View : 1596 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor윤여준-
dc.contributor.author김은지-
dc.creator김은지-
dc.date.accessioned2020-09-11T16:32:18Z-
dc.date.available2020-09-11T16:32:18Z-
dc.date.issued2015-
dc.identifier.otherOAK-000000117350-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000117350en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/255371-
dc.description.abstractNatural products and their derivatives are used as clinical therapeutics. There are several impediments to the development of these natural compounds, such as the limited production of these compounds in natural sources, difficulties in culturing source organisms, the slow growth of cultured organisms, difficulties in genetic modification, and even the ambiguity of the producing organism; moreover, it is economically impracticable in many cases to synthesize structurally complex metabolites through chemical synthesis. The heterologous expression of biosynthetic pathways is an indispensable tool when using natural products to discover and develop drugs. Streptomyces venezuelae is a promising heterologous host as it offers several attractive advantages including a rapid growth rate, convenient genetic manipulation, and an abundant supply of common biosynthetic building blocks. In recent decades, several S. venezuelae mutant strains have been constructed and used to facilitate the synthesis and derivatization of diverse natural products. In the present study, I have provided a schematic presentation of heterologous production systems for which S. venezuelae was used, and these were applied to synthesize natural products from genetically engineered biosynthetic gene clusters. In chapter 3, the barbamide biosynthetic gene cluster was heterologously expressed in the pikromycin PKS deletion mutant of S. venezuelae using the low-copy plasmid E. coli-Streptomyces’ shuttle vector under the control of a pikAI promoter. The mutant strain dramatically produced very low yields (less than 1 μg/L) of 4-O-dimethylbarbamide, and this might have been due to suboptimal codon usage in the cyanobacteria DNA compared to the “high %GC content” actinobacteria. This is the first report to describe the heterologous expression of an NRPS/PKS gene cluster in the Streptomyces species. For Chapter 4, I redesigned and reassembled the 56.6-kb epothilone biosynthetic gene cluster from Sorangium cellulosum for expression in S. venezuelae DHS2001. The codon composition was adapted to a modified codon table for S. venezuelae, and unique restriction sites were introduced to permit pathway assembly for heterologous epothilone-production systems. When these constructs were introduced into the S. venezuelae DHS2001 with an additional copy of the pikD gene, the transformants only produced approximately < 1 μg/L of epothilone A; furthermore, an overexpression of transport genes was introduced into the chromosome of the mutant strains of S. venezuelae. The resulting strains showed a 10-fold increase in the production of the corresponding compounds. In addition, an epothilone gene cluster under the control of the actI promoter was constructed. The resulting plasmid was then introduced into the S. coelicolor, and the resulting strain produced < 1 μg/L of epothilone A. In chapter 5, another approach is used to improve the productivity of the heterologous, natural-product epothilones in the S. venezuelae, whereby a ribosome-engineered S. venezuelae was developed. The mutant was genetically manipulated to be deficient in the production of its macrolide antibiotics, whereby the entire biosynthetic gene cluster encoding the pikromycin PKS and des cluster was deleted. The epothilone biosynthetic gene cluster was heterologously expressed in the pikromycin-PKS-and-des-cluster-deletion mutant of the S. venezuelae using two compatible low-copy plasmids that were each under the control of a pikAI promoter. The mutant strain produced < 1 μg/L of epothilone A. In summary, the present study provides an efficient heterologous expression system of natural products. In summary, the present study provides the applications of heterologous expression system to the synthesis and characterization of natural products.;본 연구는 스트렙토마이세스 베네주엘래 (Streptomyces venezuelae) 균주를 이용한 천연물의 이종숙주 생산시스템의 개발을 목표로 하였다. 보다 자세하게는 해양미생물 (cyanobacteria)이 생산하는 연체동물제거 활성을 갖는 바바마이드 (barbamide)의 생합성 유전자 집단을 이종숙주 스트렙토마이세스 베네주엘래에 도입하여 생산하는 이종숙주 생산시스템과, 토양미생물 (myxobacteria)이 생산하는 항암 활성을 갖는 에포틸론 (epothilone) 생합성 유전자 집단을 이종숙주 스트렙토마이세스 베네주엘래에 도입하여 에포틸론을 생산하는 이종숙주 생산시스템을 구축하는 것에 관한 것이다. 앞선 연구에서 개발된, 피크로마이신 (pikromycin) 생합성 유전자가 제거된 돌연변이균주 DHS2001을 이용하여 연구를 진행하였다. 바바마이드 생합성 유전자 집단 (barA-K)을 pikA 프로모터를 포함한 대장균-방선균 셔틀벡터 (E.coli-Streptomyces shuttle vector)에 도입하고 이를 DHS2001에 형질전환하여 바바마이드의 중간체, <1 μg/L의 4-O-dimethylbarbamide 생산을 확인하였다. 에포틸론 이종숙주 생산 시스템 개발에 있어서, 에포틸론 자체 소란지움 셀룰로섬 (Sorangium cellulosum) 유래의 유전자가 아닌, 이종숙주 스트렙토마이세스 베네주엘래에 유전자서열에 맞추어 codon 최적화를 통하여 인공 합성된 에포틸론 생합성 유전자집단을 pikA 프로모터를 포함한 대장균-방선균 셔틀벡터에 도입하고 이를 DHS2001에 형질전환하여 <1 μg/L의 에포틸론 A의 생산을 확인하였다. 에포틸론의 생산성 향상을 위하여 운송 유전자 (transport gene)의 역할을 할 것으로 예상되는 orf6, orf3, orf14 유전자를 ermE* 프로모터를 포함한 대장균-방선균 셔틀벡터에 도입하고 이를 DHS2001의 염색체 (chromosome)에 삽입하여 에포틸론 A의 생산이 10배 증가 된, 10 μg/L의 에포틸론을 확인하였다. 또한 프로모터와 이종숙주를 교체하여 actI 프로모터를 이용하여 스트렙토마이세스 실리칼라 (Streptomyces coelicolor)에서 에포틸론 유전자를 형질전환하여 pikA 프로모터를 이용하여 발현했을 때와 유사한 생산량의 <1 μg/L의 에포틸론 A 생산을 확인하였다. 보다 효율적인 유전자 발현을 위하여 리보좀 가공 (ribosome engineering)을 스트렙토마이세스 베네주엘래 야생균주 (wild type)에 적용하였다. 1차로 스트렙토마이신 (streptomycin) 을 이용하여 MIC 값 이상에서 생존하는 스트렙토마이신 저항성 균주를 선별하고, 2차로 이를 이용하여 다시 젠타마이신 (gentamycin)을 이용하여 MIC 값 이상에서 생존하는 젠타마이신 저항성 균주를 선별하였다. 이렇게 선별된 이중 저항성 스트렙토마이세스 베네주엘래는 피크로마이신 (pikromycin)의 생산량이 5배 증가된 것을 확인하였다. 이렇게 리보좀 가공된 스트렙토마이세스 베네주엘래를 이용하여 염색체의 피크로마이신 PKS와 데소사민 (desosamine) 유전자 집단을 삭제하고 새로운 이종숙주를 제작하였다. 새로이 제작된 이종숙주에 pikA 프로모터를 사용하는 에포틸론 유전자집단을 형질전환하여 <1 μg/L의 에포틸론 A가 생산되는 것을 확인하였다. 이상의 연구 결과는 스트렙토마이세스 베네주엘래를 이용한 이종숙주 발현 시스템 개발을 통하여 해양 및 토양 미생물 유래의 천연 생리활성물질을 생산하였다. 이는 향후 스트렙토마이세스 베네주앨래를 이용한 더욱 다양한 천연물의 이종숙주 생산시스템의 개발 가능성을 보여주었다.-
dc.description.tableofcontentsI. Research Background and Scope of Thesis 1 A. Natural products and Actinomycetes 2 1. Natural products 2 2. Polyketides and non-ribosomal peptides 2 3. Actinomycetes, the genus Streptomyces 5 B. Marine cyanobacteria metabolite barbamide 6 C. Terrestrial myxobacterial metabolite epothilone 10 D. Heterologous host for biosynthesis of polyketide 14 1. Heterologous expression 14 2. Streptomyces venezuelae 14 E. Approaches for the enhanced productivity of polyketides 20 1. Overexpression of transport genes 20 2. Ribosome engineering 20 F. Scope of thesis 22 II. Materials and Methods 23 A. Bacterial strains, plasmids, and culture conditions 24 B. Construction of S. venezuelae mutant strains 25 1. Expression of barbamide genes under the control of pikAI promoter 25 2. Expression of epothilone genes under the control of pikAI promoter 25 3. Expression of epothilone genes under the control of actI promoter 26 4. Expression of epothilone transport genes under the control of ermE* promoter 26 5. Construction of ribosome engineered mutant 27 C. Heterologous production of barbamide and epothilone 67 1. Isolation and identification of barbamide and 4-Odemethylbarbamid 67 2. Production and extraction of barbamide 68 3. Production and extraction of epothilone 68 D. HPLC-ESI-MS and NMR analysis of heterologous polyketides 69 1. HPLC-ESI-MS analysis of barbamide and 4-O-demethylbarbamide 69 2. HPLC-ESI-MS analysis of epothilone 69 E. Detection of mRNA transcripts by reverse-transcriptase PCR (RTPCR 70 1. Extraction of total messenger RNA from S. venezuelae mutants 70 2. Primer design for RT-PCR analysis of barE, barF, barG, barJ genes 70 3. Primer design for RT-PCR analysis of epoA, epoP, epoB, epoC, epoD, epoE, epoF, orf3, orf14 genes 70 4. Detection of mRNA transcripts by RT-PCR 71 F. Molluscicidal assy 74 G. HPLC analysis of pikromycin 75 III. Heterologous Expression of Barbamide PKS in Streptomyces venezuelae 76 A. Summary 77 B. Introduction 78 C. Heterologous expression of entire barbamide gene cluster in DHS2001 80 D. Conclusion 97 IV. Heterologous Expression of Epothilone PKS in Streptomyces venezuelae and Streptomyces coelicolor 98 A. Summary 99 B. Introduction 100 C. Generation of S. venezuelae mutant by ribosome engineering 101 D. Strategies for enhancing epothilone production 106 1. Overexpression of transport genes on the production of epothilone 106 2. Epothilone PKS expression under the control of actI promoter 106 E. Conclusion 111 V. Enhanced Production of Heterologous Epothilone in Streptomyces venezuelae Mutant by Ribosome Engineering 112 A. Summary 113 B. Introduction 114 C. Heterologous expression of entire barbamide gene cluster in DHS2001 115 D. Development of novel heterologous host for the production of epothilone 119 E. Conclusion 122 VI. Overall Conclusions and Recommendations 123 A. Conclusion and discussion 124 Bibliography 126 Abstract (in Korean) 138 Acknowledgements 140-
dc.formatapplication/pdf-
dc.format.extent4186694 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleDevelopment of an efficient heterologous production system of polyketide natural products-
dc.typeDoctoral Thesis-
dc.creator.othernameKim, Eun Ji-
dc.format.pagex, 140 p.-
dc.contributor.examiner박제원-
dc.contributor.examiner이종현-
dc.contributor.examiner김원석-
dc.contributor.examiner남상집-
dc.contributor.examiner윤여준-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2015. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE