View : 71 Download: 0

Nanostructured Materials for High Performance Perovskite Photovoltaic and Photodetector Devices

Title
Nanostructured Materials for High Performance Perovskite Photovoltaic and Photodetector Devices
Authors
권한나
Issue Date
2020
Department/Major
대학원 화학·나노과학과
Publisher
이화여자대학교 대학원
Degree
Doctor
Advisors
김동하
Abstract
페로브스카이트는 결정구조가 CaTiO3 와 같이 일반적으로 ABX3의 구조를 갖는 물질을 일컬으며, 여기서 A는 유기 또는 무기 양이온, B는 금속 양이온, 그리고 X는 이들과 결합하고 있는 음이온이다. 이 물질은 반도체 성질은 물론 초전도 현상등과 같은 우수한 물리적 특성으로 인해 다양한 분야에서 활용이 되어오고 있다. 특히, 유기물과 무기물이 혼합된 형태로 페로브스카이트를 태양전지, 발광 다이오드와 같은 광전자소자의 소재로 응용하는 연구가 활발하게 이루어지고 있다. 특히, ABX3 분자식에서A는 유기 양이온, B는 금속 양이온 X는 할로겐 음이온으로 이루어진 유-무기 하이브리드 페로브스카이트 물질은 높은 전하 이동성과 광대역 흡수 및 광전기적 특성으로 인해 광전자소자의 광활성층으로써 높은 광전변환 효율을 보이고 있다. 본 논문의 제1장에서는 본 연구의 이해를 돕기 위한 페로브스카이트 물질의 배경 및 일반적인 지식을 서술하였으며, 페로브스카이트 광전자소자 (태양전지와 광검출기)의 구조와 종류, 작동원리 그리고 최근 연구동향을 소개하였다. 본 논문의 제2장에서는 공액 고분자 TFB와 p-type 도펀트 F4-TCNQ를 도입하고 에너지 밴드를 디자인하여 정공 추출이 용이한 정공 수송층 물질을 제시하였고, 이를 바탕으로 저비용, 고효율의 태양전지를 제작하였다. 새로 개발한 물질은 기존 정공 수송층 (Spiro-OMeTAD + LiTFSI + TBP)보다 효율과 수분안정성이 현저히 향상되었으며 그 원리를 증명하는 결과를 서술하였다. 본 논문의 제3장에서는 저조도 환경에서도 높은 광전변환 효율을 갖는 페로브스카이트 태양전지를 개발한 결과를 소개하였다. 유-무기 하이브리드 페로브스카이트 물질의 조성을 화학양론적으로 조절하여 태양전지의 광활성층 소재로 적용하였으며, 이는 저조도 조명(발광 다이오드와 할로겐 조명)에서 에너지를 흡수해 전기를 생산하였다. 제시한 페로브스카이트 태양전지는 미량의 저조도 빛에서도 우수한 광전변환효율을 나타내었으며 그 메커니즘을 규명하고 광학적 분석을 통하여 증명하였다. 본 논문의 제4장에서는 금속 나노막대와 매우 얇은 고분자층의 도입으로 고효율을 도출하는 수직형 광전도체 구조의 페로브스카이트 광검출기를 소개하였다. 용액공정으로 금속 나노막대를 합성하였고 페로브스카이트 광검출기에 도입하여 표면 플라즈몬 효과에서 기인하는 향상된 흡수, 근접장 증폭 및 산란 효과를 통해 증폭되는 광전류를 관찰하였다. 하지만, 이 구조에서 원치 않는 전자 흐름이 발생되어 암전류가 상승하는 결과가 나타난다. 이에 본 연구에서는 이를 해결하고자 광활성층과 금속 나노막대 사이에 얇은 고분자 버퍼층을 도입하여 암전류를 최소화하고 검출도도 향상시키는 이론적 모델을 설계하였고, 페로브스카이트 소자를 제작하여 최적화된 메커니즘을 분석하였다. 본 논문의 제5장에서는 갈바니 치환 반응을 이용하여 구리-은 합금 나노와이어를 합성하고 이를 페로브스카이트 광검출기 소자의 투명전극으로 도입하고자 한 연구결과를 소개하였다. 합성한 나노와이어의 성질을 분석하고 이를 투명전극으로 개발하여 광학적 특성을 규명하였다. 개발한 투명전극은 추후, 기계적 강도가 낮은ITO 또는 FTO의 대체제로써 유연 광전자소자에 응용될 수 있는 가능성을 제시하였다.;CHAPTER I : The organic inorganic perovskites have built on a pioneering advances as a new class of semiconducting materials. Due to the its desirable properties such as efficient light absorption, facile solution process and high charge carrier mobility, perovskite material has been utilized in wide applications (e.g., photovoltaic solar cells, photodetectors and light emitting diodes). In this chapter, an broad overview of the thesis is provided with the brief introduction of classification of perovskite based solar cells and photodetectors, key figure of merit parameters for each performance and summary of recent research. CHAPTER II : Designing hole transport materials (HTMs) has emerged as one of the most important approaches to improve the efficiency and stability of perovskite solar cells. We assessed the promise of a conjugated polymer, TFB (Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]), and a non-hygroscopic p-type dopant F4-TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) as HTM. It was demonstrated that F4-TCNQ-doped TFB might serve as an ideal HTM candidates exhibiting fast hole mobility as well as suitable energy band alignment with the perovskite active layer. The established band alignment is proposed to be a primary factor to facilitate efficient charge extraction from the perovskite to the electrode and to increase the short-circuit current, which resulted in an enhanced power conversion efficiency of 17.46%. The hydrophobic nature of F4-TCNQ-doped TFB was shown to remarkably enhance the long-term stability, maintaining ca. 80% of its initial efficiency after 10 days. Our simple, yet novel strategy paves the way for demonstrating a promising route for a wide range of highly efficient solar cells and photovoltaic applications. CHAPTER III : Developing indoor lighting-driven photovoltaic cells has a great potential due to their ability to convert waste lighting into reusable energy resources. As a promising renewable energy source, perovskite photovoltaic cells (PPCs) have been recognized high efficiency, facile processable, and cost-effective. Here, we demonstrate stoichiometry controlled PPCs for recycling the indoor lighting by converting the derelict energy. Among the various stoichiometry, 10% Br-doped perovskite photoactive layers under dim light emitting diode (LED) illumination exhibited the highest efficiency due to the sublinear dependence of JSC on the light intensity in the PPCs that are originated from the discrepancy of electron and hole mobilities. As a result, the PPC measured under 1000 lx LED indoor lighting exhibited an averaged power conversion efficiency of 33.2 ± 1.3%, which is superior by 16% to that of a control device (28.7 ± 1.1%). To the best of our knowledge, this unprecedented achievement reaches to the highest uncertified records to date. These results suggest that perovskite photovoltaic cells can be potentially used under indoor lighting conditions as a power source for practical IoT, wireless sensors, and building-integrated photovoltaics. CHAPTER IV : Hybrid photodetectors based on organic-inorganic perovskites have witnessed rapid development due to their superior optoelectronic properties such as effective light absorption and high charge carrier mobility. However there are still reaminaed challenged for the application due to high dark currents and low detectivity levels. In this work, uniformly synthesized Au nanorods (AuNRs) incorporated within a ~10 nm-thick polyethyleneimine ethoxylated (PEIE) interlayer were integrated into vertical perovskite photoconductive photodetectors. The localized surface plasmon resonance effects of AuNRs favored high photocurrent enhancement. Most notably however, the incorporation of a PEIE thin buffer interlayer served as a simple yet effective strategy to markedly suppress the dark current in these devices. The established synergetic effect between both components resulted in a significant enhancement of the device performance with high responsivity and detectivity. Our solution-processable plasmonic structures integrated within an interfacial polymer-based layer are simple, economic, and efficient for high-performance photodetectors. CHAPTER V : Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices (e.g., touch panels, solar cells and light emitting diodes) due to their flexibility and wearable merit. So far, (Indium this oxide) ITO and (Fluorinated tin oxide) FTO are the commercial materials for optoelectronic devices because of their high transparency. However, ITO and FTO have a bottle neck in high cost, process complexity and brittleness, therefore it is hard to applicate for the flexible devices. Photodetectors are ubiquitous devices used in sensing, environmental monitoring, and communications systems. Specially, emerging solution‐processed organic-inorganic perovskite photodetector shows promising potential in optoelectronic properties and have a growing interest in flexibility. Here, we report a concept of copper-silver alloy nanowire (Cu-Ag NW) and utilize as a TCE on perovskite photodetectors. Due to the high conductivity of proposed TCE model, we could achieve excellent charge transporting property, and thereby we can expect that this structure can be used for perovskite photodetector which can achieve high detectivity. Moreover replacing the brittle substrate, we can expect to perform excellent flexible optoelectronic device. We present an opportunity for low‐cost fabrication of metal nanowire TCEs based on nanostructured halide perovskites photodetector providing photoresponsive, environmentally‐stable, and reproducible flexible photodetector devices for a wide range of applications.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE