View : 764 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author민배현*
dc.date.accessioned2020-07-10T16:30:14Z-
dc.date.available2020-07-10T16:30:14Z-
dc.date.issued2020*
dc.identifier.issn1750-5836*
dc.identifier.issn1878-0148*
dc.identifier.otherOAK-27060*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/254123-
dc.description.abstractPrior to determining the optimal operating parameters for CO2 injection, conditions for both injection wellbore and storage formation should be evaluated; the build-up pressure induced by the CO2 injection could promote fractures in the storage formation, even collapsing the wellbore. In this study, a hybrid optimization metho-dology, which combined the proxy modeling and multi -objective optimization, was engaged in searching ap-propriate operating conditions for CO2 injection. The study utilized a fully coupled wellbore-reservoir (WR) model to simulate the CO2 injection scenarios. Three responses, such as pressure, temperature, and CO2 mass flow rate at the bottom-hole of injection wellbore, were investigated. To reduce the computational cost, the statistical proxy models were developed for approximating three responses. The developed fine-tuned proxy models revealed four influential factors; wellhead pressure, injected CO2 temperature, wellbore diameter, and permeability of a storage formation were significant in predicting three responses. Among these four influential factors, permeability was treated to be an uncertainty factor, while the other three factors were treated as tuning factors. According to acquired optimal solution sets, the optimum values for wellhead pressure and injected CO2 temperature were distributed around 10.0 MPa and 35 degrees C, respectively. For the wellbore diameter, its mean of optimal solutions was 0.1 m, and more solutions were concentrated at this mean value with a decrease in permeability.*
dc.languageEnglish*
dc.publisherELSEVIER SCI LTD*
dc.subjectCO2 injection*
dc.subjectcoupled wellbore-reservoir model*
dc.subjectproxy modeling*
dc.subjectmulti-objective optimization*
dc.subjectPareto-optimal solutions*
dc.titleA Hybrid Optimization Methodology Identifying Optimal Operating Conditions for Carbon Dioxide Injection in Geologic Carbon Sequestration*
dc.typeArticle*
dc.relation.volume98*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.journaltitleINTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL*
dc.identifier.doi10.1016/j.ijggc.2020.103067*
dc.identifier.wosidWOS:000550199300012*
dc.identifier.scopusid2-s2.0-85085306839*
dc.author.googlePiao, Jize*
dc.author.googleHan, Weon Shik*
dc.author.googleKang, Peter K.*
dc.author.googleMin, Baehyun*
dc.author.googleKim, Kue-Young*
dc.author.googleHan, Gidon*
dc.author.googlePark, Jong Gil*
dc.contributor.scopusid민배현(45961384800)*
dc.date.modifydate20240322114211*
Appears in Collections:
공과대학 > 기후에너지시스템공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE