 줄일 수 있다는 장점이 있다. 현재 주된 수소 생산 방법은 천연가스 등 화석 연료와 물을 고온에서 반응시키는 증기 개질 공정(steam reforming)인데 수소 생산 과정에서 이산화탄소가 다량 발생한다는 한계를 가진다. 수전해 수소 생산은 이산화탄소가 발생하지 않아 가장 친환경적인 수소 생산 방식이지만 다른 공정에 비해 생산 비용이 높다. 광합성을 통해 이산화탄소를 흡수하는 바이오매스를 이용하면 탄소 중립적으로 수소를 생산할 수 있다. 본 연구에서는 바이오매스 혹은 폐기물 샘플의 가스화(steam gasification) 공정에 알칼리 소재를 첨가하는 알칼리 열화학 공정(Alkaline Thermal Treatment, ATT)을 이용하여 이산화탄소 발생 없이 고순도 수소를 생산하였다. 알칼리 열화학 공정은 가스화 공정에 비해 반응 경로가 단순하고 저온에서 일어난다는 특징을 가진다. 반응 중 발생한 이산화탄소는 고체 카보네이트 형태로 포집되며 가스화 반응과 달리 알칼리 열화학 반응에서는 타르, 차르가 생성되지 않는다. 주로 사용한 알칼리 소재는 NaOH로, 반응 물질의 성분에 따라 적절한 비율로 혼합하여 반응기에 넣어준 후 반응기 온도를 증가시키며 생성된 가스를 실시간 분석하였다. 알칼리 열화학 공정 실험을 통해 모델 바이오매스인 셀룰로오스 기준 44.5 mmol H2/g를 달성했고 목재, 해조류, 음폐수 슬러지, 플라스틱 등 실제 바이오매스 및 폐기물에 적용하여 공정의 효과를 확인하였다. 특히 lignin의 경우 ATT 반응을 통해 125.2921 mmol H2/daf-g이 생성되어 가장 높은 수소 생산량을 나타냈다. 알칼리 열화학 공정에 Ni/ZrO2 촉매를 적용하여 ATT 공정 중 발생한 부산 가스를 개질함으로서 (CatATT) 수소 생산량을 ATT 반응 대비 200 % 이상 증가시켰다. 또한 열분해가 잘 일어나지 않는다고 알려진 [Cn¬H2n] 플라스틱을 열산화처리 하여 ATT 반응 선택도를 높일 수 있었다.-
dc.description.tableofcontentsI. Introduction 1 A. Hydrogen Production 1 B. Alkaline Thermal Treatment 6 1. Steam Gasification 6 2. Alkaline Thermal Treatment; Production of high-purity hydrogen with carbon capture 8 3. Hydroxide Regeneration through integrated mineral carbonation 12 C. Biomass and Plastic Resources 13 1. Seaweeds and Blue-green Algae 13 2. Lignin and Black Liquor 16 3. Food Waste Sludge 20 4. Plastics 21 II. Materials and Method 26 A. Materials 26 B. Reactor System 30 C. Reactions 32 D. Analysis 34 III. Results and Discussions 36 A. High-purity hydrogen production using ATT reactions 36 1. Hydrogen production via ATT reaction 37 2. Hydrogen production in the presents of catalyst 54 B. NaOH regeneration and the formation of hydrogen 59 C. Pretreatment of Plastic Resources 61 IV. Conclusions 66 References 67 Appendix 1. Ultimate and Proximate Analysis of Resources 76 Appendix 2. Detailed experimental conditions 78 국문초록 80-
dc.formatapplication/pdf-
dc.format.extent1659930 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc660-
dc.titleHigh-purity Hydrogen Production with Carbon Capture using Alkaline Thermal Treatment-
dc.typeMaster's Thesis-
dc.creator.othernameJung, Hyemin-
dc.format.pagevii, 83 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학신소재공학과-
dc.date.awarded2022. 2-
Appears in Collections:
일반대학원 > 화학신소재공학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE