View : 999 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor박소정-
dc.contributor.authorHU XIAOLE-
dc.creatorHU XIAOLE-
dc.date.accessioned2021-01-25T16:30:30Z-
dc.date.available2021-01-25T16:30:30Z-
dc.date.issued2021-
dc.identifier.otherOAK-000000172762-
dc.identifier.urihttp://dcollection.ewha.ac.kr/common/orgView/000000172762en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/256164-
dc.description.abstractHybrid nanomaterials, particularly inorganic nanoparticle-polymer conjugates, have invoked a lot of research interests due to their broad applicability ranging from electronic to biomedical field. However, the stability of nanoparticle is an important prerequisite and a major challenge for the practical applications. Similarly, fabrication of low-dimensional assembly of nanoparticles is yet another aspect needs more attention. In general, nanoparticles functionalized with moieties that can offer both stability and defined self-assembling properties will have tremendous applications. In this dissertation, the specific interaction of polymer was utilized for the DNA-functionalization and hence the stabilization of inorganic nanoparticle and self-assembly of nanoparticles and polymers into free-standing two-dimensional sheet are mainly presented. DNA-functionalization of iron oxide nanoparticles was fabricated by utilizing DNA-grafted poly(acrylic acid) copolymer as phase transfer and DNA functionalization agent of hydrophobic iron oxide nanoparticles via ligand exchange. DNA-grafted poly(acrylic acid) was synthesized with solid-phase synthesis method via amide chemistry, which yielded polymer backbone grafted with multiple DNA strands as well as free carboxylate. The resulting copolymer was utilized as a phase transfer and DNA-functionalization agent for hydrophobic iron oxide nanoparticles, taking advantage of unreacted functional (carboxylic acid) groups. The resulting DNA-modified iron oxide nanoparticles can be well dispersed in aqueous solutions and exhibit DNA binding properties characteristic of polyvalent DNA nanostructures. DNA-grafted poly(acrylic acid) was further utilized to functionalize large sized metal (gold, silver) nanoparticles with DNA. DNA-grafted poly(acrylic acid) can achieve fast DNA loading on 40 nm gold nanoparticle (less than 30 min) with salt aging method. The resulting DNA functionalized gold nanoparticles remain stable in high salt condition and demonstrated the unique DNA recognition property. Different from gold nanoparticles, a second backfilling agent (ascorbic acid) was applied to facilitate preparing stable silver nanoparticle-DNA polyvalent nanostructure. A simple universal approach to produce free-standing two-dimensional sheets of polymer-linked nanoparticles based on the simultaneous self-assembly of hydrophobic nanoparticles and hydrophilic polymers at the liquid-liquid interface. The assembled two-dimensional sheet with the lateral dimension of tens of micrometers and the nanometer scale thickness can last for a long time at ambient condition. This method was also applicable for a broad range of nanoparticles including metal oxide, semiconductor, and metal nanoparticles. Furthermore, functional polymers such as conducting polymers and DNA-conjugated polymers have been adopted to prepare 2D nanosheet with additional functionalities. ;하이브리드 나노소재, 특히 무기 나노입자-고분자 복합체는 전자 분야부터 생의학 분야까지 광범위하게 적용 가능하므로 많은 연구자들의 주목을 받고 있다. 그러나 나노 입자의 안정성은 실제 응용을 위한 전제 조건이자 주요한 도전 과제이다. 그리고 저차원 나노입자의 자기조립 또한 다른 측면에서 더 많은 관심이 필요한 부분이다. 일반적으로 작용기로 기능화된 나노 입자는 안정성과 규명된 자기조립 특성을 모두 제공 할 수 있으므로 다양한 응용 분야를 가질 수 있을 것으로 예상된다. 이 논문에서는 DNA 기능화를 위해 고분자의 특정 상호 작용을 활용하여 무기 나노 입자의 안정화와 나노 입자와 고분자의 독립된 2차원 시트로의 자기 조립이 주로 제시된다. DNA로 개질된 산화철 나노입자는 소수성 산화철 나노입자를 DNA가 접목된 폴리(아크릴산) 공중 합체를 상전이 매개체 및 DNA 개질 물질로 이용한 리간드 교환을 통해 합성하였다. DNA가 접목된 폴리(아크릴산)은 아마이드 화학 반응을 이용한 고체상 합성 방법으로 합성되었으며, 이는 자유 카복실레이트뿐만 아니라 여러 DNA 가닥이 접목된 고분자 골격을 생성했다. 합성한 공중합체는 남아있는 미반응 작용기를 이용하여 소수성 산화철 나노입자의 상전이 매개체 및 DNA 기능화 물질로 사용되었다. DNA로 개질된 산화철 나노입자는 수용액에 분산 가능하고 특징적인 DNA 결합 특성을 나타낸다. DNA가 접목된 폴리(아크릴산)은 또한 큰 사이즈의 금속 (금, 은) 나노입자를 DNA로 개질하는데 사용되었다. 솔트 에이징 (salt aging) 방법을 통하여 DNA가 접목된 폴리(아크릴산)은 40 nm 금 나노입자에 빠른 DNA 로딩을 (30분 미만) 할 수 있었다. DNA 기능화된 금 나노입자는 DNA 고유의 인식 특성뿐만 아니라 고농도 염 수용액 조건에서도 안정성을 유지하였다. 금 나노입자와는 달리 안정한 은 나노입자-DNA 다가 나노구조체는 2차 백필링 에이전트(아스코르브산)를 사용함으로써 형성할 수 있었다. 이 학위논문에서는 액체-액체 계면에서 소수성 나노입자와 친수성 고분자의 동시 자기 조립을 기반으로 독립된 2차원 시트의 고분자가 결합된 나노입자를 합성할 수 있는 간단하고도 보편적인 합성 방법을 제시하였다. 수십 마이크로미터의 측면 크기와 나노미터 스케일 두께로 조립된 2차원 시트는 실온 환경에서도 오랫동안 유지될 수 있었다. 이 방법은 금속 산화물, 반도체, 금속 나노 입자를 포함한 광범위한 나노입자에도 적용할 수 있다. 그리고 전도성 고분자와 DNA 결합 고분자와 같은 기능성 고분자를 이용하여 기능성이 부여된 2차원 나노 시트를 제작할 수 있다.-
dc.description.tableofcontentsChapter I. Introduction 1 I-1. DNA-grafted polymer for DNA functionalization of iron oxide nanoparticles 1 I-1-1. Spherical nucleic acid 1 I-1-2. Iron oxide nanoparticles: Synthesis and biofunctionalization 5 I-1-3. Synthesis of DNA-grafted copolymers 11 I-2. DNA-grafted polymer for DNA functionalization of large-size metal (gold, silver)nanoparticles 14 I-2-1. Polyvalent DNA nanostructures with metal nanoparticle core 14 I-2-2. Stable metal (gold, silver) nanoparticles 20 I-3. Free-standing two-dimensional nanosheet of polymer-linked nanoparticles 21 I-3-1. General surface chemistry of inorganic nanoparticles 21 I-3-2. Nanoparticle self-assembly at liquid–liquid interface 24 I-3-3. Free-standing two-dimensional nanosheet of nanoparticles 26 I-4. Thesis overview 29 I-5. References 32 Chapter II. DNA-grafted poly(acrylic acid) for one-step DNA functionalization of iron oxide nanoparticles 44 II-1. Introduction 45 II-2. Experimental Section 47 II-2-1. Materials 47 II-2-2. Synthesis of PtBA 49 II-2-3. Conversion of PtBA to PAA 52 II-2-4. Synthesis of DNA-grafted PAA 54 II-2-5. Estimation of DNA graft efficiency on PAA backbone 54 II-2-6. DNA binding properties of PAA-g-DNA 56 II-2-7. FRET efficiency of PAA-g-DNA 59 II-2-8. DNA functionalization of IONP with PAA-g-DNA 62 II-2-9. Synthesis of complementary DNA modified gold nanoparticles (AuNPs) 64 II-2-10. DNA-induced aggregation of IONP/PAA-g-DNA and complementary modified AuNPs 65 II-2-11. Instrumentation 65 II-3. Results and Discussion 66 II-3-1. Synthesis and characterization of PAA-g-DNA 66 II-3-2. DNA binding properties of PAA-g-DNA 69 II-3-3. DNA functionalization of IONP with PAA-g-DNA 72 II-4. Conclusions 77 II-5. References 78 Chapter III. DNA functionalization of large-size metal nanoparticles with DNA-grafted poly(acrylic acid) 84 III-1. Introduction 85 III-2. Experimental Section 88 III-2-1. Materials 88 III-2-2. Preparation of PAA243-stabilized metal nanoparticles 88 III-2-3. Stability test of PAA243-stabilized metal nanoparticles 90 III-2-4. Synthesis of PAA243-g-DNA with solid phase synthesis method 91 III-2-5. DNA functionalization of metal nanoparticles with PAA243-g-DNA 93 III-2-6. Stability test of 40 nm AuNP/PAA243-g-DNA 96 III-2-7. DNA-directed self-assembly of 40 nm AuNP/PAA243-g-DNA conjugates 96 III-2-8. Kinetic study of 38 nm AgNP/PAA243 with backfilling molecules 96 III-2-9. Prepare AgNP/PAA243-g-DNA with ascorbic acid (AA) 100 III-2-10. Stability test of AgNP/PAA243-g-DNA 100 III-2-11. Instrumentation 104 III-3. Results and Discussion 104 III-3-1. Fabrication of stable 40 nm AuNP/PAA243-g-DNA conjugates 104 III-3-2. DNA-directed self-assembly of 40 nm AuNP/PAA243-g-DNA and 13 nm AuNP-cDNA 108 III-4. Conclusions 109 III-5. References 110 Chapter IV. Free-Standing Two-Dimensional Sheets of Polymer-Linked Nanoparticles 112 IV-1. Introduction 113 IV-2. Experimental Section 115 IV-2-1. Materials 115 IV-2-2. Overview of synthetic nanoparticles and polymers 116 IV-2-3. Synthesis of oleic acid-capping iron oxide nanoparticle 116 IV-2-4. Synthesis of 5.2 nm gold nanoparticle 119 IV-2-5. Synthesis of 6.1 nm oleyamine-capping silver nanoparticle 121 IV-2-6. Self-assembly of IONP and PAA69 124 IV-2-7. Nanoparticles concentration test 126 IV-2-8. pH effect test 128 IV-2-9. Self-assembly of IONP and other polymers (PEG, PVA) 130 IV-2-10. Self-assembly of AuNP and PAAm217 132 IV-2-11. Self-assembly of QD and PEDOT: PSS into 2D sheet 132 IV-2-12. Self-assembly of QD and PEDOT: PSS into vesicle 133 IV-2-13. Self-assembly of polymer with binary nanoparticles 134 IV-2-14. Instrumentation 134 IV-3. Results and Discussion 135 IV-3-1. Self-assembly of iron oxide nanoparticles into 2D nanosheets 135 IV-3-2. Self-assembly of quantum dots into 2D nanosheets 141 IV-3-3. Mechanism behind the formation of 2D nanosheets 143 IV-3-4. Extending 2D self-assembly to other polymer-nanoparticle pairs 146 IV-3-5. Binary nanosheets 148 IV-3-6. 2D self-assembly of nanoparticles with functional polymers 150 IV-4. Conclusions 153 IV-5. References 154 Chapter V. Future directions 158 V-1. Free-standing assembled 2D sheet 158 V-2. Large size metal nanoparticle-oligonucleotides conjugates 159 V-3. References 161 Chapter VI. Ongoing research 162 VI-1. Introduction 163 VI-2. Experimental section 164 VI-2-1. Synthesis of 60 nm AuNP 164 VI-2-2. Synthesis of 60 nm Au-IONP core-shell nanoparticle 166 VI-3. References 172 국문초록 173 ACKNOWDEGMENT 175 PUBLICATIONS 177-
dc.formatapplication/pdf-
dc.format.extent7220715 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleNanoparticle/Polymer Hybrids-
dc.typeDoctoral Thesis-
dc.title.subtitleSurface Modification and Self-Assembly-
dc.title.translated나노입자/고분자 하이브리드 : 표면 개질 및 자기조립-
dc.format.pagexvi, 177 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2021. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE