View : 428 Download: 45

Reduction of Oxidative Stress Attenuates Lipoapoptosis Exacerbated by Hypoxia in Human Hepatocytes

Title
Reduction of Oxidative Stress Attenuates Lipoapoptosis Exacerbated by Hypoxia in Human Hepatocytes
Authors
Hwang, Sang YounYu, Su JongLee, Jeong-HoonKim, Hwi YoungKim, Yoon Jun
Ewha Authors
김휘영
SCOPUS Author ID
김휘영scopus
Issue Date
2015
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN
1422-0067JCR Link
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES vol. 16, no. 2, pp. 3323 - 3334
Publisher
MDPI AG
Indexed
SCIE; SCOPUS WOS
Document Type
Article
Abstract
Chronic intermittent hypoxia, a characteristic of obstructive sleep apnea (OSA), is associated with the progression of simple hepatic steatosis to necroinflammatory hepatitis. We determined whether inhibition of a hypoxia-induced signaling pathway could attenuate hypoxia-exacerbated lipoapoptosis in human hepatocytes. The human hepatocellular carcinoma cell line (HepG2) was used in this study. Palmitic acid (PA)-treated groups were used for two environmental conditions: Hypoxia (1% O-2) and normoxia (20% O-2). Following the treatment, the cell viability was determined by the 3,4-(5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay, and the mechanism of lipoapoptosis was evaluated by Western blotting. Hypoxia exacerbated the suppression of hepatocyte growth induced by palmitic acid via activation of mitochondrial apoptotic pathways as a result of endoplasmic reticulum (ER) and oxidative stresses. Ammonium pyrrolidine dithiocarbamate, a scavenger of reactive oxygen species, attenuated the hypoxia-exacerbated lipoapoptosis in hepatocytes, whereas glycerol, which reduces ER stress, did not. This may have been because inhibition of oxidative stress decreases the expression of pro-apoptotic proteins, such as caspase 9 and cytochrome c. These results suggested that modulation of apoptotic signaling pathways activated by oxidative stress can aid in identifying novel therapeutic strategies for the treatment of nonalcoholic steatohepatitis (NASH) with OSA. Further in vivo studies are necessary to understand the pathophysiologic mechanism of NASH with OSA and to prove the therapeutic effect of the modulation of the signaling pathways.
DOI
10.3390/ijms16023323
Appears in Collections:
의과대학 > 의학과 > Journal papers
Files in This Item:
ijms-16-03323.pdf(1.12 MB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE