View : 613 Download: 0

Temperature-Induced Lifshitz Transition and Charge Density Wave in InTe1-delta Thermoelectric Materials

Title
Temperature-Induced Lifshitz Transition and Charge Density Wave in InTe1-delta Thermoelectric Materials
Authors
Back, Song YiKim, Young-KwangCho, HyunyongHan, Mi-KyungKim, Sung JinRhyee, Jong Soo
Ewha Authors
김성진한미경
SCOPUS Author ID
김성진scopus; 한미경scopus
Issue Date
2020
Journal Title
ACS APPLIED ENERGY MATERIALS
ISSN
2574-0962JCR Link
Citation
ACS APPLIED ENERGY MATERIALS vol. 3, no. 4, pp. 3628 - 3636
Keywords
thermoelectricInTeLifshitz transitioncharge density waveGruneisen parameter
Publisher
AMER CHEMICAL SOC
Indexed
SCOPUS WOS
Document Type
Article
Abstract
We investigated the thermoelectric transport properties of InTe1-delta (delta = 0.0, 0.1, and 0.2) compounds and interpreted their unusual behavior in terms of electronic and phonon band dispersions. The temperature-dependent electrical resistivity rho(T) and Seebeck coefficient S(T) exhibit the charge density wave (CDW) transition near 87 K for InTe1-delta (delta = 0.1 and 0.2) compounds. The CDW transitions on the Tedeficient compounds can be supported by the Fermi surface nesting along the M-X line in InTe1-delta (delta = 0.25). The temperature-dependent Hall carrier density n H shows unusual behavior in that the n(H)(T) is increased by the Fermi surface reconstruction. From the temperature-dependent X-ray diffraction measurements, we found the superstructural lattice distortion at low temperatures (T <= 175 K), implying the intrinsic lattice instability. During the structural phase transition from tetragonal (I4/mcm) or orthorhombic (Ibam) to superstructural orthorhombic (Pbca) in InTe and Te-deficient InTe0.8, we observed a negative thermal expansion coefficient, giving rise to the large variation of negative Gruneisen parameters. Owing to the significant change in thermal expansion coefficients and Griineisen parameters with respect to temperature, the energy band structure, in other words, Fermi surface, depends on the temperature, indicating a temperature-driven Lifshitz transition in InTe(1-delta )compounds. The Te-deficiency induces significant anharmonicity of phonons from the numerous flat bands and negative phonon branches. The coexistences of temperature-driven Lifshitz transition, CDW formation, and lattice anharmonicity with high negative Gruneisen parameter in InTe1-delta are very exceptional cases and suggest the profound physical properties in the compounds.
DOI
10.1021/acsaem.0c00112
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE