View : 126 Download: 0

Epidemiological Characterization of a Directed and Weighted Disease Network Using Data From a Cohort of One Million Patients: Network Analysis

Title
Epidemiological Characterization of a Directed and Weighted Disease Network Using Data From a Cohort of One Million Patients: Network Analysis
Authors
Ko, KyungminLee, Chae WonNam, SangminAhn, Song VogueBae, Jung HoBan, Chi YongYoo, JongmanPark, JungminHan, Hyun Wook
Ewha Authors
안성복
Issue Date
2020
Journal Title
JOURNAL OF MEDICAL INTERNET RESEARCH
ISSN
1438-8871JCR Link
Citation
JOURNAL OF MEDICAL INTERNET RESEARCH vol. 22, no. 4
Keywords
cohort studiesdata sciencelongitudinal studiesstatistical data interpretationmedical informatics
Publisher
JMIR PUBLICATIONS, INC
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Background: In the past 20 years, various methods have been introduced to construct disease networks. However, established disease networks have not been clinically useful to date because of differences among demographic factors, as well as the temporal order and intensity among disease-disease associations. Objective: This study sought to investigate the overall patterns of the associations among diseases; network properties, such as clustering, degree, and strength; and the relationship between the structure of disease networks and demographic factors. Methods: We used National Health Insurance Service-National Sample Cohort (NHIS-NSC) data from the Republic of Korea, which included the time series insurance information of 1 million out of 50 million Korean (approximately 2%) patients obtained between 2002 and 2013. After setting the observation and outcome periods, we selected only 520 common Korean Classification of Disease, sixth revision codes that were the most prevalent diagnoses, making up approximately 80% of the cases, for statistical validity. Using these data, we constructed a directional and weighted temporal network that considered both demographic factors and network properties. Results: Our disease network contained 294 nodes and 3085 edges, a relative risk value of more than 4, and a false discovery rate-adjusted P value of <.001. Interestingly, our network presented four large clusters. Analysis of the network topology revealed a stronger correlation between in-strength and out-strength than between in-degree and out-degree. Further, the mean age of each disease population was related to the position along the regression line of the out/in-strength plot. Conversely, clustering analysis suggested that our network boasted four large clusters with different sex, age, and disease categories. Conclusions: We constructed a directional and weighted disease network visualizing demographic factors. Our proposed disease network model is expected to be a valuable tool for use by early clinical researchers seeking to explore the relationships among diseases in the future.
DOI
10.2196/15196
Appears in Collections:
신산업융합대학 > 융합보건학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE