View : 570 Download: 0

Design methodology for mass transfer-enhanced large-scale electrochemical reactor for CO2 reduction

Title
Design methodology for mass transfer-enhanced large-scale electrochemical reactor for CO2 reduction
Authors
Jung, ByungchanPark, SeonghoLim, ChulwanLee, Woong HeeLim, YoungsubNa, JonggeolLee, Chul-JinOh, Hyung-SukLee, Ung
Ewha Authors
나종걸
SCOPUS Author ID
나종걸scopus
Issue Date
2021
Journal Title
CHEMICAL ENGINEERING JOURNAL
ISSN
1385-8947JCR Link

1873-3212JCR Link
Citation
CHEMICAL ENGINEERING JOURNAL vol. 424
Keywords
CO2 reductionCFDMass transferElectrolyzer
Publisher
ELSEVIER SCIENCE SA
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The electrochemical conversion of CO2 using a continuous flow membrane reactor is a promising technology. This is because the membrane reactor can achieve high productivity and selectivity by enhancing the mass transfer of CO2. In an industrial-scale reactor, the extrinsic properties that facilitate the mass transfer rate are crucial because the uniform flow distribution and high production rate can only be achieved when the interface and flow patterns are properly designed. Herein, we experimentally measured the production rate of CO in a large-scale electrochemical CO2 reduction reactor by varying the pH, interface, and flow pattern. The result indicated that optimization of the flow pattern alone can improve the production rate of CO by 28% indicating that a high convection rate through gas diffusion electrode (GDE) results in a high production rate. A three-dimensional computational fluid dynamic model was developed to quantify the effect of the new flow pattern on the mass transfer. From the model, the Peclet number increased by 28%, which is consistent with the CO partial current increment. This result indicates that the convective mass transfer improves the production rate. Additionally, we proposed a general guideline for the flow pattern design for a large-scale electrochemical CO2 reduction reactor that maximizes convective mass transfer through a GDE.
DOI
10.1016/j.cej.2021.130265
Appears in Collections:
공과대학 > 화공신소재공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE